Convex Sets, Convex Combinations, and Convex Hulls

Theorem 2.5.

a The intersection of convex sets is convex.
b Every polyhedron is a convex set.
c A convex combination of a finite number of elements of a convex set also belongs to that set.
d The convex hull of finitely many vectors is a convex set.

Corollary 2.6.

The convex hull of $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ is the smallest (w.r.t. inclusion) convex subset of \mathbb{R}^{n} containing x^{1}, \ldots, x^{k}.

Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron.
a $x \in P$ is an extreme point of P if

$$
x \neq \lambda \cdot y+(1-\lambda) \cdot z \quad \text { for all } y, z \in P \backslash\{x\}, 0 \leq \lambda \leq 1
$$

i. e., x is not a convex combination of two other points in P.

- oxtuems points

Extreme Points and Vertices of Polyhedra

Definition 2.7.

Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron.
a $x \in P$ is an extreme point of P if

$$
x \neq \lambda \cdot y+(1-\lambda) \cdot z \quad \text { for all } y, z \in P \backslash\{x\}, 0 \leq \lambda \leq 1
$$

i. e., x is not a convex combination of two other points in P.
b $x \in P$ is a vertex of P if there is some $c \in \mathbb{R}^{n}$ such that

$$
c^{T} \cdot x<c^{T} \cdot y \quad \text { for all } y \in P \backslash\{x\}
$$

i. e., x is the unique optimal solution to the $\operatorname{LP} \min \left\{c^{T} \cdot z \mid z \in P\right\}$.

Active and Binding Constraints

In the following, let $P \subseteq \mathbb{R}^{n}$ be a polyhedron defined by

$$
\begin{array}{ll}
a_{i}^{T} \cdot x \geq b_{i} & \text { for } i \in M_{1}, \\
a_{i}^{T} \cdot x=b_{i} & \text { for } i \in M_{2},
\end{array}
$$

with $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$, for all i.

Active and Binding Constraints

In the following, let $P \subseteq \mathbb{R}^{n}$ be a polyhedron defined by

$$
\begin{array}{ll}
a_{i}^{T} \cdot x \geq b_{i} & \text { for } i \in M_{1}, \\
a_{i}^{T} \cdot x=b_{i} & \text { for } i \in M_{2},
\end{array}
$$

with $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$, for all i.

Definition 2.8.

If $x^{*} \in \mathbb{R}^{n}$ satisfies $a_{i}{ }^{T} \cdot x^{*}=b_{i}$ for some i, then the corresponding constraint is active (or binding) at x^{*}.

Basic Facts from Linear Algebra
Theorem 2.9.
Let $x^{*} \in \mathbb{R}^{n}$ and $I=\left\{i \mid a_{i}{ }^{T} \cdot x^{*}=b_{i}\right\}$. The following are equivalent:
ii there are n vectors in $\left\{a_{i} \mid i \in I\right\}$ which are linearly independent;
III the vectors in $\left\{a_{i} \mid i \in 1\right]$ span \mathbb{R}^{n};
团 x^{*} is the unique solution to the system of equations $a_{i}{ }^{T} \cdot x=b_{i}, i \in I$.
\rightarrow every clement of \mathbb{R}^{n} cam be expressed as a linear combination of those vectors.
A side: Show that
$\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$ ave linear independent f.

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
2 & 4 & 2
\end{array}\right) \xrightarrow[\text { operations }]{\text { your }} \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.

a $x^{*} \in \mathbb{R}^{n}$ is a basic solution of P if

- all equality constraints are active and
- there are n linearly independent constraints that are active.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.

a $x^{*} \in \mathbb{R}^{n}$ is a basic solution of P if

- all equality constraints are active and
- there are n linearly independent constraints that are active.
b A basic solution satisfying all constraints is a basic feasible solution.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.

a $x^{*} \in \mathbb{R}^{n}$ is a basic solution of P if

- all equality constraints are active and
- there are n linearly independent constraints that are active.
b A basic solution satisfying all constraints is a basic feasible solution.

Theorem 2.11.

For $x^{*} \in P$, the following are equivalent:
ii x^{*} is a vertex of P;
III x^{*} is an extreme point of P;
囲 x^{*} is a basic feasible solution of P.

Number of Vertices

Corollary 2.12.

a A polyhedron has a finite number of vertices and basic solutions.

