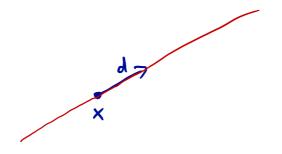
Definition 2.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

 $x + \lambda \cdot d \in P$ for all $\lambda \in \mathbb{R}$.



Definition 2.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

 $x + \lambda \cdot d \in P$ for all $\lambda \in \mathbb{R}$.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

Definition 2.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

 $x + \lambda \cdot d \in P$ for all $\lambda \in \mathbb{R}$.

Theorem 2.23.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

There exists an extreme point $x \in P$.

Definition 2.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

 $x + \lambda \cdot d \in P$ for all $\lambda \in \mathbb{R}$.

Theorem 2.23.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

There exists an extreme point $x \in P$.

ii P does not contain a line.

Definition 2.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

 $x + \lambda \cdot d \in P$ for all $\lambda \in \mathbb{R}$.

Theorem 2.23.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

i There exists an extreme point $x \in P$.

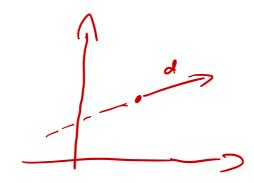
ii P does not contain a line.

A contains *n* linearly independent rows.

Corollary 2.24. >= bounded poly headron

A non-empty polytope contains an extreme point.

b A non-empty polyhedron in standard form contains an extreme point.



Corollary 2.24.

a A non-empty polytope contains an extreme point.

b A non-empty polyhedron in standard form contains an extreme point.

Proof of b:

$$\begin{array}{ccc} A \cdot x &= b \\ x &\geq 0 \end{array} & \longleftrightarrow & \begin{pmatrix} A \\ -A \\ I \end{pmatrix} \cdot x \geq \begin{pmatrix} b \\ -b \\ 0 \end{pmatrix}$$

Corollary 2.24.

a A non-empty polytope contains an extreme point.

b A non-empty polyhedron in standard form contains an extreme point.

Proof of b:

$$\begin{array}{ccc} A \cdot x &= b \\ x &\geq 0 \end{array} & \longleftrightarrow & \begin{pmatrix} A \\ -A \\ I \end{pmatrix} \cdot x \geq \begin{pmatrix} b \\ -b \\ 0 \end{pmatrix}$$

Example:

$$P = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{array}{ccc} x_1 & + & x_2 & \ge 1 \\ x_1 & + & 2x_2 & \ge 0 \end{array} \right\}$$

Corollary 2.24.

a A non-empty polytope contains an extreme point.

b A non-empty polyhedron in standard form contains an extreme point.

Proof of b:

$$\begin{array}{ccc} A \cdot x &= b \\ x &\geq 0 \end{array} & \longleftrightarrow & \begin{pmatrix} A \\ -A \\ I \end{pmatrix} \cdot x \geq \begin{pmatrix} b \\ -b \\ 0 \end{pmatrix}$$

Example:

$$P = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{array}{c} x_1 & + & x_2 & \ge 1 \\ x_1 & + & 2 x_2 & \ge 0 \end{array} \right\}$$
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in P \quad \text{for all } \lambda \in \mathbb{R}.$$

contains a line since

Optimality of Extreme Points

Theorem 2.25.

Let $P \subseteq \mathbb{R}^n$ a polyhedron and $c \in \mathbb{R}^n$. If P has an extreme point and $\min\{c^T \cdot x \mid x \in P\}$ is bounded, there is an extreme point that is optimal.

Optimality of Extreme Points

Theorem 2.25.

Let $P \subseteq \mathbb{R}^n$ a polyhedron and $c \in \mathbb{R}^n$. If P has an extreme point and $\min\{c^T \cdot x \mid x \in P\}$ is bounded, there is an extreme point that is optimal.

Corollary 2.26.

Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Optimality of Extreme Points

Theorem 2.25.

Let $P \subseteq \mathbb{R}^n$ a polyhedron and $c \in \mathbb{R}^n$. If P has an extreme point and $\min\{c^T \cdot x \mid x \in P\}$ is bounded, there is an extreme point that is optimal.

Corollary 2.26.

Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Proof: Every linear program is equivalent to an LP in standard form. The claim thus follows from Corollary 2.24 and Theorem 2.25.

Suppose it is not. \Rightarrow \exists $y_1 \neq e^P$, $y \neq x^*$, $\neq \neq x^*$ st. $\lambda \gamma + (1 - \lambda) = = x^*$ for some $\lambda \in [0, j]$ It follows that $v = c^T x^* = \lambda c^T y + (1-\lambda) c^T z$ By optimality of x *: $c^{T}y \ge c^{T}x^{*}$ and $c^{T}z \ge c^{T}x^{*}$ $=) c^{T} y = c^{T} z = c^{T} x^{*} = v$ => z, y ∈ Q -> contraticting to x* being on extrem point of Q. => x* is an extreme point of P. **1** 74 - 2

COMP331/557

Chapter 3: The Simplex Method

(Bertsimas & Tsitsiklis, Chapter 3)

