COMP331/COMP557: Optimisation

Martin Gairing
Computer Science Department

University of Liverpool

1st Semester 2018/19
Material adapted from a course by Martin Skutella at TU Berlin

My Background

```
FH Esslingen
    - 1995-2000: Diplom (Electrical Engineering)
```


Clemson University

- 2000-2001: MSc (Computer Science)

University of Paderborn

- 2002-2007: PhD + Postdoc

International Computer Science Institute Berkeley

- 2007- 2009: Postdoc

Liverpool University

- Since 2009: Lecturer/Senior Lecturer

Administrative Details

Lectures:

- Mondays, 11:00-12:00
- Tuesdays, 10:00-11:00
- Thursdays, 12:00-13:00

Tutorials:

- Flávia Alves (F.Alves@liverpool.ac.uk)
- starting from Friday 28 September

Assessment:

- 25 \% continuous assessment
- 75 \% final exam

Course Aims

- To provide a foundation for modelling various continuous and discrete optimisation problems.
- To provide the tools and paradigms for the design and analysis of algorithms for continuous and discrete optimisation problems. Apply these tools to real-world problems.
- To review the links and interconnections between optimisation and computational complexity theory.
- To provide an in-depth, systematic and critical understanding of selected significant topics at the intersection of optimisation, algorithms and (to a lesser extent) complexity theory, together with the related research issues.

Learning Outcomes

Upon completion of the module you should have:

- A critical awareness of current problems and research issues in the field of optimisation.
- The ability to formulate optimisation models for the purpose of modelling particular applications.
- The ability to use appropriate algorithmic paradigms and techniques in context of a particular optimisation model.
- The ability to read, understand and communicate research literature in the field of optimisation.
- The ability to recognise potential research opportunities and research directions.

Outline

(1) Introduction
(2) Linear Programming Basics
(3) The Geometry of Linear Programming
(4) The Simplex Method
(5) Duality
(6) Applications of Linear Programming

Chapter 1: Introduction

A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Devote all resources to ale: 34 barrels of ale
$\Longrightarrow £ 442$

A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Devote all resources to ale: 34 barrels of ale
$\Longrightarrow £ 442$
- Devote all resources to beer: 32 barrels of beer
$\Longrightarrow £ 736$

A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Devote all resources to ale: 34 barrels of ale
$\Longrightarrow £ 442$
- Devote all resources to beer: 32 barrels of beer
$\Longrightarrow £ 736$
- 7.5 barrels of ale, 29.5 barrels of beer
$\Longrightarrow £ 776$

A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Devote all resources to ale: 34 barrels of ale
$\Longrightarrow £ 442$
- Devote all resources to beer: 32 barrels of beer
$\Longrightarrow £ 736$
- 7.5 barrels of ale, 29.5 barrels of beer
$\Longrightarrow £ 776$
- 12 barrels of ale, 28 barrels of beer
$\Longrightarrow £ 800$

A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Devote all resources to ale: 34 barrels of ale
$\Longrightarrow £ 442$
- Devote all resources to beer: 32 barrels of beer
$\Longrightarrow £ 736$
- 7.5 barrels of ale, 29.5 barrels of beer
$\Longrightarrow £ 776$
- 12 barrels of ale, 28 barrels of beer
$\Longrightarrow £ 800$
Is this best possible?

A Motivating (and Refreshing) Example

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Mathematical Formulation:

A Motivating (and Refreshing) Example

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Mathematical Formulation:

$$
\max 13 A+23 B \quad \text { Profit }
$$

A Motivating (and Refreshing) Example

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Mathematical Formulation:

$$
\begin{array}{rrl}
\max & 13 A & +23 B \\
\text { s.t. } & 5 A & \text { Profit } \\
\text { a } & 15 B \leq 480 & \text { Corn }
\end{array}
$$

A Motivating (and Refreshing) Example

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Mathematical Formulation:

$$
\begin{array}{rrll}
\max & 13 A+23 B & & \text { Profit } \\
\text { s.t. } & 5 A+15 B \leq 480 & \text { Corn } \\
& 4 A+4 B \leq 160 & \text { Hops }
\end{array}
$$

A Motivating (and Refreshing) Example

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Mathematical Formulation:

$$
\begin{array}{rrll}
\max & 13 A & +23 B & \text { Profit } \\
\text { s.t. } & 5 A & +15 B & \leq 480 \\
& \text { Corn } \\
& 4 A & +4 B & \leq 160 \\
& \text { Hops } \\
& 35 A+20 B & \leq 1190 & \text { Malt }
\end{array}
$$

A Motivating (and Refreshing) Example

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Mathematical Formulation:

$$
\begin{array}{rrll}
\max & 13 A & +23 B & \\
\text { s.t. } & 5 A+15 B & \leq 480 & \text { Corn } \\
& 4 A & +4 B & \leq 160 \\
& \text { Hops } \\
& 35 A+20 B & \leq 1190 & \text { Malt } \\
& & A, B & \geq 0
\end{array}
$$

A Motivating (and Refreshing) Example

Observation: Regardless of objective function coefficients, an optimal solution occurs at an extreme point (vertex).

