
Optimization Problems

Generic optimization problem

Given: set X , function f : X ! R
Task: find x⇤ 2 X maximizing (minimizing) f (x⇤), i. e.,

f (x⇤) � f (x) (f (x⇤)  f (x)) for all x 2 X .

I An x⇤ with these properties is called optimal solution (optimum).
I Here, X is the set of feasible solutions, f is the objective function.

Short form: maximize f (x)

subject to x 2 X

or simply: max{f (x) | x 2 X}.

Problem: Too general to say anything meaningful!
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Convex Optimization Problems

Definition 1.1.

Let X ✓ Rn and f : X ! R.
a X is convex if for all x , y 2 X and 0  �  1 it holds that

� · x + (1 � �) · y 2 X .

b f is convex if for all x , y 2 X and 0  �  1 with � · x + (1 � �) · y 2 X it holds
that

� · f (x) + (1 � �) · f (y) � f (� · x + (1 � �) · y) .

c If X and f are both convex, then min{f (x) | x 2 X} is a convex optimization
problem.
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c If X and f are both convex, then min{f (x) | x 2 X} is a convex optimization
problem.

Note: f : X 7! R is called concave if �f is convex.
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Local and Global Optimality

Definition 1.2.

Let X ✓ Rn and f : X 7! R.
x 0 2 X is a local optimum of the optimization problem min{f (x) | x 2 X} if there is an
" > 0 such that

f (x 0)  f (x) for all x 2 X with kx 0 � xk2  ".

Theorem 1.3.

For a convex optimization problem, every local optimum is a (global) optimum.
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Optimization Problems Considered in this Course:

maximize f (x)

subject to x 2 X

I X ✓ Rn polyhedron, f linear function
�! linear optimization problem (in particular convex)

I X ✓ Zn integer points of a polyhedron, f linear function
�! integer linear optimization problem

I X related to some combinatorial structure (e. g., graph)
�! combinatorial optimization problem

I X finite (but usually huge)
�! discrete optimization problem
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Example: Shortest Path Problem

s
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Given: directed graph D = (V ,A),
weight function w : A ! R�0,
start node s 2 V ,
destination node t 2 V .

Task: find s-t-path of minimum weight.

That is, X = {P ✓ A | P is s-t-path in D} and f : X ! R is given by

f (P) =
X

a2P
w(a) .

Remark.

Note that the finite set of feasible solutions X is only implicitly given by D.
This holds for all interesting problems in combinatorial optimization!
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Example: Minimum Spanning Tree (MST) Problem
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Given: undirected graph G = (V ,E ), weight
function w : E ! R�0.

Task: find connected subgraph of G containing
all nodes in V with minimum total weight.

That is, X = {E 0 ✓ E | E 0 connects all nodes in V } and f : X ! R is given by

f (E 0) =
X

e2E 0

w(e) .

Remarks
I Notice that there always exists an optimal solution without cycles.
I A connected graph without cycles is called a tree.
I A subgraph of G containing all nodes in V is called spanning.
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Example: Minimum Cost Flow Problem

Given: directed graph D = (V ,A), with arc capacities u : A ! R�0,
arc costs c : A ! R, and node balances b : V ! R.

Interpretation:
I nodes v 2 V with b(v) > 0 (b(v) < 0) have supply (demand) and are called

sources (sinks)
I the capacity u(a) of arc a 2 A limits the amount of flow that can be sent through

arc a.

Task: find a flow x : A ! R�0 obeying capacities and satisfying all supplies and
demands, that is,

0  x(a)  u(a) for all a 2 A,
X

a2�+(v)

x(a)�
X

a2��(v)

x(a) = b(v) for all v 2 V ,

such that x has minimum cost c(x) :=
P

a2A c(a) · x(a).
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize
X

a2A
c(a) · x(a) (1.1)

subject to
X

a2�+(v)

x(a)�
X

a2��(v)

x(a) = b(v) for all v 2 V , (1.2)

x(a)  u(a) for all a 2 A, (1.3)
x(a) � 0 for all a 2 A. (1.4)

I Objective function given by (1.1). Set of feasible solutions:

X = {x 2 RA | x satisfies (1.2), (1.3), and (1.4)} .

I Notice that (1.1) is a linear function of x and (1.2) – (1.4) are linear equations and
linear inequalities, respectively. �! linear program
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