Linear Program in Standard Form

Throughout this chapter, we consider the following standard form problem:

minimize
$$c^T \cdot x$$

subject to $A \cdot x = b$
 $x \ge 0$
with $A \in \mathbb{R}^{m \times n}$, rank $(A) = m$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

Linear Program in Standard Form

Throughout this chapter, we consider the following standard form problem:

minimize
$$c^T \cdot x$$

subject to $A \cdot x = b$
 $x \ge 0$
with $A \in \mathbb{R}^{m \times n}$, rank $(A) = m, b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

Recall:

Let B = (A_{B(1)},..., A_{B(m)}) be a basis matrix of A. Then B corresponds to the basic solution x = (x_B, x_N)^T, where x_B = B⁻¹b and x_N = 0.
x = (x_B, x_N)^T is a basic feasible solution if x_B ≥ 0.

Main Idea of the Simplex Method

Idea

Change basis by exchanging one basic column with one non-basic column.

More precisely:

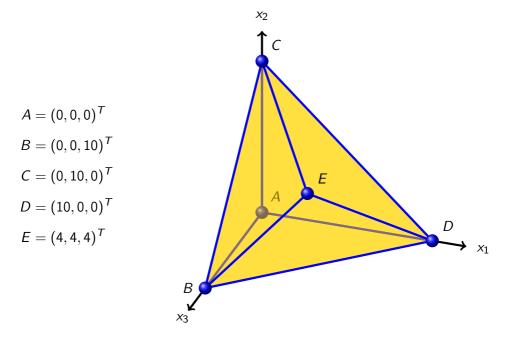
- Start with a basis *B* defining a system with basic feasible solution.
- ▶ Then proceed in iterations. In each iteration:
 - select a nonbasic column j such that bringing j into the basis decreases (or at least does not increase) the value of the objective function. Stop, if no such column exists.
 - ▶ select a basic column ℓ such that exchanging columns j and ℓ maintain a basis with associated basic feasible solution
 - update the corresponding system

Iterations are called pivot steps.

Full Tableau Implementation: An Example

A simple linear programming problem:

Set of Feasible Solutions



Introducing Slack Variables

Introducing Slack Variables

LP in standard form								
min $-10 x_1$	$-12 x_2$	_	12 x ₃					
s.t. <i>x</i> 1	+ $2x_2$	+	2 x ₃	+ x ₄			=	20
2 <i>x</i> ₁	$+ x_2$	+	2 x ₃		+ x	5	=	20
2 <i>x</i> ₁	+ $2 x_2$	+	<i>x</i> 3			+ x ₆	=	20
					;	x_1,\ldots,x_6	\geq	0

Introducing Slack Variables

LP in standard form					
min $-10 x_1$	$-12 x_2$	$-12 x_3$			
s.t. <i>x</i> ₁	$+ 2x_2$	$+ 2x_3$	+ x ₄	=	20
2 x ₁	+ <i>x</i> ₂	$+ 2x_3$	$+ x_5$	=	20
2 x ₁	$+ 2x_2$	+ x ₃	$+ x_{6}$	=	20
			x_1,\ldots,x_6	\geq	0

Observation

The right hand side of the system is non-negative. Therefore the point $(0, 0, 0, 20, 20, 20)^T$ is a basic feasible solution and we can start the simplex method with basis B(1) = 4, B(2) = 5, B(3) = 6.

Setting Up the Simplex Tableau

with basic feasible solution: $\underbrace{x_1 = x_2 = x_3 = 0}_{\text{non-basic variables}}, \underbrace{x_4 = 20, x_5 = 20, x_6 = 20}_{\text{basic variables}}.$

Setting Up the Simplex Tableau

with basic feasible solution: $x_1 = x_2 = x_3 = 0$, $x_4 = 20, x_5 = 20, x_6 = 20$. non-basic variables

basic variables

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆
	0	-10	-12	-12	0	0	0
$x_4 =$	20	1	2	2	1	0	0
$x_{5} =$	20	2	1	2	0	1	0
<i>x</i> ₆ =	20	2	2	1	0	0	1

Setting Up the Simplex Tableau

with basic feasible solution: $x_1 = x_2 = x_3 = 0$, $x_4 = 20, x_5 = 20, x_6 = 20$.

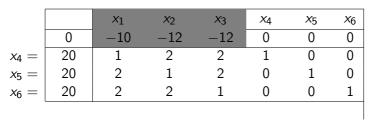
non-basic variables

basic variables

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6
	0	-10	-12	-12	0	0	0
$x_4 =$	20	1	2	2	1	0	0
$x_{5} =$	20	2	1	2	0	1	0
$x_{6} =$	20	2	2	1	0	0	1

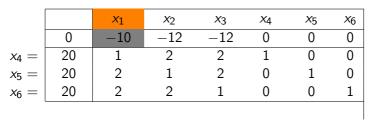
Remark: Initialisation not always that easy. See next week.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6
	0	-10	-12	-12	0	0	0
<i>x</i> ₄ =	20	1	2	2	1	0	0
<i>x</i> ₅ =	20	2	1	2	0	1	0
<i>x</i> ₆ =	20	2	2	1	0	0	1

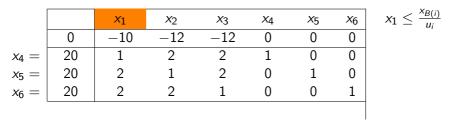


Determine pivot column

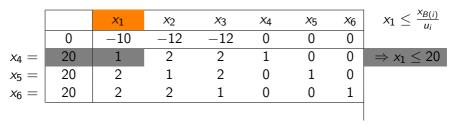
Which non-basic variable can we increase to improve objective value?



