Generic optimization problem

Given: set X, function $f: X \to \mathbb{R}$

Task: find $x^* \in X$ maximizing (minimizing) $f(x^*)$, i. e.,

 $f(x^*) \ge f(x)$ $(f(x^*) \le f(x))$ for all $x \in X$.

Generic optimization problem

Given: set X, function $f : X \to \mathbb{R}$ Task: find $x^* \in X$ maximizing (minimizing) $f(x^*)$, i. e.,

```
f(x^*) \ge f(x) (f(x^*) \le f(x)) for all x \in X.
```

• An x^* with these properties is called optimal solution (optimum).

Generic optimization problem

Given: set X, function $f : X \to \mathbb{R}$ Task: find $x^* \in X$ maximizing (minimizing) $f(x^*)$, i. e.,

 $f(x^*) \ge f(x)$ $(f(x^*) \le f(x))$ for all $x \in X$.

An x* with these properties is called optimal solution (optimum).
 Here, X is the set of feasible solutions, f is the objective function.

Generic optimization problem

Given: set X, function $f : X \to \mathbb{R}$ Task: find $x^* \in X$ maximizing (minimizing) $f(x^*)$, i. e.,

 $f(x^*) \ge f(x)$ $(f(x^*) \le f(x))$ for all $x \in X$.

An x* with these properties is called optimal solution (optimum).
Here, X is the set of feasible solutions, f is the objective function.

Short form:

maximize f(x)subject to $x \in X$

Generic optimization problem

Given: set X, function $f : X \to \mathbb{R}$ Task: find $x^* \in X$ maximizing (minimizing) $f(x^*)$, i. e.,

 $f(x^*) \ge f(x)$ $(f(x^*) \le f(x))$ for all $x \in X$.

An x* with these properties is called optimal solution (optimum).
Here, X is the set of feasible solutions, f is the objective function.

Short form:

maximize f(x)subject to $x \in X$

or simply: $\max\{f(x) \mid x \in X\}.$

Generic optimization problem

Given: set X, function $f : X \to \mathbb{R}$ Task: find $x^* \in X$ maximizing (minimizing) $f(x^*)$, i. e.,

 $f(x^*) \ge f(x)$ $(f(x^*) \le f(x))$ for all $x \in X$.

An x* with these properties is called optimal solution (optimum).
Here, X is the set of feasible solutions, f is the objective function.

Short form:

maximize f(x)subject to $x \in X$

or simply: $\max\{f(x) \mid x \in X\}.$

Problem: Too general to say anything meaningful!

Definition 1.1.

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$.

a X is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ it holds that

 $\lambda \cdot x + (1-\lambda) \cdot y \in X$.

Definition 1.1.

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$.

a X is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ it holds that

$$\lambda \cdot x + (1 - \lambda) \cdot y \in X$$
 .

b f is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ with $\lambda \cdot x + (1 - \lambda) \cdot y \in X$ it holds that

$$\lambda \cdot f(x) + (1-\lambda) \cdot f(y) \geq f(\lambda \cdot x + (1-\lambda) \cdot y)$$
 .

Definition 1.1.

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$.

a X is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ it holds that

$$\lambda \cdot x + (1 - \lambda) \cdot y \in X$$
 .

b f is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ with $\lambda \cdot x + (1 - \lambda) \cdot y \in X$ it holds that

$$\lambda \cdot f(x) + (1 - \lambda) \cdot f(y) \ge f(\lambda \cdot x + (1 - \lambda) \cdot y)$$

c If X and f are both convex, then $\min\{f(x) \mid x \in X\}$ is a convex optimization problem.

Definition 1.1.

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$.

a X is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ it holds that

$$\lambda \cdot x + (1 - \lambda) \cdot y \in X$$
 .

b f is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ with $\lambda \cdot x + (1 - \lambda) \cdot y \in X$ it holds that

$$\lambda \cdot f(x) + (1 - \lambda) \cdot f(y) \ge f(\lambda \cdot x + (1 - \lambda) \cdot y)$$

c If X and f are both convex, then $\min\{f(x) \mid x \in X\}$ is a convex optimization problem.

Note: $f : X \mapsto \mathbb{R}$ is called concave if -f is convex.

Local and Global Optimality

Definition 1.2.

Let $X \subseteq \mathbb{R}^n$ and $f : X \mapsto \mathbb{R}$. $x' \in X$ is a local optimum of the optimization problem min $\{f(x) \mid x \in X\}$ if there is an $\varepsilon > 0$ such that

Local and Global Optimality

Definition 1.2.

