Example: Minimum Cost Flow Problem

Given: directed graph $D=(V, A)$, with arc capacities $u: A \rightarrow \mathbb{R}_{\geq 0}$,
arc costs $c: A \rightarrow \mathbb{R}$, and node balances $b: V \rightarrow \mathbb{R}$.

Interpretation:

- nodes $v \in V$ with $b(v)>0(b(v)<0)$ have supply (demand) and are called sources (sinks)
- the capacity $u(a)$ of arc $a \in A$ limits the amount of flow that can be sent through arc a.

Task: find a flow x : $A \rightarrow \mathbb{R}_{\geq 0}$ obeying capacities and satisfying all supplies and demands, that is,

$$
\begin{array}{cl}
0 \leq x(a) \leq u(a) & \text { for all } a \in A, \\
\sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V, \\
\text { such that } x \text { has minimum } \operatorname{cost} c(x):=\sum_{a \in A} c(a) \cdot x(a) . & \delta^{-(v)} \delta^{+}(v)
\end{array}
$$

Example: Minimum Cost Flow Problem (cont.)
Formulation as a linear program (LP):

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{a \in A} c(a) \cdot x(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) & \\
& x(a) \geq 0 & \text { for all } a \in A \tag{1.4}\\
& \text { for all } a \in A
\end{array}
$$

- Objective function given by (1.1). Set of feasible solutions:

$$
X=\left\{x \in \mathbb{R}^{A} \mid x \text { satisfies }(1.2),(1.3), \text { and }(1.4)\right\}
$$

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{a \in A} c(a) \cdot x(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) & \text { for all } a \in A \\
& x(a) \geq 0 & \text { for all } a \in A \tag{1.4}
\end{array}
$$

- Objective function given by (1.1). Set of feasible solutions:

$$
X=\left\{x \in \mathbb{R}^{A} \mid x \text { satisfies }(1.2),(1.3), \text { and }(1.4)\right\}
$$

- Notice that (1.1) is a linear function of x and (1.2) - (1.4) are linear equations and linear inequalities, respectively. \longrightarrow linear program

Example (cont.): Adding Fixed Cost
Fixed costs $w: A \rightarrow \mathbb{R}_{\geq 0}$.
If arc $a \in A$ shall be used (i. e., $x(a)>0$), it must be bought at cost $w(a)$.

Example (cont.): Adding Fixed Cost

Fixed costs $w: A \rightarrow \mathbb{R}_{\geq 0}$.
If arc $a \in A$ shall be used (i. e., $x(a)>0$), it must be bought at cost $w(a)$. Add variables $y(a) \in\{0,1\}$ with $y(a)=1$ if arc a is used, 0 otherwise.

Example (cont.): Adding Fixed Cost

Fixed costs $w: A \rightarrow \mathbb{R}_{\geq 0}$.
If arc $a \in A$ shall be used (i. e., $x(a)>0$), it must be bought at cost $w(a)$.
Add variables $y(a) \in\{0,1\}$ with $y(a)=1$ if arc a is used, 0 otherwise.
This leads to the following mixed-integer linear program (MIP):

$$
\begin{array}{lll}
\text { minimize } & \sum_{a \in A} c(a) \cdot x(a)+\sum_{a \in A} w(a) \cdot y(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) \cdot y(a) & \\
& x(a) \geq 0 & \text { for all } a \in A \\
& y(a) \in\{0,1\} & \text { for all } a \in A \\
& & \text { for all } a \in A
\end{array}
$$

Example (cont.): Adding Fixed Cost

Fixed costs $w: A \rightarrow \mathbb{R}_{\geq 0}$.
If arc $a \in A$ shall be used (i. e., $x(a)>0$), it must be bought at cost $w(a)$. Add variables $y(a) \in\{0,1\}$ with $y(a)=1$ if arc a is used, 0 otherwise.

This leads to the following mixed-integer linear program (MIP):

$$
\begin{array}{rlr}
\text { minimize } & \sum_{a \in A} c(a) \cdot x(a)+\sum_{a \in A} w(a) \cdot y(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) \cdot y(a) & \\
& x(a) \geq 0 & \text { for all } a \in A \\
& y(a) \in\{0,1\} & \text { for all } a \in A \\
& \text { for all } a \in A
\end{array}
$$

MIP: Linear program where some variables may only take integer values.

