Optimization Problems

Generic optimization problem

Given: set X, function $f: X \rightarrow \mathbb{R}$
Task: find $x^{*} \in X$ maximizing (minimizing) $f\left(x^{*}\right)$, i. e.,

$$
f\left(x^{*}\right) \geq f(x) \quad\left(f\left(x^{*}\right) \leq f(x)\right) \quad \text { for all } x \in X
$$

Optimization Problems

Generic optimization problem

Given: set X, function $f: X \rightarrow \mathbb{R}$
Task: find $x^{*} \in X$ maximizing (minimizing) $f\left(x^{*}\right)$, i. e.,

$$
f\left(x^{*}\right) \geq f(x) \quad\left(f\left(x^{*}\right) \leq f(x)\right) \quad \text { for all } x \in X
$$

- An x^{*} with these properties is called optimal solution (optimum).

Optimization Problems

Generic optimization problem

Given: set X, function $f: X \rightarrow \mathbb{R}$
Task: find $x^{*} \in X$ maximizing (minimizing) $f\left(x^{*}\right)$, i. e.,

$$
f\left(x^{*}\right) \geq f(x) \quad\left(f\left(x^{*}\right) \leq f(x)\right) \quad \text { for all } x \in X
$$

- An x^{*} with these properties is called optimal solution (optimum).
- Here, X is the set of feasible solutions, f is the objective function.

Optimization Problems

Generic optimization problem

Given: set X, function $f: X \rightarrow \mathbb{R}$
Task: find $x^{*} \in X$ maximizing (minimizing) $f\left(x^{*}\right)$, i. e.,

$$
f\left(x^{*}\right) \geq f(x) \quad\left(f\left(x^{*}\right) \leq f(x)\right) \quad \text { for all } x \in X
$$

- An x^{*} with these properties is called optimal solution (optimum).
- Here, X is the set of feasible solutions, f is the objective function.

Short form:

$$
\begin{aligned}
\text { maximize } & f(x) \\
\text { subject to } & x \in X
\end{aligned}
$$

Optimization Problems

Generic optimization problem

Given: set X, function $f: X \rightarrow \mathbb{R}$
Task: find $x^{*} \in X$ maximizing (minimizing) $f\left(x^{*}\right)$, i. e.,

$$
f\left(x^{*}\right) \geq f(x) \quad\left(f\left(x^{*}\right) \leq f(x)\right) \quad \text { for all } x \in X
$$

- An x^{*} with these properties is called optimal solution (optimum).
- Here, X is the set of feasible solutions, f is the objective function.

Short form:

$$
\begin{aligned}
\text { maximize } & f(x) \\
\text { subject to } & x \in X
\end{aligned}
$$

or simply: $\quad \max \{f(x) \mid x \in X\}$.

Optimization Problems

Generic optimization problem

Given: set X, function $f: X \rightarrow \mathbb{R}$
Task: find $x^{*} \in X$ maximizing (minimizing) $f\left(x^{*}\right)$, i. e.,

$$
f\left(x^{*}\right) \geq f(x) \quad\left(f\left(x^{*}\right) \leq f(x)\right) \quad \text { for all } x \in X
$$

- An x^{*} with these properties is called optimal solution (optimum).
- Here, X is the set of feasible solutions, f is the objective function.

Short form:

$$
\begin{aligned}
\text { maximize } & f(x) \\
\text { subject to } & x \in X
\end{aligned}
$$

or simply: $\quad \max \{f(x) \mid x \in X\}$.
Problem: Too general to say anything meaningful!

Convex Optimization Problems

Definition 1.1.

Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$.
a X is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ it holds that

$$
\lambda \cdot x+(1-\lambda) \cdot y \in X
$$

Convex Optimization Problems

Definition 1.1.

Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$.
a X is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ it holds that

$$
\lambda \cdot x+(1-\lambda) \cdot y \in X
$$

b f is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ with $\lambda \cdot x+(1-\lambda) \cdot y \in X$ it holds that

$$
\lambda \cdot f(x)+(1-\lambda) \cdot f(y) \geq f(\lambda \cdot x+(1-\lambda) \cdot y) .
$$

Convex Optimization Problems

Definition 1.1.

Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$.
a X is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ it holds that

$$
\lambda \cdot x+(1-\lambda) \cdot y \in X
$$

b f is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ with $\lambda \cdot x+(1-\lambda) \cdot y \in X$ it holds that

$$
\lambda \cdot f(x)+(1-\lambda) \cdot f(y) \geq f(\lambda \cdot x+(1-\lambda) \cdot y) .
$$

c If X and f are both convex, then $\min \{f(x) \mid x \in X\}$ is a convex optimization problem.

Convex Optimization Problems

Definition 1.1.

Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$.
a X is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ it holds that

$$
\lambda \cdot x+(1-\lambda) \cdot y \in X
$$

b f is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ with $\lambda \cdot x+(1-\lambda) \cdot y \in X$ it holds that

$$
\lambda \cdot f(x)+(1-\lambda) \cdot f(y) \geq f(\lambda \cdot x+(1-\lambda) \cdot y) .
$$

c If X and f are both convex, then $\min \{f(x) \mid x \in X\}$ is a convex optimization problem.

Note: $f: X \mapsto \mathbb{R}$ is called concave if $-f$ is convex.

Local and Global Optimality
Definition 1.2.
Let $X \subseteq \mathbb{R}^{n}$ and $f: X \mapsto \mathbb{R}$.
$x^{\prime} \in X$ is a local optimum of the optimization problem $\min \{f(x) \mid x \in X\}$ if there is an $\varepsilon>0$ such that

$$
f\left(x^{\prime}\right) \leq f(x) \quad \text { for all } x \in X \text { with }\left\|x^{\prime}-x\right\|_{2} \leq \varepsilon
$$

distance between x and x^{\prime}

Local and Global Optimality

Definition 1.2.
Let $X \subseteq \mathbb{R}^{n}$ and $f: X \mapsto \mathbb{R}$.
$x^{\prime} \in X$ is a local optimum of the optimization problem $\min \{f(x) \mid x \in X\}$ if there is an $\varepsilon>0$ such that

$$
f\left(x^{\prime}\right) \leq f(x) \quad \text { for all } x \in X \text { with }\left\|x^{\prime}-x\right\|_{2} \leq \varepsilon .
$$

Theorem 1.3.

For a convex optimization problem, every local optimum is a (global) optimum.

Proof by contradiction:
Assume x^{\prime} is local aptimum and x^{*} is global optimum and

$$
f\left(x^{*}\right)<f\left(x^{\prime}\right) .
$$

Optimization Problems Considered in this Course:

```
maximize f(x)
subject to }x\in
```


Optimization Problems Considered in this Course:

```
maximize f(x)
subject to }x\in
```

- $X \subseteq \mathbb{R}^{n}$ polyhedron, f linear function
\longrightarrow linear optimization problem (in particular convex)

Optimization Problems Considered in this Course:

```
maximize f(x)
subject to }x\in
```

- $X \subseteq \mathbb{R}^{n}$ polyhedron, f linear function
\longrightarrow linear optimization problem (in particular convex)
- $X \subseteq \mathbb{Z}^{n}$ integer points of a polyhedron, f linear function \longrightarrow integer linear optimization problem

Optimization Problems Considered in this Course:

```
    maximize f(x)
subject to }x\in
```

- $X \subseteq \mathbb{R}^{n}$ polyhedron, f linear function
\longrightarrow linear optimization problem (in particular convex)
- $X \subseteq \mathbb{Z}^{n}$ integer points of a polyhedron, f linear function \longrightarrow integer linear optimization problem
- X related to some combinatorial structure (e. g., graph) \longrightarrow combinatorial optimization problem

Optimization Problems Considered in this Course:

```
    maximize f(x)
subject to }x\in
```

- $X \subseteq \mathbb{R}^{n}$ polyhedron, f linear function
\longrightarrow linear optimization problem (in particular convex)
- $X \subseteq \mathbb{Z}^{n}$ integer points of a polyhedron, f linear function
\longrightarrow integer linear optimization problem
- X related to some combinatorial structure (e. g., graph)
\longrightarrow combinatorial optimization problem
- X finite (but usually huge)
\longrightarrow discrete optimization problem

Optimization Problems Considered in this Course:

```
    maximize f(x)
subject to }x\in
```

- $X \subseteq \mathbb{R}^{n}$ polyhedron, f linear function
\longrightarrow linear optimization problem (in particular convex)
- $X \subseteq \mathbb{Z}^{n}$ integer points of a polyhedron, f linear function
\longrightarrow integer linear optimization problem
- X related to some combinatorial structure (e. g., graph)
\longrightarrow combinatorial optimization problem
- X finite (but usually huge)
\longrightarrow discrete optimization problem

Example: Shortest Path Problem

Given: directed graph $D=(V, A)$, weight function $w: A \rightarrow \mathbb{R}_{\geq 0}$, start node $s \in V$, destination node $t \in V$.

Task: find s - t-path of minimum weight.

Example: Shortest Path Problem

Given: directed graph $D=(V, A)$, weight function $w: A \rightarrow \mathbb{R}_{\geq 0}$, start node $s \in V$, destination node $t \in V$.

Task: find s - t-path of minimum weight.

That is, $X=\{P \subseteq A \mid P$ is s - t-path in $D\}$ and $f: X \rightarrow \mathbb{R}$ is given by

$$
f(P)=\sum_{a \in P} w(a) .
$$

Example: Shortest Path Problem

Given: directed graph $D=(V, A)$, weight function $w: A \rightarrow \mathbb{R}_{\geq 0}$, start node $s \in V$, destination node $t \in V$.