Number of Vertices
Corollary 2.12.
a A polyhedron has a finite number of vertices and basic solutions.
b For a polyhedron in \mathbb{R}^{n} given by linear equations and m linear inequalities, this number is at most $\binom{m}{n}$.

$$
\binom{m}{n}=\frac{m!}{n!\cdot(m-n)!}
$$

Number of Vertices
Corollary 2.12.
a A polyhedron has a finite number of vertices and basic solutions.
b For a polyhedron in \mathbb{R}^{n} given by linear equations and m linear inequalities, this number is at most $\binom{m}{n}$.

Example:
$P:=\left\{x \in \mathbb{R}^{n} \mid 0 \leq x_{i} \leq 1, i=1, \ldots, n\right\}$ (n-dimensional unit cube)

- number of constraints: $m=2 n$

$$
\begin{aligned}
\binom{2 n}{n}=\frac{(2 n)!}{n!\cdot n!} & =\frac{2 n}{n} \\
& \geq 2^{n}
\end{aligned}
$$

Adjacent Basic Solutions and Edges

Definition 2.13.

Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron.
a Two distinct basic solutions are adjacent if there are $n-1$ linearly independent constraints that are active at both of them.
b If both solutions are feasible, the line segment that joins them is an edge of P.

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$.
Observation
One can assume without loss of generality that $\operatorname{rank}(A)=m$.

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$.
Observation
One can assume without loss of generality that $\operatorname{rank}(A)=m$.

Theorem 2.14.

$x \in \mathbb{R}^{n}$ is a basic solution of P if and only if $A \cdot x=b$ and there are indices $B(1), \ldots, B(m) \in\{1, \ldots, n\}$ such that

- columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and
- $x_{i}=0$ for all $i \notin\{B(1), \ldots, B(m)\}$.

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$.
Observation
One can assume without loss of generality that $\operatorname{rank}(A)=m$.

Theorem 2.14.

$x \in \mathbb{R}^{n}$ is a basic solution of P if and only if $A \cdot x=b$ and there are indices $B(1), \ldots, B(m) \in\{1, \ldots, n\}$ such that

- columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and
- $x_{i}=0$ for all $i \notin\{B(1), \ldots, B(m)\}$.
$\checkmark x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$.
Observation
One can assume without loss of generality that $\operatorname{rank}(A)=m$.

Theorem 2.14.

$x \in \mathbb{R}^{n}$ is a basic solution of P if and only if $A \cdot x=b$ and there are indices $B(1), \ldots, B(m) \in\{1, \ldots, n\}$ such that

- columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and
- $x_{i}=0$ for all $i \notin\{B(1), \ldots, B(m)\}$.
- $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- The vector of basic variables is denoted by $x_{B}:=\left(x_{B(1)}, \ldots, x_{B(m)}\right)^{T}$.

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$.
Observation
One can assume without loss of generality that $\operatorname{rank}(A)=m$.

Theorem 2.14.

$x \in \mathbb{R}^{n}$ is a basic solution of P if and only if $A \cdot x=b$ and there are indices $B(1), \ldots, B(m) \in\{1, \ldots, n\}$ such that

- columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and
- $x_{i}=0$ for all $i \notin\{B(1), \ldots, B(m)\}$.
- $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- The vector of basic variables is denoted by $x_{B}:=\left(x_{B(1)}, \ldots, x_{B(m)}\right)^{T}$.
$-A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^{m}.

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$.
Observation
One can assume without loss of generality that $\operatorname{rank}(A)=m$.

Theorem 2.14.

$x \in \mathbb{R}^{n}$ is a basic solution of P if and only if $A \cdot x=b$ and there are indices $B(1), \ldots, B(m) \in\{1, \ldots, n\}$ such that

- columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and
- $x_{i}=0$ for all $i \notin\{B(1), \ldots, B(m)\}$.
$-x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- The vector of basic variables is denoted by $x_{B}:=\left(x_{B(1)}, \ldots, x_{B(m)}\right)^{T}$.
$-A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^{m}.
- The matrix $B:=\left(A_{B(1)}, \ldots, A_{B(m)}\right) \in \mathbb{R}^{m \times m}$ is called basis matrix.
$\left.\begin{array}{ll}\begin{array}{l}m \text { active } \\ \text { constraint }\end{array} & m \\ n \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}x_{1} \\ \vdots \\ b_{m}\end{array}\right) \quad A \cdot x=b$

$$
\begin{gathered}
n-m \text { active } \\
\text { con strounts }
\end{gathered} \quad r\left[\begin{array}{cc}
1 & n \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] \geq\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

In basic solution x
n linear ind pendent constraints
-m from $A \cdot x=b$
-n-m from $I_{n} x \geqslant \sigma$
These complaints are lincoln independent

