Existence of Extreme Points

Definition 2.22.

A polyhedron P C R" contains a line if there is x € P and a direction d € R"\ {0}
such that

X+A-deP for all A € R.
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Let P={x€R"|A-x> b} # 0 with A€ R™ " and b € R™. The following are
equivalent:
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A polyhedron P C R" contains a line if there is x € P and a direction d € R"\ {0}
such that

X+A-deP for all A € R.

Theorem 2.23.

Let P={x€R"|A-x> b} # 0 with A€ R™ " and b € R™. The following are
equivalent:

H There exists an extreme point x € P.
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Existence of Extreme Points

Definition 2.22.

A polyhedron P C R" contains a line if there is x € P and a direction d € R"\ {0}
such that

X+A-deP for all A € R.

Theorem 2.23.
Let P={x€R"|A-x> b} # 0 with A€ R™ " and b € R™. The following are
equivalent:

H There exists an extreme point x € P.

H P does not contain a line.
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Existence of Extreme Points

Definition 2.22.

A polyhedron P C R" contains a line if there is x € P and a direction d € R"\ {0}
such that

X+A-deP for all A € R.

Theorem 2.23.
Let P={x€R"|A-x> b} # 0 with A€ R™ " and b € R™. The following are
equivalent:

H There exists an extreme point x € P.

H P does not contain a line.

H A contains n linearly independent rows.
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Existence of Extreme Points (cont.)

Corollary 2.24. > = bownded| P°(7 heokv gan

B A non-empty polytope contains an extreme point.

B A non-empty polyhedron in standard form contains an extreme point.
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Existence of Extreme Points (cont.)

Corollary 2.24.

B A non-empty polytope contains an extreme point.

B A non-empty polyhedron in standard form contains an extreme point.

Proof of b:
A b
A-x b
0 — —Al - x>1|-b
- / 0

O
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Existence of Extreme Points (cont.)
Corollary 2.24.

B A non-empty polytope contains an extreme point.

B A non-empty polyhedron in standard form contains an extreme point.

Proof of b:

A b
A-x b
0 — —Al - x>1|-b
- / 0
Example: X
P= X; cer3| 1 + e 21

O
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Existence of Extreme Points (cont.)

Corollary 2.24.

B A non-empty polytope contains an extreme point.

B A non-empty polyhedron in standard form contains an extreme point.

Proof of b:

A b
A-x b
N — —Al -x>1]-b
/ 0 0
Example: X
1
. 3 X1 + X2 2 1
P= x| €R x4+ 2xp >0
X3
1 0
contains a line since 1]+X-{0]) eP foraleR.

0 1
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Optimality of Extreme Points
Theorem 2.25.

Let P C R" a polyhedron and ¢ € R”. If P has an extreme point and
min{c” - x | x € P} is bounded, there is an extreme point that is optimal.
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Optimality of Extreme Points
Theorem 2.25.

Let P C R" a polyhedron and ¢ € R”. If P has an extreme point and
min{c” - x | x € P} is bounded, there is an extreme point that is optimal.

Corollary 2.26.

Every linear programming problem is either infeasible or unbounded or there exists an
optimal solution.
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Optimality of Extreme Points

Theorem 2.25.

Let P C R" a polyhedron and ¢ € R”. If P has an extreme point and
min{c” - x | x € P} is bounded, there is an extreme point that is optimal.

Corollary 2.26.

Every linear programming problem is either infeasible or unbounded or there exists an
optimal solution.

Proof: Every linear program is equivalent to an LP in standard form.
The claim thus follows from Corollary 2.24 and Theorem 2.25. O
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COMP331 /557

Chapter 3:
The Simplex Method

(Bertsimas & Tsitsiklis, Chapter 3)



Linear Program in Standard Form

Throughout this chapter, we consider the following standard form problem:

minimize ¢’ - x
subjectto A-x=0b
x>0

with A € R™*" rank(A) = m, b € R™, and c € R".
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Linear Program in Standard Form

Throughout this chapter, we consider the following standard form problem:

minimize ¢’ - x

subjectto A-x=0b
x>0

with A € R™*" rank(A) = m, b € R™, and c € R".

Recall:
> Let B = (Ag();---,AB(m)) be a basis matrix of A. Then B corresponds to the
basic solution x = (xg,xn) ", where xg = B~'b and xy = 0.

> x = (xg,xn)" is a basic feasible solution if xg > 0.
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Main Idea of the Simplex Method

Idea

Change basis by exchanging one basic column with one non-basic column. J

More precisely:

» Start with a basis B defining a system with basic feasible solution.
» Then proceed in iterations. In each iteration:

» select a nonbasic column j such that bringing j into the basis decreases (or at

least does not increase) the value of the objective function. Stop, if no such
column exists.