Example: Maximum Weighted Matching Problem
Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}$.
Task: find matching $M \subseteq E$ with maximum total weight.
($M \subseteq E$ is a matching if every node is incident to at most one edge in M.)

Application:
Task as signmend

Staff

Example: Maximum Weighted Matching Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}$.
Task: find matching $M \subseteq E$ with maximum total weight.
($M \subseteq E$ is a matching if every node is incident to at most one edge in M.)
Formulation as an integer linear program (IP):
Variables: $x_{e} \in\{0,1\}$ for $e \in E$ with $x_{e}=1$ if and only if $e \in M$.

Example: Maximum Weighted Matching Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}$.
Task: find matching $M \subseteq E$ with maximum total weight.
($M \subseteq E$ is a matching if every node is incident to at most one edge in M.)
Formulation as an integer linear program (IP):
Variables: $x_{e} \in\{0,1\}$ for $e \in E$ with $x_{e}=1$ if and only if $e \in M$.

Example: Maximum Weighted Matching Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}$.
Task: find matching $M \subseteq E$ with maximum total weight.
($M \subseteq E$ is a matching if every node is incident to at most one edge in M.)
Formulation as an integer linear program (IP):
Variables: $x_{e} \in\{0,1\}$ for $e \in E$ with $x_{e}=1$ if and only if $e \in M$.

$$
\begin{array}{rll}
\operatorname{maximize} & \sum_{e \in E} w(e) \cdot x_{e} & \\
\text { subject to } & \sum_{e \in \delta(v)} x_{e} \leq 1 & \text { for all } v \in V \\
& x_{e} \in\{0,1\} & \text { for all } e \in E
\end{array}
$$

IP: Linear program where all variables may only take integer values.

Example: Traveling Salesperson Problem (TSP)

Given: complete graph K_{n} on n nodes, weight function $w: E\left(K_{n}\right) \rightarrow \mathbb{R}$.
Task: find a Hamiltonian circuit with minimum total weight.
(A Hamiltonian circuit visits every node exactly once.)

Example: Traveling Salesperson Problem (TSP)

Given: complete graph K_{n} on n nodes, weight function $w: E\left(K_{n}\right) \rightarrow \mathbb{R}$.
Task: find a Hamiltonian circuit with minimum total weight.
(A Hamiltonian circuit visits every node exactly once.)
Application: Drilling holes in printed circuit boards.

Example: Traveling Salesperson Problem (TSP)

Given: complete graph K_{n} on n nodes, weight function $w: E\left(K_{n}\right) \rightarrow \mathbb{R}$.
Task: find a Hamiltonian circuit with minimum total weight.
(A Hamiltonian circuit visits every node exactly once.)
Application: Drilling holes in printed circuit boards.

Formulation as an integer linear program? (maybe later!)

Example: Weighted Vertex Cover Problem

Given: undirected graph $G=(V, E)$, weight function $w: V \rightarrow \mathbb{R}_{\geq 0}$.
Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Example: Weighted Vertex Cover Problem

Given: undirected graph $G=(V, E)$, weight function $w: V \rightarrow \mathbb{R}_{\geq 0}$.
Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Formulation as an integer linear program (IP):
Variables: $x_{v} \in\{0,1\}$ for $v \in V$ with $x_{v}=1$ if and only if $v \in U$.

Example: Weighted Vertex Cover Problem

Given: undirected graph $G=(V, E)$, weight function $w: V \rightarrow \mathbb{R}_{\geq 0}$.
Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Formulation as an integer linear program (IP):
Variables: $x_{v} \in\{0,1\}$ for $v \in V$ with $x_{v}=1$ if and only if $v \in U$.

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{v \in V} w(v) \cdot x_{v} & \\
\text { subject to } & x_{v}+x_{v^{\prime}} \geq 1 & \text { for all } e=\left\{v, v^{\prime}\right\} \in E \\
& x_{v} \in\{0,1\} & \text { for all } v \in V .
\end{array}
$$

Markowitz' Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R, for each security $i \in[n]$:

- expected return μ_{i}, variance σ_{i}

For each pair of securities i, j :

- covariance $\rho_{i j}$,

Markowitz' Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R, for each security $i \in[n]$:

- expected return μ_{i}, variance σ_{i}

For each pair of securities i, j :

- covariance $\rho_{i j}$,

Task: Find a portfolio x_{1}, \ldots, x_{n} that minimises "risk" (aka variance) and has expected return $\geq R$.

