Optimization Problems

Generic optimization problem

Given: set X, function f : X — R
Task: find x* € X maximizing (minimizing) f(x*), i.e.,

F(x*) > f(x) (F(x*) < f(x)) forall x € X.
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Optimization Problems

Generic optimization problem

Given: set X, function f : X — R
Task: find x* € X maximizing (minimizing) f(x*), i.e.,

F(x*) > f(x) (F(x*) < f(x)) forall x € X.

» An x* with these properties is called optimal solution (optimum).

> Here, X is the set of feasible solutions, f is the objective function.

Short form: maximize f(x)
subject to x € X
or simply: max{f(x) [ x € X}.

Problem: Too general to say anything meaningful!
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Convex Optimization Problems

Definition 1.1.
Let X CR"and f: X — R.
B X is convex if for all x,y € X and 0 < XA < 1 it holds that

Ax+(1=XN)-yeX.
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Let X CR"and f: X — R.
B X is convex if for all x,y € X and 0 < XA < 1 it holds that

Ax+(1=XN)-yeX.

B f is convex if for all x,y € X and 0 < A < 1with A-x+ (1 —A) -y € X it holds
that
Af()+ (X=X -f(y)>Ff(A-x+(1=X)-y) .

If X and f are both convex, then min{f(x) | x € X} is a convex optimization
problem.

Note: f : X — R is called concave if —f is convex.
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Local and Global Optimality

Definition 1.2.
Let X CR"and f: X — R.

x" € X is a local optimum of the optimization problem min{f(x) | x € X} if there is an
€ > 0 such that

f(x') < f(x) for all x € X with |[x' — x]||2 < e.
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Local and Global Optimality

Definition 1.2.
Let X CR"and f: X — R.

x" € X is a local optimum of the optimization problem min{f(x) | x € X} if there is an
€ > 0 such that

f(x') < f(x) for all x € X with |[x' — x]||2 < e.

Theorem 1.3.

For a convex optimization problem, every local optimum is a (global) optimum.
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Optimization Problems Considered in this Course:

maximize f(x)
subject to x € X
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Example: Shortest Path Problem

H Given: directed graph D = (V, A),
\ weight function w : A — R>q,

start node s ¢ V

/ \ / \ destination node t € V.
\ / \ / Task: find s-t-path of minimum weight.
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Example: Shortest Path Problem

H Given: directed graph D = (V, A),
\ weight function w : A — R>q,

start node s ¢ V

/ \ / \ destination node t € V.

\ / \ / Task: find s-t-path of minimum weight.

Thatis, X ={P C A| P is s-t-path in D} and f : X — R is given by

Remark.

Note that the finite set of feasible solutions X is only implicitly given by D.
This holds for all interesting problems in combinatorial optimization!
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Example: Minimum Spanning Tree (MST) Problem

a

/

/\/
\/\

Given: undirected graph G = (V, E), weight
function w : E — R>o.

Task: find connected subgraph of G containing
all nodes in V with minimum total weight.

22



Example: Minimum Spanning Tree (MST) Problem
a Given: undirected graph G = (V, E), weight

\ function w : E — R>o.

Task: find connected subgraph of G containing

/ \ / all nodes in V' with minimum total weight.

That is, X = {E’ C E | E’ connects all nodes in V} and f : X — R is given by

FIE) =Y wle) .
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a Given: undirected graph G = (V, E), weight

\ function w : E — R>o.

Task: find connected subgraph of G containing

/ \ / all nodes in V' with minimum total weight.

That is, X = {E’ C E | E’ connects all nodes in V} and f : X — R is given by

Remarks
» Notice that there always exists an optimal solution without cycles.
> A connected graph without cycles is called a tree.
» A subgraph of G containing all nodes in V is called spanning.
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Example: Minimum Cost Flow Problem

Given: directed graph D = (V, A), with arc capacities u : A — R>q,
arc costs ¢ : A — R, and node balances b : V — R.
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Given: directed graph D = (V, A), with arc capacities u : A — R>q,
arc costs ¢ : A — R, and node balances b : V — R.
Interpretation:

» nodes v € V with b(v) > 0 (b(v) < 0) have supply (demand) and are called
sources (sinks)

» the capacity u(a) of arc a € A limits the amount of flow that can be sent through
arc a.
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Example: Minimum Cost Flow Problem

Given: directed graph D = (V, A), with arc capacities u : A — R>q,
arc costs ¢ : A — R, and node balances b : V — R.

Interpretation:

» nodes v € V with b(v) > 0 (b(v) < 0) have supply (demand) and are called
sources (sinks)

» the capacity u(a) of arc a € A limits the amount of flow that can be sent through
arc a.

Task: find a flow x : A — R>q obeying capacities and satisfying all supplies and
demands, that is,

< x(a) < u(a) forall a € A,

Z Z (a) = b(v) forallveVv,
[

acét(v)

such that x has minimum cost ¢(x) := ) .4 c(a) - j/\PV

$C)
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize Z c(a) - x(a)

acA

subject to Z x(a) — Z x(a) = b(v)
acdt(v) acé—(v)
x(a) < u(a)

forall v € V,

for all a € A,
for all a € A.

(1.1)

(1.2)

(1.3)
(1.4)
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize Z c(a) - x(a)

acA

subject to Z x(a) — Z x(a) = b(v) forall v eV,
acdt(v) acé—(v)
x(a) < u(a) for all a € A,
x(a) >0 for all a € A.

» Objective function given by (1.1). Set of feasible solutions:

X = {x € R? | x satisfies (1.2), (1.3), and (1.4)} .
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize Z c(a) - x(a)

acA

subject to Z x(a) — Z x(a) = b(v) forall v eV,

acdt(v) acé—(v)
x(a) < u(a) for all a € A,
x(a) >0 for all a € A.

» Objective function given by (1.1). Set of feasible solutions:

X = {x € R? | x satisfies (1.2), (1.3), and (1.4)} .

(1.1)

(1.2)

(1.3)
(1.4)

» Notice that (1.1) is a linear function of x and (1.2) — (1.4) are linear equations and

linear inequalities, respectively. — linear program