> select a basic column £ such that exchanging columns j and £ maintain a basis
with associated basic feasible solution

» update the corresponding system

Iterations are called pivot steps.
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Full Tableau Implementation: An Example

A simple linear programming problem:

min  —10x;
s.t. X1
2 X1
2X1

+ 4+

12 X2
2 X
X2

2 X2

— 12 X3
+ 2x3
+ 2 X3
SN X3

X1, X2, X3

IV IAIA A

20
20
20
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Set of Feasible Solutions
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Introducing Slack Variables

min  —10xg
s.t. X1
2X1
2 x1

+ + +

12 X2
2 X
X2

2 X

- 12 X3
+ 2x3
-+ 2 X3
+ X3

X1,X2,X3

AV VA VARVAN

20
20
20
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Introducing Slack Variables

min  —10xg

s.t. X1
2X1
2 x1
LP in standard form
min —10X1 — 12X2
s.t. x1 + 2x
2x1 + X2
2x1 + 2 xo

+ + +

+ o+ o+

12 X2
2 X
X2

2 X

12 x3
2 X3
2x3

X3

— 12X3

-+ 2X3

+
o
IV A IAIA

X1,X2,X3

+ Xxa

Xlgooo

20
20
20

» X6

vVl

20
20
20
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Introducing Slack Variables

min  —10xg

s.t. X1
2X1
2 x1
LP in standard form
min —].0X1 — 12X2
s.t. x1 + 2x
2x1 + X2
2x1 + 2x

+ + +

+ o+ o+

12 X2
2 X
X2

2 X

12 x3
2 X3
2x3

X3

_l’_

12 X3

2 x3
2 X3
X3

X1,X2,X3

X4

20
20
20

AV VA VARVAN

X5

X1y.-.5X6

AV

20
20
20

Observation

The right hand side of the system is non-negative. Therefore the point
(0,0,0,20,20,20)" is a basic feasible solution and we can start the simplex method
with basis B(1) = 4, B(2) =5, B(3) = 6.
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Setting Up the Simplex Tableau

min —10X1 —12X2 —12X3

s.t. X1 +2x0  +2x3 +xg = 20
2 X1 +X2 +2 X3 +Xs5 = 20

2x1  +2x +x3 +x6 = 20
X1y.-.,X6 > 0

with basic feasible solution: x; = xo = x3 = 0, x4 = 20, x5 = 20, xg = 20.

TV
non-basic variables basic variables
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Setting Up the Simplex Tableau

min —10X1 —12X2 —12X3

s.t. X1 +2 x +2x3 +xy4 = 20
2 X1 +X2 +2 X3 +Xs5 = 20

2x1  +2x +x3 +x6 = 20
X1y.-.,X6 > 0

with basic feasible solution: x; = xo = x3 = 0, x4 = 20, x5 = 20, xg = 20.

-

non-basic variables basic variables
X1 X2 X3 X4 X5 X6
0 —10 —-12 —-12 0 0 0
x4 =1 20 1 2 2 1 0 0
x5 = | 20 2 1 2 0 1 0
X6 = 20 2 2 1 0 0 1
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Setting Up the Simplex Tableau

min —10X1 —12X2 —12X3

s.t. X1 +2 x +2x3 +xy4 = 20
2 X1 +X2 +2 X3 +Xs5 = 20

2x1  +2x +x3 +x6 = 20
X1y.-.,X6 > 0

with basic feasible solution: x; = xo = x3 = 0, x4 = 20, x5 = 20, xg = 20.

non-basic variables basic variables
X1 X2 X3 X4 X5 X6
0 —10 —-12 —-12 0 0 0
x4 =1 20 1 2 2 1 0 0
x5 = | 20 2 1 2 0 1 0
X6 = 20 2 2 1 0 0 1

Remark: Initialisation not always that easy. See next week.
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Pivoting

X6

X5

X4

X3

X2

X1

—12 —12

—10
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Pivoting

X5 X6

0 0 0

X4 = 20 0 0
X5 = 20 1 0
x6=| 20 0 1

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
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Pivoting

X2 X3 X4 X5 X6

0 —12 —12 0 0 0

xg=| 20 1 2 2 1 0 0
x5 =| 20 2 1 2 0 1 0
x6 = | 20 2 2 1 0 0 1

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?

» E.g., smallest subscript rule: & < 0 and x; enters the basis.