Formulation as a quadratic programme (QP):

Markowitz' Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R, for each security $i \in[n]$:

- expected return μ_{i}, variance σ_{i}

For each pair of securities i, j :

- covariance $\rho_{i j}$,

Task: Find a portfolio x_{1}, \ldots, x_{n} that minimises "risk" (aka variance) and has expected return $\geq R$.

Formulation as a quadratic programme (QP):

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{i, j} \rho_{i j} \sigma_{i} \sigma_{j} x_{i} x_{j} & \\
\text { subject to } & \sum_{i} x_{i}=1 \\
& \sum_{i} \mu_{i} x_{i} \geq R & \\
& x_{i} \geq 0, & \text { for all } i .
\end{array}
$$

Typical Questions

For a given optimization problem:

- How to find an optimal solution?

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Does there exist an efficient algorithm with "small" worst-case running time?

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Does there exist an efficient algorithm with "small" worst-case running time?
- How to formulate the problem as a (mixed integer) linear program?

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Does there exist an efficient algorithm with "small" worst-case running time?
- How to formulate the problem as a (mixed integer) linear program?
- Is there a useful special structure of the problem?

Literature on Linear Optimization (not complete)

- D. Bertsimas, J. N. Tsitsiklis, Introduction to Linear Optimization, Athena, 1997.
- V. Chvatal, Linear Programming, Freeman, 1983.
- G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1998 (1963).
- M. Grötschel, L. Lovàsz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer, 1988.
- J. Matousek, B. Gärtner, Using and Understanding Linear Programming, Springer, 2006.
- M. Padberg, Linear Optimization and Extensions, Springer, 1995.
- A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.
- R. J. Vanderbei, Linear Programming, Springer, 2001.

Literature on Combinatorial Optimization (not complete)

- R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, 1993.
- W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, Combinatorial Optimization, Wiley, 1998.
- L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962.
- M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979.
- B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer, 2002.
- C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover Publications, reprint 1998.
- A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.

Chapter 2: Linear Programming Basics

(Bertsimas \& Tsitsiklis, Chapter 1)

Example of a Linear Program

$$
\begin{aligned}
& \text { minimize } 2 x_{1}-x_{2}+4 x_{3} \text { objectico fincfion } \\
& \text { subject to } x_{1}+x_{2} \quad+x_{4} \leq 2 \text { comstuainfy } \\
& x_{1}
\end{aligned}
$$

Example of a Linear Program

$$
\begin{aligned}
& \text { minimize } 2 x_{1}-x_{2}+4 x_{3} \\
& \text { subject to } x_{1}+x_{2}+x_{4} \leq 2 \\
& 3 x_{2}-x_{3}=5 \\
& x_{3}+x_{4} \geq 3 \\
& x_{1} \\
& \geq 0 \\
& x_{3} \quad \leq 0
\end{aligned}
$$

Remarks.

- objective function is linear in vector of variables $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}$
- constraints are linear inequalities and linear equations
- last two constraints are special (non-negativity and non-positivity constraint, respectively)

General Linear Program

$$
\begin{array}{rcc}
\operatorname{minimize} & c^{T} \cdot x=c_{1} x_{1}+C_{2} x_{2}-1 \ldots+C_{n} x_{n} \\
\text { subject to } & a_{i}^{T} \cdot x \geq b_{i} & \text { for } i \in M_{1}, \\
& a_{i}^{T} \cdot x=b_{i} & \text { for } i \in M_{2}, \\
& a_{i}^{T} \cdot x \leq b_{i} & \text { for } i \in M_{3}, \\
& x_{j} \geq 0 & \text { for } j \in N_{1}, \\
& x_{j} \leq 0 & \text { for } j \in N_{2}, \tag{2.5}
\end{array}
$$

