
Example: Minimum Cost Flow Problem

Given: directed graph D = (V ,A), with arc capacities u : A ! R�0,
arc costs c : A ! R, and node balances b : V ! R.

Interpretation:
I nodes v 2 V with b(v) > 0 (b(v) < 0) have supply (demand) and are called

sources (sinks)
I the capacity u(a) of arc a 2 A limits the amount of flow that can be sent through

arc a.

Task: find a flow x : A ! R�0 obeying capacities and satisfying all supplies and
demands, that is,

0  x(a)  u(a) for all a 2 A,
X

a2�+(v)

x(a)�
X

a2��(v)

x(a) = b(v) for all v 2 V ,

such that x has minimum cost c(x) :=
P

a2A c(a) · x(a).
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize
X

a2A
c(a) · x(a) (1.1)

subject to
X

a2�+(v)

x(a)�
X

a2��(v)

x(a) = b(v) for all v 2 V , (1.2)

x(a)  u(a) for all a 2 A, (1.3)
x(a) � 0 for all a 2 A. (1.4)

I Objective function given by (1.1). Set of feasible solutions:

X = {x 2 RA | x satisfies (1.2), (1.3), and (1.4)} .

I Notice that (1.1) is a linear function of x and (1.2) – (1.4) are linear equations and
linear inequalities, respectively. �! linear program
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Example (cont.): Adding Fixed Cost

Fixed costs w : A ! R�0.

If arc a 2 A shall be used (i. e., x(a) > 0), it must be bought at cost w(a).

Add variables y(a) 2 {0, 1} with y(a) = 1 if arc a is used, 0 otherwise.

This leads to the following mixed-integer linear program (MIP):

minimize
X

a2A
c(a) · x(a) +

X

a2A
w(a) · y(a)

subject to
X

a2�+(v)

x(a)�
X

a2��(v)

x(a) = b(v) for all v 2 V ,

x(a)  u(a) · y(a) for all a 2 A,
x(a) � 0 for all a 2 A.
y(a) 2 {0, 1} for all a 2 A.

MIP: Linear program where some variables may only take integer values.
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Example: Maximum Weighted Matching Problem

Given: undirected graph G = (V ,E ), weight function w : E ! R.

Task: find matching M ✓ E with maximum total weight.

(M ✓ E is a matching if every node is incident to at most one edge in M.)

Formulation as an integer linear program (IP):

Variables: xe 2 {0, 1} for e 2 E with xe = 1 if and only if e 2 M.

maximize
X

e2E
w(e) · xe

subject to
X

e2�(v)

xe  1 for all v 2 V ,

xe 2 {0, 1} for all e 2 E .

IP: Linear program where all variables may only take integer values.
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Example: Traveling Salesperson Problem (TSP)

Given: complete graph Kn on n nodes, weight function w : E (Kn) ! R.

Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)

Application: Drilling holes in printed circuit boards.

Formulation as an integer linear program? (maybe later!)
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Example: Weighted Vertex Cover Problem

Given: undirected graph G = (V ,E ), weight function w : V ! R�0.

Task: find U ✓ V of minimum total weight such that every edge e 2 E has at least one
endpoint in U.

Formulation as an integer linear program (IP):

Variables: xv 2 {0, 1} for v 2 V with xv = 1 if and only if v 2 U.

minimize
X

v2V
w(v) · xv

subject to xv + xv 0 � 1 for all e = {v , v 0} 2 E ,
xv 2 {0, 1} for all v 2 V .
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Markowitz’ Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R ,
for each security i 2 [n]:
I expected return µi , variance �i

For each pair of securities i , j :
I covariance ⇢ij ,

Task: Find a portfolio x1, . . . , xn that minimises “risk” (aka variance) and has expected
return � R .

Formulation as a quadratic programme (QP):

minimize
X

i ,j

⇢ij�i�jxixj

subject to
X

i

xi = 1

X

i

µixi � R

xi � 0, for all i .
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Typical Questions

For a given optimization problem:

I How to find an optimal solution?

I How to find a feasible solution?

I Does there exist an optimal/feasible solution?

I How to prove that a computed solution is optimal?

I How difficult is the problem?

I Does there exist an efficient algorithm with “small” worst-case running time?

I How to formulate the problem as a (mixed integer) linear program?

I Is there a useful special structure of the problem?
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Chapter 2:
Linear Programming Basics

(Bertsimas & Tsitsiklis, Chapter 1)
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Example of a Linear Program

minimize 2x1 � x2 + 4x3

subject to x1 + x2 + x4  2

3x2 � x3 = 5

x3 + x4 � 3

x1 � 0

x3  0

Remarks.
I objective function is linear in vector of variables x = (x1, x2, x3, x4)T

I constraints are linear inequalities and linear equations
I last two constraints are special

(non-negativity and non-positivity constraint, respectively)
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General Linear Program

minimize cT · x
subject to ai

T · x � bi for i 2 M1, (2.1)

ai
T · x = bi for i 2 M2, (2.2)

ai
T · x  bi for i 2 M3, (2.3)

xj � 0 for j 2 N1, (2.4)
xj  0 for j 2 N2, (2.5)

with c 2 Rn, ai 2 Rn and bi 2 R for i 2 M1 [̇M2 [̇M3 (finite index sets), and
N1,N2 ✓ {1, . . . , n} given.

I x 2 Rn satisfying constraints (2.1) – (2.5) is a feasible solution.
I feasible solution x⇤ is optimal solution if

cT · x⇤  cT · x for all feasible solutions x .

I linear program is unbounded if, for all k 2 R, there is a feasible solution x 2 Rn

with cT · x  k .
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