Example: Minimum Cost Flow Problem

Given: directed graph D = (V, A), with arc capacities u : A — R>q,
arc costs ¢ : A — R, and node balances b : V — R.

Interpretation:

» nodes v € V with b(v) > 0 (b(v) < 0) have supply (demand) and are called
sources (sinks)

» the capacity u(a) of arc a € A limits the amount of flow that can be sent through
arc a.

Task: find a flow x : A — R>q obeying capacities and satisfying all supplies and
demands, that is,

< x(a) < u(a) forall a € A,

Z Z (a) = b(v) forallveVv,
[

acét(v)

such that x has minimum cost ¢(x) := ) .4 c(a) - j/\PV

$C)
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP): =
flow

minimize Zc(a) -x(a) //’ omgﬂwbr"'m (1.1)
forall v eV, (1.2)
for all a € A, (1.3)
for all a € A. (1.4)
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize Z c(a) - x(a)

acA

subject to Z x(a) — Z x(a) = b(v) forall v eV,
acdt(v) acé—(v)
x(a) < u(a) for all a € A,
x(a) >0 for all a € A.

» Objective function given by (1.1). Set of feasible solutions:

X = {x € R? | x satisfies (1.2), (1.3), and (1.4)} .
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize Z c(a) - x(a)

acA

subject to Z x(a) — Z x(a) = b(v) forall v eV,

acdt(v) acé—(v)
x(a) < u(a) for all a € A,
x(a) >0 for all a € A.

» Objective function given by (1.1). Set of feasible solutions:

X = {x € R? | x satisfies (1.2), (1.3), and (1.4)} .

(1.1)

(1.2)

(1.3)
(1.4)

» Notice that (1.1) is a linear function of x and (1.2) — (1.4) are linear equations and

linear inequalities, respectively. — linear program



Example (cont.): Adding Fixed Cost
Fixed costs w : A — R>g.

If arc a € A shall be used (i.e., x(a) > 0), it must be bought at cost w(a).
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Example (cont.): Adding Fixed Cost

Fixed costs w : A — R>g.

If arc a € A shall be used (i.e., x(a) > 0), it must be bought at cost w(a).
Add variables y(a) € {0,1} with y(a) =1 if arc a is used, 0 otherwise.
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Example (cont.): Adding Fixed Cost
Fixed costs w : A — R>g.
If arc a € A shall be used (i.e., x(a) > 0), it must be bought at cost w(a).

Add variables y(a) € {0,1} with y(a) =1 if arc a is used, 0 otherwise.

This leads to the following mixed-integer linear program (MIP):

minimize Z c(a) - x(a) + Z w(a) - y(a)

acA acA
subject to Z x(a) — Z x(a) = b(v) forall v eV,
acdt(v) acd—(v)
x(a) < u(a) - y(a) for all a € A,
x(a)>0 for all a € A.

y(a) € {0,1} for all a € A.
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Example (cont.): Adding Fixed Cost
Fixed costs w : A — R>g.
If arc a € A shall be used (i.e., x(a) > 0), it must be bought at cost w(a).

Add variables y(a) € {0,1} with y(a) =1 if arc a is used, 0 otherwise.
This leads to the following mixed-integer linear program (MIP):

minimize Z c(a) - x(a) + Z w(a) - y(a)

acA acA
subject to Z x(a) — Z x(a) = b(v) forall v eV,
acdt(v) acé—(v)
x(a) <u(a)-y(a) for all a € A,
x(a)>0 for all a € A.
y(a) € {0,1} for all a € A.

MIP: Linear program where some variables may only take integer values.
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Example: Maximum Weighted Matching Problem

Given: undirected graph G = (V, E), weight function w : E — R.
Task: find matching M C E with maximum total weight.

(M C E is a matching if every node is incident to at most one edge in M.)
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Example: Maximum Weighted Matching Problem

Given: undirected graph G = (V, E), weight function w : E — R.
Task: find matching M C E with maximum total weight.

(M C E is a matching if every node is incident to at most one edge in M.)

Formulation as an integer linear program (IP):

Variables: x. € {0,1} for e € E with x. = 1 if and only if e € M.
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Example: Maximum Weighted Matching Problem

Given: undirected graph G = (V, E), weight function w : E — R.
Task: find matching M C E with maximum total weight.

(M C E is a matching if every node is incident to at most one edge in M.)

Formulation as an integer linear program (IP):

Variables: x. € {0,1} for e € E with x. = 1 if and only if e € M.

maximize

9 ubject to Xe <1 forall ve Vv,
""“ €o(v)
@’{?"A xe € {0,1} for all e € E.

of'v
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Example: Maximum Weighted Matching Problem

Given: undirected graph G = (V, E), weight function w : E — R.

Task: find matching M C E with maximum total weight.

(M C E is a matching if every node is incident to at most one edge in M.)

Formulation as an integer linear program (IP):

Variables: x. € {0,1} for e € E with x. = 1 if and only if e € M.

maximize Z w(e) - xe

ecE

subject to Z Xe <1 forall ve Vv,
ecd(v)
xe € {0,1} for all e € E.

IP: Linear program where all variables may only take integer values.

26



Example: Traveling Salesperson Problem (TSP)

Given: complete graph K;, on n nodes, weight function w : E(K,) — R.
Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)
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Example: Traveling Salesperson Problem (TSP)

Given: complete graph K, on n nodes, weight function w : E(K,) — R.
Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)

Application: Drilling holes in printed circuit boards.
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Example: Traveling Salesperson Problem (TSP)

Given: complete graph K, on n nodes, weight function w : E(K,) — R.
Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)

Application: Drilling holes in printed circuit boards.
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Formulation as an integer linear program? (maybe later!)
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Example: Weighted Vertex Cover Problem
Given: undirected graph G = (V, E), weight function w : V — R>o.