Pivoting

X1 X2 X3 X4 X5 X6

0 —10 —12 —12 0 0 0

xg=| 20 1 2 2 1 0 0
x5 =| 20 2 1 2 0 1 0
x6 = | 20 2 2 1 0 0 1

» Determine pivot column

» Which non-basic variable can we increase to improve objective value?

» E.g., smallest subscript rule:

¢1 < 0 and x; enters the basis.

» Find pivot row. How large can we make x; and stay feasible?
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Pivoting

X2 X3 X4 X5 X6 x1 < %
0 —10 —12 —12 0 0 0
X 2210 |
X5 = 20 2 1 2 0 1 0
X6 = 20 2 2 1 0 0 1

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.

» Find pivot row. How large can we make x; and stay feasible?
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Pivoting

X2 X3 X4 X5 X6 x1 < %
0 —10 —12 —12

x4 =| 20 1 2 2
X5 = 1 2
x6 = | 20 2 2 1

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.

o o +lo
o~ olo
—~ o o|lo
X
A
)
S

» Find pivot row. How large can we make x; and stay feasible?
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Pivoting

X2 X3 X4 x5 X6 | Xx1< %
0 —10 —12 —12 0 0 0
X4 = 20 1 2 2 1 0 0] =x1<20
X5 = 20 2 1 2 0 1 0] =x3<10
o 2 10 o 1 |l

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.

» Find pivot row. How large can we make x; and stay feasible?
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Pivoting

0 —10 —-12 —12 0 0 0
xqg =1 20 1 2 2 1 0 0] =x<20
x5 =| 20 2 1 2 0 1 0
6= 20 | 2 2 1 0 0 1 -

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.

» Find pivot row. How large can we make x; and stay feasible?
» Rows 2 and 3 both attain the minimum.
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Pivoting

X1 X2 X3 X4 x5 X6 | Xx1< %
0 1 12 -12 0 0 0
xa=| 20 T 2 2 1 0 0] =x<20
x5 =| 20 1 2 0 1 o SE
x6=| 20 2 1 0 0 1| =x<10

» Determine pivot column

» Which non-basic variable can we increase to improve objective value?

» E.g., smallest subscript rule:

¢1 < 0 and x; enters the basis.

» Find pivot row. How large can we make x; and stay feasible?

» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.
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Pivoting

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.
» Find pivot row. How large can we make x; and stay feasible?
» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.
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Pivoting

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.
» Find pivot row. How large can we make x; and stay feasible?
» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.
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Pivoting

100 0 -7 -2 0 5 0

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.
» Find pivot row. How large can we make x; and stay feasible?
» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.
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Pivoting

100 0 -7 -2 0 5 0

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.
» Find pivot row. How large can we make x; and stay feasible?
» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.
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Pivoting

X1 X2 X3 X4 X5 X6

100 0 —7 -2 0 5 0

xg=| 10 0 1.5 1 1 -05 0

x5 =| 20 1 2 0 1 0
X6 —

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.
» Find pivot row. How large can we make x; and stay feasible?
» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.



Pivoting

X1 X2 X3 X4 X5 X6

100 0 —7 -2 0 5 0

xg=| 10 0 1.5 1 1 -05 0

x5 =| 20 1 2 0 1 0
X6 —

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.
» Find pivot row. How large can we make x; and stay feasible?
» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.



Pivoting

X1 X2 X3 X4 X5 X6
100 0 =7 -2 0 5 0
x4 =| 10 0 1.5 1 1 -05 0

X5 =
X = 0 0 1 -1 0 -1 1

» Determine pivot column

» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.

» Find pivot row. How large can we make x; and stay feasible?

» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.



Pivoting

X1 X2 X3 X4 X5 X6
100 0 =7 -2 0 5 0
x4 =| 10 0 1.5 1 1 -05 0

X1 =
Xp = 0 0 1 -1 0 -1 1

» Determine pivot column

» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.

» Find pivot row. How large can we make x; and stay feasible?

» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.



Pivoting

X1 X2 X3 X4 X5 X6

100 0 -7 -2 0 5 0

xg = | 10 0 1.5 1 1 -05 0
x1=| 10 1 0.5 1 0 0.5 0
Xp = 0 0 1 -1 0 -1 1

» Determine pivot column
» Which non-basic variable can we increase to improve objective value?
» E.g., smallest subscript rule: & < 0 and x; enters the basis.

» Find pivot row. How large can we make x; and stay feasible?

» Rows 2 and 3 both attain the minimum.
» Choose i =2 with B(i) =5. = x5 leaves the basis.

» Perform basis change: Eliminate other entries in the pivot column.

» Obtain new basic feasible solution (10,0,0,10,0,0)” with cost -100.

82



