66 - 1

$$B^{-1} \cdot b = \begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 3 \\ 6 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \\ 6 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \\ x_3 \\ x_4 \end{pmatrix}$$

Observation 2.15.

Let $x \in \mathbb{R}^n$ be a basic solution, then:

• $B \cdot x_B = b$ and thus $x_B = B^{-1} \cdot b$;

▶ x is a basic feasible solution if and only if $x_B = B^{-1} \cdot b \ge 0$.

Observation 2.15.

Let $x \in \mathbb{R}^n$ be a basic solution, then:

- ▶ $B \cdot x_B = b$ and thus $x_B = B^{-1} \cdot b$;
- ▶ x is a basic feasible solution if and only if $x_B = B^{-1} \cdot b \ge 0$.

Observation 2.15.

Let $x \in \mathbb{R}^n$ be a basic solution, then:

- ► $B \cdot x_B = b$ and thus $x_B = B^{-1} \cdot b$;
- ▶ x is a basic feasible solution if and only if $x_B = B^{-1} \cdot b \ge 0$.

▶ A_1, A_3 or A_2, A_3 form bases with corresp. basic feasible solutions.

Observation 2.15.

Let $x \in \mathbb{R}^n$ be a basic solution, then:

- ▶ $B \cdot x_B = b$ and thus $x_B = B^{-1} \cdot b$;
- ▶ x is a basic feasible solution if and only if $x_B = B^{-1} \cdot b \ge 0$.

A₁, A₃ or A₂, A₃ form bases with corresp. basic feasible solutions.
A₁, A₄ do not form a basis.

Observation 2.15.

Let $x \in \mathbb{R}^n$ be a basic solution, then:

- ▶ $B \cdot x_B = b$ and thus $x_B = B^{-1} \cdot b$;
- ▶ x is a basic feasible solution if and only if $x_B = B^{-1} \cdot b \ge 0$.

▶ A_1, A_3 or A_2, A_3 form bases with corresp. basic feasible solutions.

 \triangleright A_1, A_4 do not form a basis.

 \triangleright A_1, A_2 and A_2, A_4 and A_3, A_4 form bases with infeasible basic solution.

Corollary 2.16.

• Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.

Corollary 2.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- ▶ Thus, different basic solutions correspond to different bases.

Corollary 2.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- ▶ Thus, different basic solutions correspond to different bases.
- **But**: two different bases might yield the same basic solution.

Corollary 2.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- ▶ Thus, different basic solutions correspond to different bases.
- But: two different bases might yield the same basic solution.

Example: If b = 0, then x = 0 is the only basic solution.

Adjacent Bases

Definition 2.17.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B'(1)}, \ldots, A_{B'(m)}$ are adjacent if they share all but one column.

Adjacent Bases

Definition 2.17.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B'(1)}, \ldots, A_{B'(m)}$ are adjacent if they share all but one column.

Observation 2.18.

a Two adjacent basic solutions can always be obtained from two adjacent bases.

Adjacent Bases

Definition 2.17.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B'(1)}, \ldots, A_{B'(m)}$ are adjacent if they share all but one column.

Observation 2.18.

- a Two adjacent basic solutions can always be obtained from two adjacent bases.
- **b** If two adjacent bases lead to distinct basic solutions, then the latter are adjacent.

Degeneracy

Definition 2.19.

A basic solution x of a polyhedron P is degenerate if more than n constraints are active at x.

Degeneracy

Definition 2.19.

A basic solution x of a polyhedron P is degenerate if more than n constraints are active at x.

Observation 2.20.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$ be a polyhedron in standard form with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

- a A basic solution $x \in P$ is degenerate if and only if more than n m components of x are zero.
- **b** For a non-degenerate basic solution $x \in P$, there is a unique basis.

i	redundant variables Example:	X1	+	Xa		= 1		,		、
			I	X1 X2	X3	= 0 > 0	\longleftrightarrow	$A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	1 0	$\begin{pmatrix} 0\\1 \end{pmatrix}$
ii	redundant constraint	S		~1, ~2,	^3	<u>~</u> 0				
	Example:			<i>x</i> ₁	+	2 x ₂	\leq 3			
				2 <i>x</i> ₁	+	<i>x</i> ₂	\leq 3			
				<i>x</i> ₁	+	<i>x</i> ₂	≤ 2			
					Х	x_1, x_2	\geq 0			

i	redundant variables Example:	<i>x</i> ₁	+	<i>x</i> ₂	X3	= 1 = 0	\longleftrightarrow	$A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
ii	redundant constraint	s		<i>x</i> ₁ , <i>x</i> ₂ ,	<i>x</i> 3	\geq 0		(0	U	1/
	Example:			x ₁ 2 x ₁	++	2 x ₂ x ₂	≤ 3 ≤ 3			
				<i>x</i> ₁	+ x	<mark>x2</mark> x1, x2	≤ 2 ≥ 0			

geometric reasons Example: Octahedron

i	redundant variables Example:	¥.		Ya		— 1				
	Example.	~1	Т	~2 X1 X2	X3	- 1 = 0 > 0	\longleftrightarrow	$A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	1 0	$\begin{pmatrix} 0\\1 \end{pmatrix}$
ii	redundant constraint	S		×1, ×2,	~3	<u> </u>				
	Example:			<i>X</i> 1 2 <i>x</i> 1	+	2 x ₂	≤ 3 < 3			
				x_1	+	x ₂	≤ 3 ≤ 2			
					X	x_1, x_2	\geq 0			

geometric reasons Example: Octahedron

Observation 2.21.

Perturbing the right hand side vector b may remove degeneracy.