Task: find U C V of minimum total weight such that every edge e € E has at least one
endpoint in U.
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Example: Weighted Vertex Cover Problem

Given: undirected graph G = (V, E), weight function w : V — R>o.

Task: find U C V of minimum total weight such that every edge e € E has at least one
endpoint in U.

Formulation as an integer linear program (IP):

Variables: x, € {0,1} for v € V with x, =1 if and only if v € U.
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Example: Weighted Vertex Cover Problem

Given: undirected graph G = (V, E), weight function w : V — R>o.

Task: find U C V of minimum total weight such that every edge e € E has at least one
endpoint in U.

Formulation as an integer linear program (IP):
Variables: x, € {0,1} for v € V with x, =1 if and only if v € U.

minimize Z w(v) - xy

veV
subject to  x, + x, > 1 for all e = {v,V'} € E,
x, € {0,1} forall ve V.
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Markowitz' Portfolio Optimisation Problem
Given: n different securities (stocks, bonds, etc.) with random returns, target return R,
for each security i € [n]:
> expected return p;, variance o;
For each pair of securities i, j:
» covariance pjj,
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Markowitz' Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R,
for each security i € [n]:

> expected return pj, variance o;
For each pair of securities i, j:

» covariance pjj,

Task: Find a portfolio x1, ..., x, that minimises “risk” (aka variance) and has expected
return > R.

Formulation as a quadratic programme (QP):
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Markowitz' Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R,
for each security i € [n]:

» expected return p;, variance o;
For each pair of securities i, j:
» covariance pjj,

Task: Find a portfolio x1, ..., x, that minimises “risk” (aka variance) and has expected
return > R.

Formulation as a quadratic programme (QP):
minimize Zp,-ja,-ajx,'xj-

i

subject to Zx,- =1

1
ZM:’X/ >R
i
x; > 0, for all i.
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Typical Questions
For a given optimization problem:

» How to find an optimal solution?
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Typical Questions

For a given optimization problem:
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How to find an optimal solution?

How to find a feasible solution?

Does there exist an optimal/feasible solution?

How to prove that a computed solution is optimal?

How difficult is the problem?
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Does there exist an efficient algorithm with “small” worst-case running time?
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Typical Questions

For a given optimization problem:

| 2

>

How to find an optimal solution?

How to find a feasible solution?

Does there exist an optimal/feasible solution?

How to prove that a computed solution is optimal?

How difficult is the problem?

Does there exist an efficient algorithm with “small” worst-case running time?
How to formulate the problem as a (mixed integer) linear program?

Is there a useful special structure of the problem?
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Chapter 2:
Linear Programming Basics

(Bertsimas & Tsitsiklis, Chapter 1)
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Example of a Linear Program

minimize 2x; — Xx» + 4x3
subjectto x1 + x

3 — X3

X3

X1

X3

_|_

+

O{O"GOR“ v
L o a
xa <28 (Con ;‘olva.‘b.(x

X4 23
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<0
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Example of a Linear Program

minimize 2x; — Xx» + 4x3
subjectto x1 + x + xg <2
3X2 — X3 =5

x3 + x4 >3
X1
X3 <0
Remarks.
» objective function is linear in vector of variables x = (X1,X2,X3,X4)T

> constraints are linear inequalities and linear equations

> last two constraints are special
(non-negativity and non-positivity constraint, respectively)
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General Linear Program

minimize ¢

subject to  a;

=C,x 1t X+

.t Ca
for i € My,
for i € M»,
for i € Ms,
for j € Ny,
for j € No,

(2.1
(22
(23
(2.4
(25

~— N N N~ N
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General Linear Program

minimize

subject to

with ¢ € R", a; € R" and b; € R for i € My UM, U M3 (finite index sets), and

N1, Ny C {1,...,n} given.

C
aj
aj

aj

4 4 4 H

Xj =
xj <

0

i

for i € My,
for i € M»,
for i € Ms,
for j € Ny,
for j € Ny,

(2.1
(22
(23
(2.4
(25

~— N N N~ N
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General Linear Program

minimize ¢! - x
subject to  a; " - x > b; for i € My,
3T x=b; for i € Mo,
3T x < b for i € Ms,
Xj > for j € Ny,
xji <0 for j € Ny,

with ¢ € R", a; € R" and b; € R for i € My UM, U M3 (finite index sets), and
N1, Ny C {1,...,n} given.

» x € R" satisfying constraints (2.1) = (2.5) is a feasible solution.

(2.1
(22
(23
(2.4
(25

~— N N N~ N
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General Linear Program

minimize ¢

subject to  a;

with ¢ € R", a; € R" and b; € R for i € My UM, U M3 (finite index sets), and
N1, Ny C {1,...,n} given.

Ty
T-XZb
a,-T-x:
a,'T~X§b
Xj =
x =0

i

for i € My,
for i € M»,
for i € Ms,
for j € Ny,
for j € Ny,

» x € R" satisfying constraints (2.1) = (2.5) is a feasible solution.

> feasible solution x* is optimal solution if

C

T

x <l x

for all feasible solutions x.
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minimize ¢
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N1, Ny C {1,...,n} given.

Ty
T-XZb
a,-T-x:
a,'T~X§b
Xj =
x =0

i

for i € My,
for i € M»,
for i € Ms,
for j € Ny,
for j € Ny,

» x € R" satisfying constraints (2.1) = (2.5) is a feasible solution.

> feasible solution x* is optimal solution if

C

T

x <l x

for all feasible solutions x.

(2.1
(22
(23
(2.4
(25

~— N N N~ N

» linear program is unbounded if, for all k € R, there is a feasible solution x € R”

with ¢ - x < k.
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