COMP331/557

Chapter 2:

The Geometry of Linear Programming
(Bertsimas \& Tsitsiklis, Chapter 2)

Polyhedra and Polytopes

Definition 2.1.

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
a set $\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ is called polyhedron

Polyhedra and Polytopes

Definition 2.1.
Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
a set $\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ is called polyhedron
b $\{x \mid A \cdot x=b, x \geq 0\}$ is polyhedron in standard form representation

Polyhedra and Polytopes

Definition 2.1.
Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
a set $\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ is called polyhedron
b $\{x \mid A \cdot x=b, x \geq 0\}$ is polyhedron in standard form representation

Definition 2.2.
a Set $S \subseteq \mathbb{R}^{n}$ is bounded if there is $K \in \mathbb{R}$ such that

$$
=\underbrace{\|x\|_{\infty} \leq K \quad \text { for all } x \in S .}
$$

Def: $\|x\|_{\rho}=\sqrt[p]{\sum_{i}, \rho}$

Polyhedra and Polytopes

Definition 2.1.
Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
a set $\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ is called polyhedron
b $\{x \mid A \cdot x=b, x \geq 0\}$ is polyhedron in standard form representation

Definition 2.2.
a Set $S \subseteq \mathbb{R}^{n}$ is bounded if there is $K \in \mathbb{R}$ such that

$$
\|x\|_{\infty} \leq K \quad \text { for all } x \in S .
$$

b A bounded polyhedron is called polytope.

Hyperplanes and Halfspaces

Definition 2.3.
Let $a \in \mathbb{R}^{n} \backslash\{0\}$ and $b \in \mathbb{R}$:
a set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x=b\right\}$ is called hyperplane

Hyperplanes and Halfspaces
Definition 2.3.
Let $a \in \mathbb{R}^{n} \backslash\{0\}$ and $b \in \mathbb{R}$:
a set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x=b\right\}$ is called hyperplane
b set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x \geq b\right\}$ is called halfspace

Aside:
a rector a is parpedialon to halfspace

Hyperplanes and Halfspaces

Definition 2.3.

Let $a \in \mathbb{R}^{n} \backslash\{0\}$ and $b \in \mathbb{R}$:
a set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x=b\right\}$ is called hyperplane
b set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x \geq b\right\}$ is called halfspace

Remarks

- Hyperplanes and halfspaces are convex sets.

Hyperplanes and Halfspaces

Definition 2.3.

Let $a \in \mathbb{R}^{n} \backslash\{0\}$ and $b \in \mathbb{R}$:
a set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x=b\right\}$ is called hyperplane
b set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x \geq b\right\}$ is called halfspace

Remarks

- Hyperplanes and halfspaces are convex sets.
- A polyhedron is an intersection of finitely many halfspaces.

Convex Combination and Convex Hull

Definition 2.4.

Let $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}_{\geq 0}$ with $\lambda_{1}+\cdots+\lambda_{k}=1$.
a The vector $\sum_{i=1}^{k} \lambda_{i} \cdot x^{i}$ is a convex combination of x^{1}, \ldots, x^{k}.

Convex Combination and Convex Hull

Definition 2.4.

Let $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}_{\geq 0}$ with $\lambda_{1}+\cdots+\lambda_{k}=1$.
a The vector $\sum_{i=1}^{k} \lambda_{i} \cdot x^{i}$ is a convex combination of x^{1}, \ldots, x^{k}.
b The convex hull of x^{1}, \ldots, x^{k} is the set of all convex combinations.

nothing outside

Convex Sets, Convex Combinations, and Convex Hulls
Theorem 2.5 .
a The intersection of convex sets is convex.
Let $X_{i}, i \in I$ be convex sets.
Let $X:=\bigcap_{i \in I} X_{i}$. Show that X is convex .
To show: $\forall x, y \in X \quad \forall \lambda \in[0,1]$

$$
\lambda x+(1-y) y \in X .
$$

Let $x, y \in X \Rightarrow x_{i}, y \in X_{i} \quad \forall i$
Define $z=\lambda x+(1-\lambda) y$ for same $\lambda \in[0,1]$
$\Rightarrow z \in x_{i} \forall i \quad$ (by convexity of X_{i})
$\Rightarrow z \in X \quad$ q.e.d

Convex Sets, Convex Combinations, and Convex Hulls
Theorem 2.5.
a The intersection of convex sets is convex.
b Every polyhedron is a convex set.
Polyhedron = infer section of finifly mary half spaces

convex

Convex Sets, Convex Combinations, and Convex Hulls

Theorem 2.5.

a The intersection of convex sets is convex.
b Every polyhedron is a convex set.
c A convex combination of a finite number of elements of a convex set also belongs to that set.

Convex Sets, Convex Combinations, and Convex Hulls

Theorem 2.5.

a The intersection of convex sets is convex.
b Every polyhedron is a convex set.
c A convex combination of a finite number of elements of a convex set also belongs to that set.
d The convex hull of finitely many vectors is a convex set.

Convex Sets, Convex Combinations, and Convex Hulls

Theorem 2.5.

a The intersection of convex sets is convex.
b Every polyhedron is a convex set.
c A convex combination of a finite number of elements of a convex set also belongs to that set.
d The convex hull of finitely many vectors is a convex set.

Corollary 2.6.

The convex hull of $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ is the smallest (w.r.t. inclusion) convex subset of \mathbb{R}^{n} containing x^{1}, \ldots, x^{k}.

Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron.
a $x \in P$ is an extreme point of P if

$$
x \neq \lambda \cdot y+(1-\lambda) \cdot z \quad \text { for all } y, z \in P \backslash\{x\}, 0 \leq \lambda \leq 1
$$

i. e., x is not a convex combination of two other points in P.

- oxtuems points

Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron.
a $x \in P$ is an extreme point of P if

$$
x \neq \lambda \cdot y+(1-\lambda) \cdot z \quad \text { for all } y, z \in P \backslash\{x\}, 0 \leq \lambda \leq 1
$$

i. e., x is not a convex combination of two other points in P.
b $x \in P$ is a vertex of P if there is some $c \in \mathbb{R}^{n}$ such that

$$
c^{T} \cdot x<c^{T} \cdot y \quad \text { for all } y \in P \backslash\{x\}
$$

i. e., x is the unique optimal solution to the $\operatorname{LP} \min \left\{c^{T} \cdot z \mid z \in P\right\}$.