General Linear Program

$$
\begin{array}{rll}
\operatorname{minimize} & c^{T} \cdot x & \\
\text { subject to } & a_{i}{ }^{T} \cdot x \geq b_{i} & \text { for } i \in M_{1}, \\
& a_{i}{ }^{T} \cdot x=b_{i} & \text { for } i \in M_{2}, \\
a_{i}{ }^{T} \cdot x \leq b_{i} & \text { for } i \in M_{3}, \\
x_{j} \geq 0 & \text { for } j \in N_{1}, \\
x_{j} \leq 0 & \text { for } j \in N_{2}, \tag{2.5}
\end{array}
$$

with $c \in \mathbb{R}^{n}, a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ for $i \in M_{1} \dot{\cup} M_{2} \dot{\cup} M_{3}$ (finite index sets), and $N_{1}, N_{2} \subseteq\{1, \ldots, n\}$ given.

General Linear Program

$$
\begin{array}{rll}
\operatorname{minimize} & c^{T} \cdot x & \\
\text { subject to } & a_{i}{ }^{T} \cdot x \geq b_{i} & \text { for } i \in M_{1}, \\
a_{i}{ }^{T} \cdot x=b_{i} & \text { for } i \in M_{2}, \\
a_{i}{ }^{T} \cdot x \leq b_{i} & \text { for } i \in M_{3}, \\
x_{j} \geq 0 & \text { for } j \in N_{1}, \\
x_{j} \leq 0 & \text { for } j \in N_{2}, \tag{2.5}
\end{array}
$$

with $c \in \mathbb{R}^{n}, a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ for $i \in M_{1} \dot{\cup} M_{2} \dot{\cup} M_{3}$ (finite index sets), and $N_{1}, N_{2} \subseteq\{1, \ldots, n\}$ given.

- $x \in \mathbb{R}^{n}$ satisfying constraints (2.1) - (2.5) is a feasible solution.

General Linear Program

$$
\begin{array}{rll}
\operatorname{minimize} & c^{T} \cdot x & \\
\text { subject to } & a_{i}{ }^{T} \cdot x \geq b_{i} & \text { for } i \in M_{1}, \\
a_{i}{ }^{T} \cdot x=b_{i} & \text { for } i \in M_{2}, \\
a_{i}{ }^{T} \cdot x \leq b_{i} & \text { for } i \in M_{3}, \\
x_{j} \geq 0 & \text { for } j \in N_{1}, \\
x_{j} \leq 0 & \text { for } j \in N_{2}, \tag{2.5}
\end{array}
$$

with $c \in \mathbb{R}^{n}, a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ for $i \in M_{1} \dot{\cup} M_{2} \dot{\cup} M_{3}$ (finite index sets), and $N_{1}, N_{2} \subseteq\{1, \ldots, n\}$ given.

- $x \in \mathbb{R}^{n}$ satisfying constraints (2.1) - (2.5) is a feasible solution.
- feasible solution x^{*} is optimal solution if

$$
c^{T} \cdot x^{*} \leq c^{T} \cdot x \quad \text { for all feasible solutions } x
$$

General Linear Program

$$
\begin{array}{rll}
\operatorname{minimize} & c^{T} \cdot x & \\
\text { subject to } & a_{i}{ }^{T} \cdot x \geq b_{i} & \text { for } i \in M_{1}, \\
a_{i}{ }^{T} \cdot x=b_{i} & \text { for } i \in M_{2}, \\
a_{i}{ }^{T} \cdot x \leq b_{i} & \text { for } i \in M_{3}, \\
x_{j} \geq 0 & \text { for } j \in N_{1}, \\
x_{j} \leq 0 & \text { for } j \in N_{2}, \tag{2.5}
\end{array}
$$

with $c \in \mathbb{R}^{n}, a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ for $i \in M_{1} \dot{\cup} M_{2} \dot{\cup} M_{3}$ (finite index sets), and $N_{1}, N_{2} \subseteq\{1, \ldots, n\}$ given.

- $x \in \mathbb{R}^{n}$ satisfying constraints (2.1) - (2.5) is a feasible solution.
- feasible solution x^{*} is optimal solution if

$$
c^{T} \cdot x^{*} \leq c^{T} \cdot x \quad \text { for all feasible solutions } x
$$

- linear program is unbounded if, for all $k \in \mathbb{R}$, there is a feasible solution $x \in \mathbb{R}^{n}$ with $c^{T} \cdot x \leq k$.