Task: find s - t-path of minimum weight.

That is, $X=\{P \subseteq A \mid P$ is s-t-path in $D\}$ and $f: X \rightarrow \mathbb{R}$ is given by

$$
f(P)=\sum_{a \in P} w(a)
$$

Remark.

Note that the finite set of feasible solutions X is only implicitly given by D. This holds for all interesting problems in combinatorial optimization!

Example: Minimum Spanning Tree (MST) Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

Example: Minimum Spanning Tree (MST) Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X=\left\{E^{\prime} \subseteq E \mid E^{\prime}\right.$ connects all nodes in $\left.V\right\}$ and $f: X \rightarrow \mathbb{R}$ is given by

$$
f\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} w(e) .
$$

Example: Minimum Spanning Tree (MST) Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X=\left\{E^{\prime} \subseteq E \mid E^{\prime}\right.$ connects all nodes in $\left.V\right\}$ and $f: X \rightarrow \mathbb{R}$ is given by

$$
f\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} w(e)
$$

Remarks

- Notice that there always exists an optimal solution without cycles.

Example: Minimum Spanning Tree (MST) Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X=\left\{E^{\prime} \subseteq E \mid E^{\prime}\right.$ connects all nodes in $\left.V\right\}$ and $f: X \rightarrow \mathbb{R}$ is given by

$$
f\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} w(e)
$$

Remarks

- Notice that there always exists an optimal solution without cycles.
- A connected graph without cycles is called a tree.

Example: Minimum Spanning Tree (MST) Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X=\left\{E^{\prime} \subseteq E \mid E^{\prime}\right.$ connects all nodes in $\left.V\right\}$ and $f: X \rightarrow \mathbb{R}$ is given by

$$
f\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} w(e)
$$

Remarks

- Notice that there always exists an optimal solution without cycles.
- A connected graph without cycles is called a tree.
- A subgraph of G containing all nodes in V is called spanning.

Example: Minimum Cost Flow Problem

Given: directed graph $D=(V, A)$, with arc capacities $u: A \rightarrow \mathbb{R}_{\geq 0}$, arc costs $c: A \rightarrow \mathbb{R}$, and node balances $b: V \rightarrow \mathbb{R}$.

Example: Minimum Cost Flow Problem

Given: directed graph $D=(V, A)$, with arc capacities $u: A \rightarrow \mathbb{R}_{\geq 0}$,
arc costs $c: A \rightarrow \mathbb{R}$, and node balances $b: V \rightarrow \mathbb{R}$.

Interpretation:

- nodes $v \in V$ with $b(v)>0(b(v)<0)$ have supply (demand) and are called sources (sinks)
- the capacity $u(a)$ of arc $a \in A$ limits the amount of flow that can be sent through arc a.

Example: Minimum Cost Flow Problem

Given: directed graph $D=(V, A)$, with arc capacities $u: A \rightarrow \mathbb{R}_{\geq 0}$,
arc costs $c: A \rightarrow \mathbb{R}$, and node balances $b: V \rightarrow \mathbb{R}$.

Interpretation:

- nodes $v \in V$ with $b(v)>0(b(v)<0)$ have supply (demand) and are called sources (sinks)
- the capacity $u(a)$ of arc $a \in A$ limits the amount of flow that can be sent through arc a.

Task: find a flow x : $A \rightarrow \mathbb{R}_{\geq 0}$ obeying capacities and satisfying all supplies and demands, that is,

$$
\begin{array}{cl}
0 \leq x(a) \leq u(a) & \text { for all } a \in A, \\
\sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V, \\
\text { such that } x \text { has minimum } \operatorname{cost} c(x):=\sum_{a \in A} c(a) \cdot x(a) . & \delta^{-(v)} \delta^{+}(v)
\end{array}
$$

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{a \in A} c(a) \cdot x(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) & \text { for all } a \in A \\
& x(a) \geq 0 & \text { for all } a \in A \tag{1.4}
\end{array}
$$

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{a \in A} c(a) \cdot x(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) & \\
& x(a) \geq 0 & \text { for all } a \in A \tag{1.4}\\
& \text { for all } a \in A
\end{array}
$$

- Objective function given by (1.1). Set of feasible solutions:

$$
X=\left\{x \in \mathbb{R}^{A} \mid x \text { satisfies }(1.2),(1.3), \text { and }(1.4)\right\}
$$

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{a \in A} c(a) \cdot x(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) & \text { for all } a \in A \\
& x(a) \geq 0 & \text { for all } a \in A \tag{1.4}
\end{array}
$$

- Objective function given by (1.1). Set of feasible solutions:

$$
X=\left\{x \in \mathbb{R}^{A} \mid x \text { satisfies }(1.2),(1.3), \text { and }(1.4)\right\}
$$

- Notice that (1.1) is a linear function of x and (1.2) - (1.4) are linear equations and linear inequalities, respectively. \longrightarrow linear program

