Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
\min & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. } \int-x_{1}+x_{2} & \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{array}{r}
\min c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. }-x_{1}+x_{2} \leq 1 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

- for $c=(1,1)^{T}$

$$
\begin{aligned}
x_{1}+x_{2} & =2 \\
\text { E } \quad x_{2} & =2-x_{1}
\end{aligned}
$$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
& \min c_{1} x_{1}+c_{2} x_{2} \\
& \text { s.t. }-x_{1}+x_{2} \leq 1 \\
& \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $x=(0,0)^{T}$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
\min & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. } & -x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $x=(0,0)^{T}$
- for $c=(1,0)^{T}$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
& \min c_{1} x_{1}+c_{2} x_{2} \\
& \text { s.t. }-x_{1}+x_{2} \leq 1 \\
& \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $x=(0,0)^{T}$
- for $c=(1,0)^{T}$, the optimal solutions are exactly the points

$$
x=\left(0, x_{2}\right)^{T} \quad \text { with } 0 \leq x_{2} \leq 1
$$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
& \min c_{1} x_{1}+c_{2} x_{2} \\
& \text { s.t. }-x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $x=(0,0)^{T}$
- for $c=(1,0)^{T}$, the optimal solutions are exactly the points

$$
x=\left(0, x_{2}\right)^{T} \quad \text { with } 0 \leq x_{2} \leq 1
$$

- for $c=(0,1)^{T}$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
\min & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. }-x_{1}+x_{2} & \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $x=(0,0)^{T}$
- for $c=(1,0)^{T}$, the optimal solutions are exactly the points

$$
x=\left(0, x_{2}\right)^{T} \quad \text { with } 0 \leq x_{2} \leq 1
$$

- for $c=(0,1)^{T}$, the optimal solutions are exactly the points

$$
x=\left(x_{1}, 0\right)^{T} \quad \text { with } x_{1} \geq 0
$$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
& \min c_{1} x_{1}+c_{2} x_{2} \\
& \text { s.t. }-x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $=(0,0)^{T}$
- for $c=(1,0)^{T}$, the optimal solutions are exactly the points

$$
x=\left(0, x_{2}\right)^{T} \quad \text { with } 0 \leq x_{2} \leq 1
$$

- for $c=(0,1)^{T}$, the optimal solutions are exactly the points

$$
x=\left(x_{1}, 0\right)^{T} \quad \text { with } x_{1} \geq 0
$$

- for $c=(-1,-1)^{T}$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
& \min c_{1} x_{1}+c_{2} x_{2} \\
& \text { s.t. }-x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $x=(0,0)^{T}$
- for $c=(1,0)^{T}$, the optimal solutions are exactly the points

$$
x=\left(0, x_{2}\right)^{T} \quad \text { with } 0 \leq x_{2} \leq 1
$$

- for $c=(0,1)^{T}$, the optimal solutions are exactly the points

$$
x=\left(x_{1}, 0\right)^{T} \quad \text { with } x_{1} \geq 0
$$

- for $c=(-1,-1)^{T}$, the problem is unbounded, optimal cost is $-\infty$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
& \min c_{1} x_{1}+c_{2} x_{2} \\
& \text { s.t. }-x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $(0,0)^{T}$
- for $c=(1,0)^{T}$, the optimal solutions are exactly the points

$$
x=\left(0, x_{2}\right)^{T} \quad \text { with } 0 \leq x_{2} \leq 1
$$

- for $c=(0,1)^{T}$, the optimal solutions are exactly the points

$$
x=\left(x_{1}, 0\right)^{T} \quad \text { with } x_{1} \geq 0
$$

- for $c=(-1,-1)^{T}$, the problem is unbounded, optimal cost is $-\infty$
- if we add the constraint $\times+x_{2} \leq-1$

Graphical Representation and Solution (cont.)