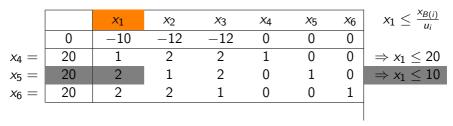
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.



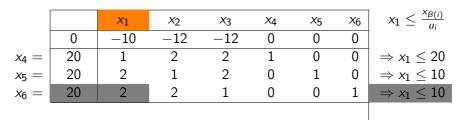
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?



- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?



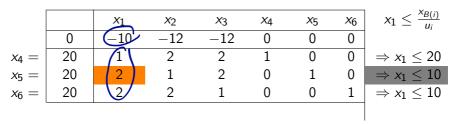
- Which non-basic variable can we increase to improve objective value?
- ▶ E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?



- Which non-basic variable can we increase to improve objective value?
- ▶ E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?

		<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	$x_1 \leq \frac{x_{B(i)}}{u_i}$
	0	-10	-12	-12	0	0	0	
<i>x</i> ₄ =	20	1	2	2	1	0	0	$\Rightarrow x_1 \leq 20$
$x_5 =$	20	2	1	2	0	1	0	$\Rightarrow x_1 \leq 10$
$x_{6} =$	20	2	2	1	0	0	1	$\Rightarrow x_1 \leq 10$

- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?
 - Rows 2 and 3 both attain the minimum.

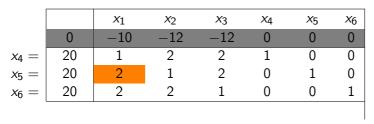


Determine pivot column

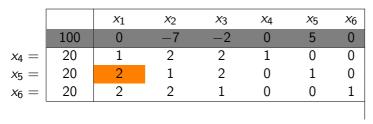
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.

Find pivot row. How large can we make x₁ and stay feasible?

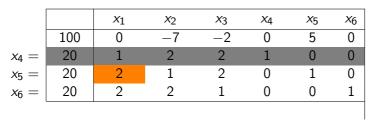
- Rows 2 and 3 both attain the minimum.
- Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.



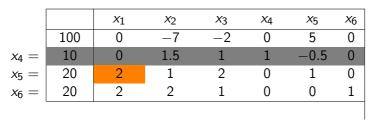
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?
 - Rows 2 and 3 both attain the minimum.
 - Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.



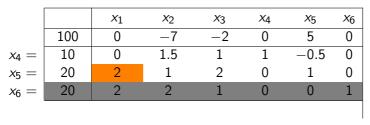
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?
 - Rows 2 and 3 both attain the minimum.
 - Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.



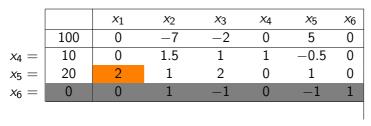
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?
 - Rows 2 and 3 both attain the minimum.
 - Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.



- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?
 - Rows 2 and 3 both attain the minimum.
 - Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.



- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.
- Find pivot row. How large can we make x₁ and stay feasible?
 - Rows 2 and 3 both attain the minimum.
 - Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.



Determine pivot column

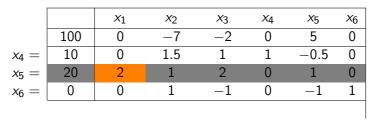
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.

Find pivot row. How large can we make x₁ and stay feasible?

Rows 2 and 3 both attain the minimum.

• Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.



Determine pivot column

- Which non-basic variable can we increase to improve objective value?
- E. g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.

Find pivot row. How large can we make x₁ and stay feasible?

Rows 2 and 3 both attain the minimum.

• Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5	x ₆
	100	0	-7	-2	0	5	0
<i>x</i> ₄ =	10	0	1.5	1	1	-0.5	0
$x_1 =$	10	1	0.5	1	0	0.5	0
<i>x</i> ₆ =	0	0	1	-1	0	-1	1

Determine pivot column

- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.

Find pivot row. How large can we make x₁ and stay feasible?

Rows 2 and 3 both attain the minimum.

• Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	x ₆
	100	0	-7	-2	0	5	0
$x_4 =$	10	0	1.5	1	1	-0.5	0
$x_1 =$	10	1	0.5	1	0	0.5	0
<i>x</i> ₆ =	0	0	1	-1	0	-1	1

Determine pivot column

- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\bar{c}_1 < 0$ and x_1 enters the basis.

Find pivot row. How large can we make x₁ and stay feasible?

Rows 2 and 3 both attain the minimum.

• Choose i = 2 with B(i) = 5. $\implies x_5$ leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

• Obtain new basic feasible solution $(10, 0, 0, 10, 0, 0)^T$ with cost -100.