
Convex Sets, Convex Combinations, and Convex Hulls

Theorem 2.5.

a The intersection of convex sets is convex.

b Every polyhedron is a convex set.

c A convex combination of a finite number of elements of a convex set also belongs
to that set.

d The convex hull of finitely many vectors is a convex set.

Corollary 2.6.

The convex hull of x1, . . . , xk 2 Rn is the smallest (w.r.t. inclusion) convex subset of Rn

containing x1, . . . , xk .
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Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let P ✓ Rn be a polyhedron.
a x 2 P is an extreme point of P if

x 6= � · y + (1 � �) · z for all y , z 2 P \ {x}, 0  �  1,

i. e., x is not a convex combination of two other points in P .

b x 2 P is a vertex of P if there is some c 2 Rn such that

cT · x < cT · y for all y 2 P \ {x},

i. e., x is the unique optimal solution to the LP min{cT · z | z 2 P}.
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Active and Binding Constraints

In the following, let P ✓ Rn be a polyhedron defined by

ai
T · x � bi for i 2 M1,

ai
T · x = bi for i 2 M2,

with ai 2 Rn and bi 2 R, for all i .

Definition 2.8.

If x⇤ 2 Rn satisfies ai T · x⇤ = bi for some i , then the corresponding constraint is active
(or binding) at x⇤.
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Basic Facts from Linear Algebra

Theorem 2.9.

Let x⇤ 2 Rn and I = {i | ai T · x⇤ = bi}. The following are equivalent:
i there are n vectors in {ai | i 2 I} which are linearly independent;
ii the vectors in {ai | i 2 I} span Rn;
iii x⇤ is the unique solution to the system of equations ai T · x = bi , i 2 I .
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Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.

a x⇤ 2 Rn is a basic solution of P if
I all equality constraints are active and
I there are n linearly independent constraints that are active.

b A basic solution satisfying all constraints is a basic feasible solution.

Theorem 2.11.

For x⇤ 2 P , the following are equivalent:
i x⇤ is a vertex of P ;
ii x⇤ is an extreme point of P ;
iii x⇤ is a basic feasible solution of P .
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Number of Vertices

Corollary 2.12.

a A polyhedron has a finite number of vertices and basic solutions.

b For a polyhedron in Rn given by linear equations and m linear inequalities, this
number is at most

�m
n

�
.

Example:

P := {x 2 Rn | 0  xi  1, i = 1, . . . , n} (n-dimensional unit cube)
I number of constraints: m = 2n
I number of vertices: 2n
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Adjacent Basic Solutions and Edges

Definition 2.13.

Let P ✓ Rn be a polyhedron.
a Two distinct basic solutions are adjacent if there are n � 1 linearly independent

constraints that are active at both of them.
b If both solutions are feasible, the line segment that joins them is an edge of P .
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Polyhedra in Standard Form
Let A 2 Rm⇥n, b 2 Rm, and P = {x 2 Rn | A · x = b, x � 0}.

Observation
One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

x 2 Rn is a basic solution of P if and only if A · x = b and there are indices
B(1), . . . ,B(m) 2 {1, . . . , n} such that
I columns AB(1), . . . ,AB(m) of matrix A are linearly independent and
I xi = 0 for all i 62 {B(1), . . . ,B(m)}.

I xB(1), . . . , xB(m) are basic variables, the remaining variables non-basic.

I The vector of basic variables is denoted by xB := (xB(1), . . . , xB(m))
T .

I AB(1), . . . ,AB(m) are basic columns of A and form a basis of Rm.
I The matrix B := (AB(1), . . . ,AB(m)) 2 Rm⇥m is called basis matrix.
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