Let $X \subseteq \mathbb{R}^n$ and $f : X \mapsto \mathbb{R}$. $x' \in X$ is a local optimum of the optimization problem min $\{f(x) \mid x \in X\}$ if there is an $\varepsilon > 0$ such that

$$f(x') \leq f(x)$$
 for all $x \in X$ with $||x' - x||_2 \leq \varepsilon$.

Theorem 1.3.

For a convex optimization problem, every local optimum is a (global) optimum.

Proof by contradiction: Acsume x' is local optimum and x^* is global optimum and $f(x^*) < f(x^1)$.

 $\begin{array}{ll} \text{maximize} & f(x) \\ \text{subject to} & x \in X \end{array}$

 $\begin{array}{ll} \text{maximize} & f(x) \\ \text{subject to} & x \in X \end{array}$

▶ $X \subseteq \mathbb{R}^n$ polyhedron, f linear function → linear optimization problem (in particular convex)

 $\begin{array}{ll} \mathsf{maximize} & f(x) \\ \mathsf{subject to} & x \in X \end{array}$

- X ⊆ ℝⁿ polyhedron, f linear function
 → linear optimization problem (in particular convex)
- X ⊆ Zⁿ integer points of a polyhedron, f linear function
 → integer linear optimization problem

 $\begin{array}{ll} \mathsf{maximize} & f(x) \\ \mathsf{subject to} & x \in X \end{array}$

- X ⊆ ℝⁿ polyhedron, f linear function
 → linear optimization problem (in particular convex)
- X ⊆ Zⁿ integer points of a polyhedron, f linear function
 → integer linear optimization problem

 $\begin{array}{ll} \text{maximize} & f(x) \\ \text{subject to} & x \in X \end{array}$

- ▶ $X \subseteq \mathbb{R}^n$ polyhedron, *f* linear function → linear optimization problem (in particular convex)
- X ⊆ Zⁿ integer points of a polyhedron, f linear function
 → integer linear optimization problem
- X related to some combinatorial structure (e.g., graph)

 — combinatorial optimization problem
- X finite (but usually huge)

 → discrete optimization problem

 $\begin{array}{ll} \text{maximize} & f(x) \\ \text{subject to} & x \in X \end{array}$

- ▶ $X \subseteq \mathbb{R}^n$ polyhedron, *f* linear function → linear optimization problem (in particular convex)
- X ⊆ Zⁿ integer points of a polyhedron, f linear function
 → integer linear optimization problem
- X related to some combinatorial structure (e.g., graph)

 — combinatorial optimization problem
- X finite (but usually huge)

 → discrete optimization problem

Example: Shortest Path Problem

Given: directed graph D = (V, A), weight function $w : A \to \mathbb{R}_{\geq 0}$, start node $s \in V$, destination node $t \in V$.

Task: find *s*-*t*-path of minimum weight.

Example: Shortest Path Problem

Given: directed graph D = (V, A), weight function $w : A \to \mathbb{R}_{\geq 0}$, start node $s \in V$, destination node $t \in V$.

Task: find *s*-*t*-path of minimum weight.

That is, $X = \{P \subseteq A \mid P \text{ is } s\text{-}t\text{-path in } D\}$ and $f : X \to \mathbb{R}$ is given by

$$f(P) = \sum_{a \in P} w(a)$$
 .

Example: Shortest Path Problem

Given: directed graph D = (V, A), weight function $w : A \to \mathbb{R}_{\geq 0}$, start node $s \in V$, destination node $t \in V$.

Task: find *s*-*t*-path of minimum weight.

That is, $X = \{P \subseteq A \mid P \text{ is } s\text{-}t\text{-path in } D\}$ and $f : X \to \mathbb{R}$ is given by

$$f(P) = \sum_{a \in P} w(a)$$
 .

Remark.

Note that the finite set of feasible solutions X is only implicitly given by D. This holds for all interesting problems in combinatorial optimization!