Terminology and Notation

Numbers:

- \mathbb{R}... set of real numbers
- $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{+} \ldots$ set of non-negative real numbers
- $\mathbb{R}^{n} \ldots$ n-dimensional real vector space
$-\mathbb{Z}, \mathbb{Z}_{\geq 0}, \mathbb{Z}^{n} \ldots$ set of integers, non-negative integers, n-dimensional ...

Terminology and Notation

Numbers:

- \mathbb{R}...set of real numbers
- $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{+} \ldots$ set of non-negative real numbers
- $\mathbb{R}^{n} \ldots$-dimensional real vector space
$-\mathbb{Z}, \mathbb{Z}_{\geq 0}, \mathbb{Z}^{n} \ldots$ set of integers, non-negative integers, n-dimensional ...
Sets:
- $S=\left\{s_{1}, s_{2}, \cdots, s_{k}\right\} \ldots$ a set of k elements
- $S=\{x \mid P(x)\} \ldots$ set of elements x for which condition P is true
- Example: $\quad \mathbb{Z}_{\geq 0}=\{i \mid i \in \mathbb{Z}$ and $i \geq 0\}$
- $|S| \ldots$ size (number of elements) of a finite set S
- 2^{S}...set of all subsets of S
e.g.: $2^{\{a, b, c\}}=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$
- $\mu: S \mapsto T \ldots \mu$ is a mapping (or function) from set S to set T

Terminology and Notation - Linear Algebra

- matrix of dimension $m \times n$:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
A_{1} & A_{2} & \ldots \\
\mid & A_{n} \\
\mid & \mid & \\
\hline
\end{array}\right)=\left(\begin{array}{c}
-a_{1}^{T}- \\
\vdots \\
-a_{m}^{T}-
\end{array}\right)
$$

Terminology and Notation - Linear Algebra

- matrix of dimension $m \times n$:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{11} n \\
a_{21} & a_{22} & a_{22 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
\mid & 1 & \mid \\
A_{1} & A_{2} & \ldots \\
\mid & \mid & A_{n} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{c}
-a_{1}^{T}- \\
\vdots \\
-a_{m}^{T}-
\end{array}\right)
$$

- and its transpose: $A^{T}=\left(\begin{array}{cccc}a_{11} & a_{21} & \ldots & a_{m 1} \\ a_{12} & a_{22} & \ldots & a_{m 2} \\ \vdots & \vdots & \vdots \\ a_{1 n} & a_{2 n} & \ldots & a_{m n}\end{array}\right)$

Terminology and Notation - Linear Algebra

- matrix of dimension $m \times n$:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} n \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
a_{m 1} & \vdots & & \vdots \\
a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & \mid \\
A_{1} & A_{2} & \ldots \\
\mid & A_{n} \\
\mid & & \\
\hline
\end{array}\right)=\left(\begin{array}{c}
-a_{1}^{T}- \\
\vdots \\
-a_{m}^{T}
\end{array}\right)
$$

- and its transpose: $A^{T}=\left(\begin{array}{cccc}a_{11} & a_{21} & \ldots & a_{m 1} \\ a_{12} & a_{22} & \ldots & a_{m 2} \\ \vdots & \vdots & \vdots \\ a_{1 n} & a_{2 n} & \ldots & a_{m n}\end{array}\right)$
- Column vector $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$; row vector x^{T} (the transpose of x)

Terminology and Notation - Linear Algebra

- matrix of dimension $m \times n$:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} n \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
A_{1} & A_{2} & \ldots \\
\mid & A_{n} \\
\mid & & \\
\mid
\end{array}\right)=\left(\begin{array}{c}
-a_{1}^{T}- \\
\vdots \\
-a_{m}^{T}-
\end{array}\right)
$$

- and its transpose: $A^{T}=\left(\begin{array}{cccc}a_{11} & a_{21} & & \\ a_{12} & a_{m 1} \\ \vdots & \vdots & & a_{m 2} \\ a_{11} & \vdots 2 n & \ldots & \vdots \\ a_{m n}\end{array}\right)$
- Column vector $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$; row vector x^{T} (the transpose of x)
- Inner product of $x, y \in \mathbb{R}^{n}: \quad x^{\top} y=y^{\top} x=\sum_{i=1}^{n} x_{i} y_{i}$

