## Example:

## Consider the following LP:

$$
\begin{aligned}
& \text { min } 2 x_{1}+x_{4}+5 x_{7} \\
& \begin{array}{lllll}
\text { s.t. } & x_{1} \quad+x_{2} & +x_{3}+x_{4} & & =4 \\
& & & \\
x_{1} & & & =2
\end{array} \\
& \begin{array}{rlr}
x_{3} & +x_{6} & =3 \\
3 x_{2}+x_{3} & & =6 \\
& & \geq 0
\end{array}, \forall j
\end{aligned}
$$

## Example:

Consider the following LP:

$$
(A \mid b)=\left(\begin{array}{lllllll|l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & \mid l \\
2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
$$

$$
\begin{aligned}
& \min 2 x_{1}+x_{4}+5 x_{7} \\
& \begin{array}{llllll}
\text { s.t. } & x_{1} & +x_{2} & +x_{3} & +x_{4} & \\
& & =4 \\
x_{1} & & & +x_{5} & =2
\end{array} \\
& \begin{aligned}
x_{3} & +x_{6} \\
3 x_{2} & =3 \\
+x_{3} & +x_{7}
\end{aligned}=6 \quad, \quad x_{j} \quad \geq 0 \quad, \forall j
\end{aligned}
$$

## Example:

Consider the following LP:

$$
\left.\begin{array}{rrrrrrrr}
\min & 2 x_{1} & & & +x_{4} & & +5 x_{7} & \\
\text { s.t. } & x_{1} & +x_{2} & +x_{3} & +x_{4} & & & \\
& x_{1} & & & & +x_{5} & & \\
& & x_{3} & & & +x_{6} & & =2 \\
& & 3 x_{2} & +x_{3} & & & & +x_{7} \\
& & =6 \\
& & & & & & & x_{j}
\end{array}\right)
$$

$$
(A \mid b)=\left(\begin{array}{ccccccc:l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & \mid l \\
2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
$$

$A$ has full row rank $m=4$.

Example:
Basis 1:
Basis 2:

$$
\left(\left.\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 \\
& 3 & 1
\end{array} \right\rvert\, 1\right] 1\left[\begin{array}{l}
1 \\
1 \\
\mid \\
\mid \\
\mid \\
\mid \\
6
\end{array}\right)
$$

$$
\begin{aligned}
& B(1)=4, B(2)=5, B(3)=6, B(4)=7 \\
& \text { Basis 3: }
\end{aligned}
$$

$$
B(1)=2 ; B(2)=5
$$

$$
B(3)=6 ; B(4)=7
$$

$$
\begin{aligned}
& \begin{array}{l}
B(1)=2 ; B(2)=1 \\
B(3)=3: B(4)=7
\end{array} \quad B=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Example:
Every basis $B$ is invertible and can be transformed into the identity matrix by elementary row operations and column permutations. (Gaussian elemination)

No transformation needed
$B=$ identity matrix
Basis 1:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & & 1 \\
& 3 & 1
\end{array}\right)^{1}[1]\left[1\left[\begin{array}{|lll}
\mid & 4 \\
\mid & 2 \\
\mid & 3 \\
\mid & 6
\end{array}\right)\right.
$$

Basic solution:

$$
\begin{array}{lr}
x_{4}=4 & x_{5}=2 \\
x_{6}=3 & x_{7}=6 \\
& x_{i}=0
\end{array} \begin{aligned}
& \text { other wise }
\end{aligned}
$$

Example:
Every basis $B$ is invertible and can be transformed into the identity matrix by elementary row operations and column permutations. (Gaussian elemination)
If we transform the whole expended matrix with these operations, we obtain a solution of $A x=b$ by setting the basic variables to the transformed right-hand-side. Such a solution is called basic solution for basis B.

Basis 2.


Basic solution:

$$
\begin{aligned}
& x_{2}=4 \\
& x_{5}=2 \\
& x_{6}=3
\end{aligned}
$$

$$
x_{7}=-6
$$

$x_{i}=0$ otherwise
not a feasible solution

Example:
Basis 3 :


$$
\begin{aligned}
& \text { Basin solenfion: } \\
& \begin{array}{l}
x_{2}=-1 \\
x_{1}=2 \\
x_{3}=3 \\
x_{7}=6 \\
x_{i}=0 \text { otherwise }
\end{array} \text { not }
\end{aligned}
$$

Example:
Basis 3 :

$$
\left(\begin{array}{lllllll|l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & 2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
$$

## Example:

- If we permute the columns of $A$ and $x$ such that $A=\left(A_{B}, A_{N}\right)$ and $x=\binom{x_{B}}{x_{N}}$, then the elementary transformations correspond to multiplying the linear system

$$
\left(A_{B}, A_{N}\right)\binom{x_{B}}{x_{N}}=b
$$

from the left with the inverse $B^{-1}$ of the basis:

$$
\begin{aligned}
& B^{-1}\left(A_{B}, A_{N}\right)\binom{x_{B}}{x_{N}} & =B^{-1} b \\
\Leftrightarrow & B^{-1} A_{B} x_{B}+B^{-1} A_{N} x_{N} & =B^{-1} b \\
\Leftrightarrow & x_{B}+B^{-1} A_{N} x_{N} & =B^{-1} b
\end{aligned}
$$

## Example:

- If we permute the columns of $A$ and $x$ such that $A=\left(A_{B}, A_{N}\right)$ and $x=\binom{x_{B}}{x_{N}}$, then the elementary transformations correspond to multiplying the linear system

$$
\left(A_{B}, A_{N}\right)\binom{x_{B}}{x_{N}}=b
$$

from the left with the inverse $B^{-1}$ of the basis:

$$
\begin{aligned}
& B^{-1}\left(A_{B}, A_{N}\right)\binom{x_{B}}{x_{N}} & =B^{-1} b \\
\Leftrightarrow & B^{-1} A_{B} x_{B}+B^{-1} A_{N} x_{N} & =B^{-1} b \\
\Leftrightarrow & x_{B}+B^{-1} A_{N} x_{N} & =B^{-1} b
\end{aligned}
$$

- Setting $x_{N}=0$, we obtain $x_{B}=B^{-1} b$.


## Example:

- If we permute the columns of $A$ and $x$ such that $A=\left(A_{B}, A_{N}\right)$ and $x=\binom{X_{B}}{x_{N}}$, then the elementary transformations correspond to multiplying the linear system

$$
\left(A_{B}, A_{N}\right)\binom{x_{B}}{x_{N}}=b
$$

from the left with the inverse $B^{-1}$ of the basis:

$$
\begin{aligned}
& B^{-1}\left(A_{B}, A_{N}\right)\binom{x_{B}}{x_{N}} & =B^{-1} b \\
\Leftrightarrow & B^{-1} A_{B} x_{B}+B^{-1} A_{N} x_{N} & =B^{-1} b \\
\Leftrightarrow & x_{B}+B^{-1} A_{N} x_{N} & =B^{-1} b
\end{aligned}
$$

- Setting $x_{N}=0$, we obtain $x_{B}=B^{-1} b$.
- So if $B$ is a basis, we obtain the associated basic solution $x=\left(x_{B}, x_{N}\right)^{T}$ as $x_{B}=B^{-1} b, x_{N}=0$.

Example: Basis 3 those wave swapped.

$$
B=\left(\begin{array}{llll|llll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
3 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

