Graphical Representation and Solution (cont.)

another 2D example:

$$\begin{array}{rll} \min & c_1 \, x_1 & + & c_2 \, x_2 \\ \text{s.t.} & & -x_1 & + & x_2 & \leq 1 \\ & & & & & \\ & & & & \\ & & & & x_1, \, x_2 & \geq 0 \end{array}$$

Graphical Representation and Solution (cont.)

 X_2 another 2D example: 3 $\min(c_1 x_1 + c_2 x_2)$ 2 s.t. $-x_1 + x_2 \leq 1$ Xiexiso $x_1, x_2 \ge 0$ 1 $\rightarrow X_1$ 0 2 0 1 • for $c = (1, 1)^T$ X, +X, = 2 $x_{1} + x_{2} = 2$

 $(\in) x_2 = 2 - x_1$

$$x = (0, x_2)^T$$
 with $0 \le x_2 \le 1$

$$x = (0, x_2)^T$$
 with $0 \le x_2 \le 1$

• for $c = (0, 1)^T$

• for $c = (1,0)^T$, the optimal solutions are exactly the points

$$x = (0, x_2)^T$$
 with $0 \le x_2 \le 1$

• for $c = (0, 1)^T$, the optimal solutions are exactly the points

$$x = (x_1, 0)^T$$
 with $x_1 \ge 0$

• for $c = (0, 1)^T$, the optimal solutions are exactly the points

$$x = (x_1, 0)^T$$
 with $x_1 \ge 0$

• for $c = (-1, -1)^T$, the problem is unbounded, optimal cost is $-\infty$

$$x = (0, x_2)^T$$
 with $0 \le x_2 \le 1$

• for $c = (0, 1)^T$, the optimal solutions are exactly the points

$$x = (x_1, 0)^T$$
 with $x_1 \ge 0$

for c = (-1, -1)^T, the problem is unbounded, optimal cost is -∞
 if we add the constraint x₁ + x₂ ≤ -1, the problem is infeasible

In the last example, the following 5 cases occurred:

there is a unique optimal solution

- i there is a unique optimal solution
- there exist infinitely many optimal solutions, but the set of optimal solutions is bounded

- i there is a unique optimal solution
- ii there exist infinitely many optimal solutions, but the set of optimal solutions is bounded
- there exist infinitely many optimal solutions and the set of optimal solutions is unbounded

- i there is a unique optimal solution
- there exist infinitely many optimal solutions, but the set of optimal solutions is bounded
- there exist infinitely many optimal solutions and the set of optimal solutions is unbounded
- $\overline{\mathbf{v}}$ the problem is unbounded, i. e., the optimal cost is $-\infty$ and no feasible solution is optimal

- i there is a unique optimal solution
- there exist infinitely many optimal solutions, but the set of optimal solutions is bounded
- there exist infinitely many optimal solutions and the set of optimal solutions is unbounded
- iv the problem is unbounded, i.e., the optimal cost is $-\infty$ and no feasible solution is optimal
- **v** the problem is infeasible, i. e., the set of feasible solutions is empty

In the last example, the following 5 cases occurred:

- i there is a unique optimal solution
- there exist infinitely many optimal solutions, but the set of optimal solutions is bounded
- there exist infinitely many optimal solutions and the set of optimal solutions is unbounded
- iv the problem is unbounded, i.e., the optimal cost is $-\infty$ and no feasible solution is optimal
- **v** the problem is infeasible, i. e., the set of feasible solutions is empty

These are indeed all cases that can occur in general (see later).

Visualizing LPs in Standard Form

Example:

Let $A = (1,1,1) \in \mathbb{R}^{1 \times 3}$, $b = (1) \in \mathbb{R}^1$ and consider the set of feasible solutions

$$P = \{x \in \mathbb{R}^{3} | A \cdot x = b, x \ge 0\}.$$

$$(f) \quad x_{1} + x_{2} + x_{3} = 1$$

$$x_{11} + x_{12} + x_{3} \ge 0$$

$$f conside so between signal of fine subspace of R^{3} and are only constraint by non-negativity constraint by non-negativity constrainty$$

Def:
• Lincon Subspace
$$S \subseteq \mathbb{R}^{n}$$

if $x, y \in S$ and $a, b \in \mathbb{R}$
 $=) ax + by \in S$
• Affine Subspace S_{A} : translate (shift)
by some vector a
 $S_{A} = \{x + a \mid x \in S\}$

1

Visualizing LPs in Standard Form

More general:

▶ if $A \in \mathbb{R}^{m \times n}$ with $m \le n$ and the rows of A are linearly independent, then

$$\{x \in \mathbb{R}^n \mid A \cdot x = b\}$$

is an (n-m)-dimensional affine subspace in \mathbb{R}^n .

Visualizing LPs in Standard Form

More general:

▶ if $A \in \mathbb{R}^{m \times n}$ with $m \le n$ and the rows of A are linearly independent, then

$$\{x \in \mathbb{R}^n \mid A \cdot x = b\}$$

is an (n-m)-dimensional affine subspace in \mathbb{R}^n .

► set of feasible solutions lies in this affine subspace and is only constrained by non-negativity constraints x ≥ 0.