Terminology and Notation - Linear Algebra

- matrix of dimension $m \times n$:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{11} n \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
\mid & 1 & \mid \\
A_{1} & A_{2} & \ldots \\
\mid & A_{n} \\
\mid & & \\
\hline
\end{array}\right)=\left(\begin{array}{c}
-a_{1}^{T}- \\
\vdots \\
-a_{m}^{T}-
\end{array}\right)
$$

- and its transpose: $A^{T}=\left(\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{m 1} \\ a_{12} & 22 \\ \vdots & \vdots & & a_{m 2} \\ a_{11} & a_{2 n} & \ldots & \vdots \\ a_{m n}\end{array}\right)$
- Column vector $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$; row vector x^{T} (the transpose of x)
- Inner product of $x, y \in \mathbb{R}^{n}: \quad x^{\top} y=y^{\top} x=\sum_{i=1}^{n} x_{i} y_{i}$
- Matrix equation $A x=b$ is equivalent to $a_{i}^{T} x=b_{i}$ for all $i \in\{1, \ldots, m\}$ (b is an m-vector, b_{i} is its i 'th component)

Terminology and Notation - Linear Algebra

- $\operatorname{det}(A)$... determinant of a matrix
- e.g.: $\operatorname{det}\left(\begin{array}{ll}a_{11} \\ a_{12} & a_{22}\end{array}\right)=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}$

Terminology and Notation - Linear Algebra

- $\operatorname{det}(A) \ldots$ determinant of a matrix
- e.g.: $\operatorname{det}\left(\begin{array}{ll}\left.\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right)=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}\end{array}\right.$
- $e_{i} \ldots$ unit vector (dimension from context)
- 1 in i 'th component, 0 else
- e.g. (dimension 3): $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

Terminology and Notation - Linear Algebra

- $\operatorname{det}(A) \ldots$ determinant of a matrix
- e.g.: $\operatorname{det}\left(\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right)=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}$
- $e_{i} \ldots$ unit vector (dimension from context)
- 1 in i 'th component, 0 else
- e.g. (dimension 3): $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$\downarrow I=\left(\begin{array}{ccc}\mid & \mid & \mid \\ e_{1} & e_{2} & \ldots \\ \mid & e_{n} \\ \mid & \mid & \mid\end{array}\right) \ldots$ identity matrix (dimension from context, here n)
- 1 on main diagonal, 0 else
- e.g. (dimension 3): $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Terminology and Notation - Linear Algebra

- $\operatorname{det}(A) \ldots$ determinant of a matrix
- e.g.: $\operatorname{det}\left(\begin{array}{cc}\left.\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right)=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}\end{array}\right.$
- $e_{i} \ldots$ unit vector (dimension from context)
- 1 in i 'th component, 0 else
- e.g. (dimension 3): $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$\downarrow I=\left(\begin{array}{ccc}\mid & \mid & \mid \\ e_{1} & e_{2} & \ldots \\ \mid & e_{n} \\ \mid & \mid & \\ 1 & \mid\end{array}\right) \ldots$ identity matrix (dimension from context, here n)
- 1 on main diagonal, 0 else
- e.g. (dimension 3): $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$-\operatorname{rank}(A)=$ size of the largest set of linearly independent columns $=$ size of the largest set of linearly independent rows

Terminology and Notation - Linear Algebra

- $\operatorname{det}(A) \ldots$ determinant of a matrix
- e.g.: $\operatorname{det}\left(\begin{array}{cc}\left.\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right)=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}\end{array}\right.$
- $e_{i} \ldots$ unit vector (dimension from context)
- 1 in i 'th component, 0 else
- e.g. (dimension 3): $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$\downarrow I=\left(\begin{array}{ccc}\mid & \mid & \mid \\ e_{1} & e_{2} & \ldots \\ \mid & e_{n} \\ \mid & \mid & \\ 1 & \mid\end{array}\right) \ldots$ identity matrix (dimension from context, here n)
- 1 on main diagonal, 0 else
- e.g. (dimension 3): $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$-\operatorname{rank}(A)=$ size of the largest set of linearly independent columns $=$ size of the largest set of linearly independent rows
- $A^{-1} \ldots$ matrix inverse of square matrix A
- $A^{-1} A=A A^{-1}=1$
- A^{-1} exists if and only if $\operatorname{det}(A) \neq 0$