 another 2D example:$$
\begin{aligned}
& \min c_{1} x_{1}+c_{2} x_{2} \\
& \text { s.t. }-x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{T}$, the unique optimal solution is $x=(0,0)^{T}$
- for $c=(1,0)^{T}$, the optimal solutions are exactly the points

$$
x=\left(0, x_{2}\right)^{T} \quad \text { with } 0 \leq x_{2} \leq 1
$$

- for $c=(0,1)^{T}$, the optimal solutions are exactly the points

$$
x=\left(x_{1}, 0\right)^{T} \quad \text { with } x_{1} \geq 0
$$

- for $c=(-1,-1)^{T}$, the problem is unbounded, optimal cost is $-\infty$
- if we add the constraint $x_{1}+x_{2} \leq-1$, the problem is infeasible

Properties of the Set of Optimal Solutions
In the last example, the following 5 cases occurred:
ii there is a unique optimal solution

Properties of the Set of Optimal Solutions

In the last example, the following 5 cases occurred:
ii there is a unique optimal solution
III there exist infinitely many optimal solutions, but the set of optimal solutions is bounded

Properties of the Set of Optimal Solutions

In the last example, the following 5 cases occurred:
ii there is a unique optimal solution
iii there exist infinitely many optimal solutions, but the set of optimal solutions is bounded

团 there exist infinitely many optimal solutions and the set of optimal solutions is unbounded

Properties of the Set of Optimal Solutions

In the last example, the following 5 cases occurred:
ii there is a unique optimal solution
Iii there exist infinitely many optimal solutions, but the set of optimal solutions is bounded

困 there exist infinitely many optimal solutions and the set of optimal solutions is unbounded
iv the problem is unbounded, i. e., the optimal cost is $-\infty$ and no feasible solution is optimal

Properties of the Set of Optimal Solutions

In the last example, the following 5 cases occurred:
ii there is a unique optimal solution
iii there exist infinitely many optimal solutions, but the set of optimal solutions is bounded

困 there exist infinitely many optimal solutions and the set of optimal solutions is unbounded
iv the problem is unbounded, i.e., the optimal cost is $-\infty$ and no feasible solution is optimal
v the problem is infeasible, i. e., the set of feasible solutions is empty

Properties of the Set of Optimal Solutions

In the last example, the following 5 cases occurred:
ii there is a unique optimal solution
iii there exist infinitely many optimal solutions, but the set of optimal solutions is bounded

困 there exist infinitely many optimal solutions and the set of optimal solutions is unbounded
iv the problem is unbounded, i.e., the optimal cost is $-\infty$ and no feasible solution is optimal
v the problem is infeasible, i. e., the set of feasible solutions is empty

These are indeed all cases that can occur in general (see later).

Visualizing LPs in Standard Form
Example:
Let $A=(1,1,1) \in \mathbb{R}^{1 \times 3}, b=(1) \in \mathbb{R}^{1}$ and consider the set of feasible solutions

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{3}(A \cdot x=b), x \geq 0\right\} . \\
& \text { (G) } x_{1}+x_{2}+x_{3}=1 \\
& x_{1}, x_{1}, y_{3} \geq \sigma
\end{aligned}
$$

Tcas.ble solutions lie on a 2-dimensional affine subspace of \mathbb{R}^{3} and are only constraint by now-regatieity constraints.

Def:

- Linear Subspace $\quad S \subseteq \mathbb{R}^{n}$
if $x, y \in S$ and $a, b \in \mathbb{R}$

$$
\Rightarrow a x+b y \in S
$$

- Affine Subspace S_{A} : translate (shift) by some vector z

$$
S_{A}=\{x+z \mid x \in S\}
$$

Visualizing LPs in Standard Form

More general:

- if $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ and the rows of A are linearly independent, then

$$
\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b\right\}
$$

is an $(n-m)$-dimensional affine subspace in \mathbb{R}^{n}.

Visualizing LPs in Standard Form

More general:

- if $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ and the rows of A are linearly independent, then

$$
\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b\right\}
$$

is an $(n-m)$-dimensional affine subspace in \mathbb{R}^{n}.

- set of feasible solutions lies in this affine subspace and is only constrained by non-negativity constraints $x \geq 0$.