Given: undirected graph G = (V, E), weight function $w : E \to \mathbb{R}_{>0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

Given: undirected graph G = (V, E), weight function $w : E \to \mathbb{R}_{>0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X = \{E' \subseteq E \mid E' \text{ connects all nodes in } V\}$ and $f : X \to \mathbb{R}$ is given by

$$f(E') = \sum_{e \in E'} w(e) \; .$$

Given: undirected graph G = (V, E), weight function $w : E \to \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X = \{E' \subseteq E \mid E' \text{ connects all nodes in } V\}$ and $f : X \to \mathbb{R}$ is given by

$$f(E') = \sum_{e \in E'} w(e) \; .$$

Remarks

Notice that there always exists an optimal solution without cycles.

Given: undirected graph G = (V, E), weight function $w : E \to \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X = \{E' \subseteq E \mid E' \text{ connects all nodes in } V\}$ and $f : X \to \mathbb{R}$ is given by

$$f(E') = \sum_{e \in E'} w(e)$$
.

Remarks

- Notice that there always exists an optimal solution without cycles.
- ► A connected graph without cycles is called a tree.

Given: undirected graph G = (V, E), weight function $w : E \to \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X = \{E' \subseteq E \mid E' \text{ connects all nodes in } V\}$ and $f : X \to \mathbb{R}$ is given by

$$f(E') = \sum_{e \in E'} w(e)$$
.

Remarks

- Notice that there always exists an optimal solution without cycles.
- A connected graph without cycles is called a tree.
- A subgraph of G containing all nodes in V is called spanning.

Example: Minimum Cost Flow Problem

Given: directed graph D = (V, A), with arc capacities $u : A \to \mathbb{R}_{\geq 0}$, arc costs $c : A \to \mathbb{R}$, and node balances $b : V \to \mathbb{R}$.

Example: Minimum Cost Flow Problem

Given: directed graph D = (V, A), with arc capacities $u : A \to \mathbb{R}_{\geq 0}$, arc costs $c : A \to \mathbb{R}$, and node balances $b : V \to \mathbb{R}$.

Interpretation:

- ▶ nodes v ∈ V with b(v) > 0 (b(v) < 0) have supply (demand) and are called sources (sinks)</p>
- ► the capacity u(a) of arc a ∈ A limits the amount of flow that can be sent through arc a.

Example: Minimum Cost Flow Problem

Given: directed graph D = (V, A), with arc capacities $u : A \to \mathbb{R}_{\geq 0}$, arc costs $c : A \to \mathbb{R}$, and node balances $b : V \to \mathbb{R}$.

Interpretation:

- ▶ nodes v ∈ V with b(v) > 0 (b(v) < 0) have supply (demand) and are called sources (sinks)</p>
- the capacity u(a) of arc a ∈ A limits the amount of flow that can be sent through arc a.

Task: find a *flow* $x : A \to \mathbb{R}_{\geq 0}$ obeying capacities and satisfying all supplies and demands, that is,

$$0 \le x(a) \le u(a) \qquad \qquad \text{for all } a \in A,$$

$$\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \qquad \qquad \text{for all } v \in V,$$

such that x has minimum cost $c(x) := \sum_{a \in A} c(a) \cdot x(a)$.

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

$$\begin{array}{ll} \text{minimize} & \sum_{a \in A} c(a) \cdot x(a) & (1.1) \\ \text{subject to} & \sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) & \text{for all } v \in V, \\ & x(a) \le u(a) & \text{for all } a \in A, \\ & x(a) \ge 0 & \text{for all } a \in A. \end{array}$$

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize
$$\sum_{a \in A} c(a) \cdot x(a)$$
 (1.1)
subject to $\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v)$ for all $v \in V$, (1.2)

$$x(a) \le u(a)$$
for all $a \in A$,(1.3) $x(a) \ge 0$ for all $a \in A$.(1.4)

▶ Objective function given by (1.1). Set of feasible solutions:

$$X = \{x \in \mathbb{R}^A \mid x \text{ satisfies (1.2), (1.3), and (1.4)}\}$$

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize
$$\sum_{a \in A} c(a) \cdot x(a)$$
 (1.1)

subject to
$$\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \qquad \text{for all } v \in V, \qquad (1.2)$$
$$x(a) \le u(a) \qquad \text{for all } a \in A, \qquad (1.3)$$
$$x(a) \ge 0 \qquad \qquad \text{for all } a \in A. \qquad (1.4)$$

▶ Objective function given by (1.1). Set of feasible solutions:

$$X = \{x \in \mathbb{R}^A \mid x \text{ satisfies (1.2), (1.3), and (1.4)}\}$$

Notice that (1.1) is a linear function of x and (1.2) – (1.4) are linear equations and linear inequalities, respectively. → linear program