COMP331/557

Chapter 2: The Geometry of Linear Programming

(Bertsimas & Tsitsiklis, Chapter 2)

Definition 2.1. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. a set $\{x \in \mathbb{R}^{n} \mid A \cdot x \ge b\}$ is called polyhedron

Definition 2.1.

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

a set $\{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ is called polyhedron

b $\{x \mid A \cdot x = b, x \ge 0\}$ is polyhedron in standard form representation

Definition 2.1.

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

a set $\{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ is called polyhedron

b $\{x \mid A \cdot x = b, x \ge 0\}$ is polyhedron in standard form representation

Definition 2.1.

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

a set $\{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ is called polyhedron

b $\{x \mid A \cdot x = b, x \ge 0\}$ is polyhedron in standard form representation

Definition 2.2. a Set $S \subseteq \mathbb{R}^n$ is bounded if there is $K \in \mathbb{R}$ such that $\|x\|_{\infty} < K$ for all $x \in S$.

b A bounded polyhedron is called polytope.

Definition 2.3. Let $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$: a set $\{x \in \mathbb{R}^n \mid a^T \cdot x = b\}$ is called hyperplane

Definition 2.3. Let $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$: a set { $x \in \mathbb{R}^n \mid a^T \cdot x = b$ } is called hyperplane **b** set $\{x \in \mathbb{R}^n \mid a^T \cdot x \ge b\}$ is called halfspace Aside : hypeplane $X_1 + X_2 = 1$ erector a is perpedialan to holfspace halfspace $x_1 + x_2 \ge 1$

Definition 2.3. Let $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$: a set $\{x \in \mathbb{R}^n \mid a^T \cdot x = b\}$ is called hyperplane b set $\{x \in \mathbb{R}^n \mid a^T \cdot x \ge b\}$ is called halfspace

Remarks

Hyperplanes and halfspaces are convex sets.

Definition 2.3. Let $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$: a set $\{x \in \mathbb{R}^n \mid a^T \cdot x = b\}$ is called hyperplane b set $\{x \in \mathbb{R}^n \mid a^T \cdot x \ge b\}$ is called halfspace

Remarks

- Hyperplanes and halfspaces are convex sets.
- ► A polyhedron is an intersection of finitely many halfspaces.

Convex Combination and Convex Hull

Definition 2.4.

Let
$$x^1,\ldots,x^k\in\mathbb{R}^n$$
 and $\lambda_1,\ldots,\lambda_k\in\mathbb{R}_{\geq 0}$ with $\lambda_1+\cdots+\lambda_k=1.$

a The vector $\sum_{i=1}^{k} \lambda_i \cdot x^i$ is a convex combination of x^1, \ldots, x^k .

Convex Combination and Convex Hull

Definition 2.4. Let $x^1, \ldots, x^k \in \mathbb{R}^n$ and $\lambda_1, \ldots, \lambda_k \in \mathbb{R}_{\geq 0}$ with $\lambda_1 + \cdots + \lambda_k = 1$. The vector $\sum_{i=1}^k \lambda_i \cdot x^i$ is a convex combination of x^1, \ldots, x^k . The convex hull of x^1, \ldots, x^k is the set of all convex combinations.

nothing outside

Theorem 2.5. The intersection of convex sets is convex. Let X; iEI be convex sets. Let X == A Xi. Show that X is convex. iaT To show: $\forall x, y \in X \quad \forall \lambda \in [0, i]$ $\lambda_{X+}(1-\gamma)\gamma\in X.$ Let x, y e X =) X, y e X; Ui Define z = x + (1-x) y for some x e [0,1] => z e X: Vi (by convexity of Xi) =>2EX q.e.d. []

Theorem 2.5.

- a The intersection of convex sets is convex.
- **b** Every polyhedron is a convex set.

Theorem 2.5.

- a The intersection of convex sets is convex.
- **b** Every polyhedron is a convex set.
- **c** A convex combination of a finite number of elements of a convex set also belongs to that set.

Theorem 2.5.

- a The intersection of convex sets is convex.
- **b** Every polyhedron is a convex set.
- **c** A convex combination of a finite number of elements of a convex set also belongs to that set.
- d The convex hull of finitely many vectors is a convex set.

Theorem 2.5.

- a The intersection of convex sets is convex.
- **b** Every polyhedron is a convex set.
- **c** A convex combination of a finite number of elements of a convex set also belongs to that set.
- d The convex hull of finitely many vectors is a convex set.

Corollary 2.6.

The convex hull of $x^1, \ldots, x^k \in \mathbb{R}^n$ is the smallest (w.r.t. inclusion) convex subset of \mathbb{R}^n containing x^1, \ldots, x^k .

Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

a $x \in P$ is an extreme point of P if

 $x \neq \lambda \cdot y + (1 - \lambda) \cdot z$ for all $y, z \in P \setminus \{x\}$, $0 \le \lambda \le 1$,

i.e., x is not a convex combination of two other points in P.

Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

a $x \in P$ is an extreme point of P if

 $x \neq \lambda \cdot y + (1 - \lambda) \cdot z$ for all $y, z \in P \setminus \{x\}$, $0 \le \lambda \le 1$,

i. e., x is not a convex combination of two other points in P.

b $x \in P$ is a vertex of P if there is some $c \in \mathbb{R}^n$ such that

$$c^T \cdot x < c^T \cdot y$$
 for all $y \in P \setminus \{x\}$,

i. e., x is the unique optimal solution to the LP min{ $c^T \cdot z \mid z \in P$ }.

