Convex Sets, Convex Combinations, and Convex Hulls

Theorem 2.5.

- a The intersection of convex sets is convex.
- **b** Every polyhedron is a convex set.
- **c** A convex combination of a finite number of elements of a convex set also belongs to that set.
- d The convex hull of finitely many vectors is a convex set.

Corollary 2.6.

The convex hull of $x^1, \ldots, x^k \in \mathbb{R}^n$ is the smallest (w.r.t. inclusion) convex subset of \mathbb{R}^n containing x^1, \ldots, x^k .

Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

a $x \in P$ is an extreme point of P if

 $x \neq \lambda \cdot y + (1 - \lambda) \cdot z$ for all $y, z \in P \setminus \{x\}$, $0 \le \lambda \le 1$,

i.e., x is not a convex combination of two other points in P.

Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

a $x \in P$ is an extreme point of P if

 $x \neq \lambda \cdot y + (1 - \lambda) \cdot z$ for all $y, z \in P \setminus \{x\}$, $0 \le \lambda \le 1$,

i. e., x is not a convex combination of two other points in P.

b $x \in P$ is a vertex of P if there is some $c \in \mathbb{R}^n$ such that

$$c^T \cdot x < c^T \cdot y$$
 for all $y \in P \setminus \{x\}$,

i. e., x is the unique optimal solution to the LP min{ $c^T \cdot z \mid z \in P$ }.

Active and Binding Constraints

In the following, let $P \subseteq \mathbb{R}^n$ be a polyhedron defined by $a_i^T \cdot x \ge b_i$ for $i \in M_1$, $a_i^T \cdot x = b_i$ for $i \in M_2$, with $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$, for all i.

Active and Binding Constraints

In the following, let $P \subseteq \mathbb{R}^n$ be a polyhedron defined by $a_i^T \cdot x \ge b_i$ for $i \in M_1$, $a_i^T \cdot x = b_i$ for $i \in M_2$, with $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$, for all i.

Definition 2.8.

If $x^* \in \mathbb{R}^n$ satisfies $a_i^T \cdot x^* = b_i$ for some *i*, then the corresponding constraint is active (or binding) at x^* .

Basic Facts from Linear Algebra

Theorem 2.9.

Let $x^* \in \mathbb{R}^n$ and $I = \{i \mid a_i^T \cdot x^* = b_i\}$. The following are equivalent:

i there are *n* vectors in {a_i | i ∈ I} which are linearly independent;
ii the vectors in {a_i | i ∈ I} span ℝⁿ;

 $\mathbf{m} x^*$ is the unique solution to the system of equations $a_i^T \cdot x = b_i$, $i \in I$.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.

- a $x^* \in \mathbb{R}^n$ is a basic solution of P if
 - all equality constraints are active and
 - there are *n* linearly independent constraints that are active.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.

- a $x^* \in \mathbb{R}^n$ is a basic solution of P if
 - all equality constraints are active and
 - there are n linearly independent constraints that are active.
- **b** A basic solution satisfying all constraints is a basic feasible solution.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.

- **a** $x^* \in \mathbb{R}^n$ is a basic solution of *P* if
 - all equality constraints are active and
 - there are n linearly independent constraints that are active.
- **b** A basic solution satisfying all constraints is a basic feasible solution.

Theorem 2.11.

- For $x^* \in P$, the following are equivalent:
 - i x^* is a vertex of P;
 - iii x^* is an extreme point of *P*;
 - \blacksquare x^* is a basic feasible solution of *P*.

Number of Vertices

Corollary 2.12.

a A polyhedron has a finite number of vertices and basic solutions.

Number of Vertices

Corollary 2.12.

- **a** A polyhedron has a finite number of vertices and basic solutions.
- **b** For a polyhedron in \mathbb{R}^n given by linear equations and *m* linear inequalities, this number is at most $\binom{m}{n}$.

$$\binom{m}{n} = \frac{m!}{n! \cdot (m-n)!}$$

Number of Vertices

Corollary 2.12.

a A polyhedron has a finite number of vertices and basic solutions.

b For a polyhedron in \mathbb{R}^n given by linear equations and *m* linear inequalities, this number is at most $\binom{m}{n}$.

Example:

 $P:=\{x\in \mathbb{R}^n\mid 0\leq x_i\leq 1,\ i=1,\ldots,n\}$ (n-dimensional unit cube)

• number of constraints: $m = 2n$	≥ 2	5	2.2
• number of vertices: 2^n	sh	L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(2n) = (2n)!	20	2n - 1	n 4
$(n) - \frac{1}{h! n!}$	'n	n - 1	· · · · · · <u>1</u>

 $\geq 2^n$

Adjacent Basic Solutions and Edges

Definition 2.13.

- Let $P \subseteq \mathbb{R}^n$ be a polyhedron.
 - Two distinct basic solutions are adjacent if there are n-1 linearly independent constraints that are active at both of them.
 - **b** If both solutions are feasible, the line segment that joins them is an edge of P.

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$.

Observation

One can assume without loss of generality that rank(A) = m.

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$.

Observation

One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

 $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that

- columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and
- $x_i = 0$ for all $i \notin \{B(1), \ldots, B(m)\}$.

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$.

Observation

One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

 $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that

- columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and
- $x_i = 0$ for all $i \notin \{B(1), \ldots, B(m)\}$.

▶ $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$.

Observation

One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

 $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that

• columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and

•
$$x_i = 0$$
 for all $i \notin \{B(1), \ldots, B(m)\}$.

- ▶ $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- The vector of basic variables is denoted by $x_B := (x_{B(1)}, \dots, x_{B(m)})^T$.

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$.

Observation

One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

 $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that

• columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and

•
$$x_i = 0$$
 for all $i \notin \{B(1), \ldots, B(m)\}$.

- ▶ $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- The vector of basic variables is denoted by $x_B := (x_{B(1)}, \dots, x_{B(m)})^T$.
- $A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^m .

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$.

Observation

One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

 $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that

• columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and

•
$$x_i = 0$$
 for all $i \notin \{B(1), \ldots, B(m)\}$.

- ▶ $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- The vector of basic variables is denoted by $x_B := (x_{B(1)}, \dots, x_{B(m)})^T$.
- $A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^m .
- ▶ The matrix $B := (A_{B(1)}, ..., A_{B(m)}) \in \mathbb{R}^{m \times m}$ is called basis matrix.

A·x=b n-m active con strainty In basic solution x n lineon independent constraints $-m \quad from \quad A \cdot x = b$ $-n-m \quad from \quad I_n \cdot x \ge \sigma$ These compraints one lincon independent