Example: Basis 3 those were swapped.

$$
\begin{aligned}
& B=\left(\begin{array}{llll|llll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
3 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) I-I \text { - III } \\
& \left(\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & -1 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
3 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \text { IV - SI - III } \\
& \left(\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & -1 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -3 & 3 & 2 & 1
\end{array}\right) \\
& B^{-1}
\end{aligned}
$$

$$
B^{-1} \cdot b=\left(\begin{array}{cccc}
1 & -1 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
2 \\
3 \\
6
\end{array}\right)=\left(\begin{array}{c}
-1 \\
2 \\
3 \\
6
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

Basic Columns and Basic Solutions

Observation 2.15.

Let $x \in \mathbb{R}^{n}$ be a basic solution, then:

- $B \cdot x_{B}=b$ and thus $x_{B}=B^{-1} \cdot b$;
- x is a basic feasible solution if and only if $x_{B}=B^{-1} \cdot b \geq 0$.

Basic Columns and Basic Solutions

Observation 2.15.

Let $x \in \mathbb{R}^{n}$ be a basic solution, then:

- $B \cdot x_{B}=b$ and thus $x_{B}=B^{-1} \cdot b$;
- x is a basic feasible solution if and only if $x_{B}=B^{-1} \cdot b \geq 0$.

Example: $m=2$

Basic Columns and Basic Solutions

Observation 2.15.

Let $x \in \mathbb{R}^{n}$ be a basic solution, then:

- $B \cdot x_{B}=b$ and thus $x_{B}=B^{-1} \cdot b$;
- x is a basic feasible solution if and only if $x_{B}=B^{-1} \cdot b \geq 0$.

Example: $m=2$

- A_{1}, A_{3} or A_{2}, A_{3} form bases with corresp. basic feasible solutions.

Basic Columns and Basic Solutions

Observation 2.15.

Let $x \in \mathbb{R}^{n}$ be a basic solution, then:

- $B \cdot x_{B}=b$ and thus $x_{B}=B^{-1} \cdot b$;
- x is a basic feasible solution if and only if $x_{B}=B^{-1} \cdot b \geq 0$.

Example: $m=2$

- A_{1}, A_{3} or A_{2}, A_{3} form bases with corresp. basic feasible solutions.
- A_{1}, A_{4} do not form a basis.

Basic Columns and Basic Solutions

Observation 2.15.

Let $x \in \mathbb{R}^{n}$ be a basic solution, then:

- $B \cdot x_{B}=b$ and thus $x_{B}=B^{-1} \cdot b$;
- x is a basic feasible solution if and only if $x_{B}=B^{-1} \cdot b \geq 0$.

Example: $m=2$

- A_{1}, A_{3} or A_{2}, A_{3} form bases with corresp. basic feasible solutions.
- A_{1}, A_{4} do not form a basis.
- A_{1}, A_{2} and A_{2}, A_{4} and A_{3}, A_{4} form bases with infeasible basic solution.

Bases and Basic Solutions

Corollary 2.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.

Bases and Basic Solutions

Corollary 2.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- Thus, different basic solutions correspond to different bases.

Bases and Basic Solutions

Corollary 2.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- Thus, different basic solutions correspond to different bases.
- But: two different bases might yield the same basic solution.

Bases and Basic Solutions

Corollary 2.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- Thus, different basic solutions correspond to different bases.
- But: two different bases might yield the same basic solution.

Example: If $b=0$, then $x=0$ is the only basic solution.

Adjacent Bases

Definition 2.17.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B^{\prime}(1)}, \ldots, A_{B^{\prime}(m)}$ are adjacent if they share all but one column.

Adjacent Bases

Definition 2.17 .
Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B^{\prime}(1)}, \ldots, A_{B^{\prime}(m)}$ are adjacent if they share all but one column.

Observation 2.18.
a Two adjacent basic solutions can always be obtained from two adjacent bases.

Adjacent Bases

Definition 2.17.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B^{\prime}(1)}, \ldots, A_{B^{\prime}(m)}$ are adjacent if they share all but one column.

Observation 2.18.

a Two adjacent basic solutions can always be obtained from two adjacent bases.
b If two adjacent bases lead to distinct basic solutions, then the latter are adjacent.

Degeneracy

Definition 2.19.

A basic solution x of a polyhedron P is degenerate if more than n constraints are active at x.

Degeneracy

Definition 2.19.

A basic solution x of a polyhedron P is degenerate if more than n constraints are active at x.

Observation 2.20.

Let $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$ be a polyhedron in standard form with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
a A basic solution $x \in P$ is degenerate if and only if more than $n-m$ components of x are zero.
b For a non-degenerate basic solution $x \in P$, there is a unique basis.

Three Different Reasons for Degeneracy
i redundant variables
Example: $\begin{aligned} x_{1}+x_{2} & =1 \\ x_{3} & =0 \\ x_{1}, x_{2}, x_{3} & \geq 0\end{aligned} \quad \longleftrightarrow A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Three Different Reasons for Degeneracy
redundant variables
Example:

$$
\begin{aligned}
x_{1}+x_{2} & =1 \\
x_{3} & =0 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned} \quad \longleftrightarrow A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

redundant constraints
Example:

$$
\left.\begin{array}{l}
\qquad \left.\begin{array}{rl}
x_{1}+2 x_{2} & \leq 3 \\
2 x_{1}+x_{2} & \leq 3
\end{array} \right\rvert\, \Rightarrow 3 x_{1}+3 x_{2} \leq 6 \\
\text { redund and, } \\
\text { implied by } \\
\text { of } x_{1} \leq 2 \leq 0
\end{array}\right)
$$

Three Different Reasons for Degeneracy

i redundant variables

$$
\text { Example: } \begin{aligned}
x_{1}+x_{2} & =1 \\
x_{3} & =0 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned} \quad \longleftrightarrow A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

iii redundant constraints Example:

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 3 \\
2 x_{1}+x_{2} & \leq 3 \\
x_{1}+x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Three Different Reasons for Degeneracy

i redundant variables
Example: $\begin{aligned} x_{1}+x_{2} & =1 \\ x_{3} & =0 \\ x_{1}, x_{2}, x_{3} & \geq 0\end{aligned} \quad \longleftrightarrow A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
iii redundant constraints Example:

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 3 \\
2 x_{1}+x_{2} & \leq 3 \\
x_{1}+x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

困 geometric reasons
Example: Octahedron

Three Different Reasons for Degeneracy

i redundant variables

$$
\text { Example: } \begin{aligned}
x_{1}+x_{2} & =1 \\
x_{3} & =0 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned} \quad \longleftrightarrow A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

iii redundant constraints Example:

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 3 \\
2 x_{1}+x_{2} & \leq 3 \\
x_{1}+x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

困 geometric reasons
Example: Octahedron

Observation 2.21.

Perturbing the right hand side vector b may remove degeneracy.

