Convex Sets, Convex Combinations, and Convex Hulls

Theorem 2.5.
B The intersection of convex sets is convex.

B Every polyhedron is a convex set.

A convex combination of a finite number of elements of a convex set also belongs
to that set.

El The convex hull of finitely many vectors is a convex set.

Corollary 2.6.
The convex hull of x1, ..., xk € R" is the smallest (w.r.t. inclusion) convex subset of R”
containing x1,. .., xk. q

with rcgrecn[ to
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Extreme Points and Vertices of Polyhedra

Definition 2.7.
Let P C R" be a polyhedron.
B x € P is an extreme point of P if

xEXy+(1=X) -z forall y,ze P\ {x},0< A <1,

i.e., x is not a convex combination of two other points in P.

o oxh e~ ,00.'.,.#)
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Extreme Points and Vertices of Polyhedra

Definition 2.7.
Let P C R" be a polyhedron.
B x € P is an extreme point of P if

xEXy+(1=X) -z forall y,ze P\ {x},0< A <1,

i.e., x is not a convex combination of two other points in P.

B x € P is a vertex of P if there is some ¢ € R” such that

ch x<cl-y forall y € P\ {x},

i.e., x is the unique optimal solution to the LP min{c’ -z | z € P}.
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Active and Binding Constraints

In the following, let P C R" be a polyhedron defined by

3l x> b for i € My,
a,-T-x=b,- fOFfEMQ,

with a; € R™ and b; € R, for all /.
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Active and Binding Constraints

In the following, let P C R" be a polyhedron defined by

3l x> b for i € My,
a,-T-x=b,- foriEMz,

with a; € R™ and b; € R, for all /.

Definition 2.8.

If x* € R" satisfies a; " - x* = b; for some i, then the corresponding constraint is active
(or binding) at x*.
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Basic Facts from Linear Algebra

Theorem 2.9.
Let x* € R" and | = {i| a;" - x* = b;}. The following are equivalent:

H there are n vectors in {a; | i € I} which are linearly independent;

H the vectors in {a; | i € /¥ span R";
H x* is the uniqu Gtion to the system of equations a;” - x = bj, i € /.

g;va clemond of K" com be oQPVM;m{ asS 9
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ﬁf‘f(.‘_: Chow dlod
(), (3) [7]) one Gioom irdepmimt.
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Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.
B x* € R" is a basic solution of P if

» all equality constraints are active and
» there are n linearly independent constraints that are active.
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Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.
B x* € R" is a basic solution of P if

» all equality constraints are active and
» there are n linearly independent constraints that are active.

B3 A basic solution satisfying all constraints is a basic feasible solution.
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Vertices, Extreme Points, and Basic Feasible Solutions

Definition 2.10.
B x* € R" is a basic solution of P if

» all equality constraints are active and
» there are n linearly independent constraints that are active.

B3 A basic solution satisfying all constraints is a basic feasible solution.

Theorem 2.11.

For x* € P, the following are equivalent:
H x* is a vertex of P;
H x* is an extreme point of P;

H x* is a basic feasible solution of P.
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Number of Vertices

Corollary 2.12.

B A polyhedron has a finite number of vertices and basic solutions.
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Number of Vertices

Corollary 2.12.

B A polyhedron has a finite number of vertices and basic solutions.

B For a polyhedron in R” given by linear equations and m linear inequalities, this
number is at most (7).

(" "
n -
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Number of Vertices

Corollary 2.12.
B A polyhedron has a finite number of vertices and basic solutions.

B For a polyhedron in R” given by linear equations and m linear inequalities, this
number is at most (7).

Example:
P:={xeR"|0<x;<1, i=1,...,n} (n-dimensional unit cube)
» number of constraints: m = 2n 22 29 32
» number of vertices: 2" M A= A
&2,,\)_ (2-.)1 B 2 2n-1 ne |

> Q"
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Adjacent Basic Solutions and Edges

Definition 2.13.
Let P C R" be a polyhedron.

B Two distinct basic solutions are adjacent if there are n — 1 linearly independent
constraints that are active at both of them.

B If both solutions are feasible, the line segment that joins them is an edge of P.

o bg
O blc
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Polyhedra in Standard Form

Let AcR™" beR™ and P={x€R"| A-x = b, x > 0}.
Observation

One can assume without loss of generality that rank(A) = m.
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Polyhedra in Standard Form
Let Ac R™" beR™ and P={x € R"| A-x = b, x > 0}.

Observation
One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

x € R" is a basic solution of P if and only if A-x = b and there are indices
B(1),...,B(m) € {1,..., n} such that

> columns Ag(y), .., Ag(m) of matrix A are linearly independent and

» x; =0forall i ¢ {B(1),...,B(m)}.
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Polyhedra in Standard Form
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> The vector of basic variables is denoted by xg := (xg(1), - - -, Xg(m)) ' -
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Polyhedra in Standard Form
Let Ac R™" beR™ and P={x € R"| A-x = b, x > 0}.

Observation
One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

x € R" is a basic solution of P if and only if A-x = b and there are indices
B(1),...,B(m) € {1,..., n} such that

> columns Ag(y), .., Ag(m) of matrix A are linearly independent and
» x; =0 forall i & {B(1),...,B(m)}.

> XB(1),- - -» XB(m) are basic variables, the remaining variables non-basic.
> The vector of basic variables is denoted by x5 := (xg(1), - - - ,xB(m))T.
> Ap(1);- - -, Ap(m) are basic columns of A and form a basis of R".
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Polyhedra in Standard Form
Let Ac R™" beR™ and P={x € R"| A-x = b, x > 0}.

Observation
One can assume without loss of generality that rank(A) = m.

Theorem 2.14.

x € R" is a basic solution of P if and only if A-x = b and there are indices
B(1),...,B(m) € {1,..., n} such that

> columns Ag(y), .., Ag(m) of matrix A are linearly independent and

» x; =0 forall i & {B(1),...,B(m)}.

> XB(1),- - -» XB(m) are basic variables, the remaining variables non-basic.
> The vector of basic variables is denoted by x5 := (xg(1), - - - ,xB(m))T.
> Ap(1);- - -, Ap(m) are basic columns of A and form a basis of R".

» The matrix B := (Ag(1),-- -, Ap(m)) € R™™M is called basis matrix.
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