Existence of Extreme Points

Definition 2.22.

A polyhedron $P \subseteq \mathbb{R}^{n}$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
x+\lambda \cdot d \in P \quad \text { for all } \lambda \in \mathbb{R} .
$$

Existence of Extreme Points

Definition 2.22.
A polyhedron $P \subseteq \mathbb{R}^{n}$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
x+\lambda \cdot d \in P \quad \text { for all } \lambda \in \mathbb{R} .
$$

Theorem 2.23.
Let $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:

Existence of Extreme Points

Definition 2.22.
A polyhedron $P \subseteq \mathbb{R}^{n}$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
x+\lambda \cdot d \in P \quad \text { for all } \lambda \in \mathbb{R} .
$$

Theorem 2.23.

Let $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
ii There exists an extreme point $x \in P$.

Existence of Extreme Points

Definition 2.22.
A polyhedron $P \subseteq \mathbb{R}^{n}$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
x+\lambda \cdot d \in P \quad \text { for all } \lambda \in \mathbb{R} .
$$

Theorem 2.23.

Let $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
ii There exists an extreme point $x \in P$.
目 P does not contain a line.

Existence of Extreme Points

Definition 2.22.
A polyhedron $P \subseteq \mathbb{R}^{n}$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
x+\lambda \cdot d \in P \quad \text { for all } \lambda \in \mathbb{R} .
$$

Theorem 2.23.

Let $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
ii There exists an extreme point $x \in P$.
团 P does not contain a line.
䧃 A contains n linearly independent rows.

Existence of Extreme Points (cont.)
Corollary 2.24 .
$P=$ bounded polyhedronA non-empty polytope contains an extreme point.A non-empty polyhedron in standard form contains an extreme point.

Existence of Extreme Points (cont.)

Corollary 2.24.

A non-empty polytope contains an extreme point.
b A non-empty polyhedron in standard form contains an extreme point.
Proof of b :

$$
\begin{aligned}
A \cdot x & =b \\
x & \geq 0
\end{aligned} \quad \longleftrightarrow \quad\left(\begin{array}{c}
A \\
-A \\
1
\end{array}\right) \cdot x \geq\left(\begin{array}{c}
b \\
-b \\
0
\end{array}\right)
$$

Existence of Extreme Points (cont.)

Corollary 2.24.

a A non-empty polytope contains an extreme point.
b A non-empty polyhedron in standard form contains an extreme point.
Proof of b :

$$
\begin{aligned}
A \cdot x & =b \\
x & \geq 0
\end{aligned} \quad \longleftrightarrow\left(\begin{array}{c}
A \\
-A \\
1
\end{array}\right) \cdot x \geq\left(\begin{array}{c}
b \\
-b \\
0
\end{array}\right)
$$

Example:

$$
\left.P=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\, \begin{array}{llr}
x_{1} & + & x_{2} \\
x_{1} & + & 2 x_{2}
\end{array}\right.\right\} 01\right\}
$$

Existence of Extreme Points (cont.)

Corollary 2.24.

a A non-empty polytope contains an extreme point.
b A non-empty polyhedron in standard form contains an extreme point.
Proof of b :

$$
\begin{aligned}
A \cdot x & =b \\
x & \geq 0
\end{aligned} \quad \longleftrightarrow \quad\left(\begin{array}{c}
A \\
-A \\
1
\end{array}\right) \cdot x \geq\left(\begin{array}{c}
b \\
-b \\
0
\end{array}\right)
$$

Example:

$$
\left.P=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\, \begin{array}{llr}
x_{1} & + & x_{2} \\
x_{1} & + & 2 x_{2}
\end{array}\right.\right\} 01\right\}
$$

contains a line since $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\lambda \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \in P \quad$ for all $\lambda \in \mathbb{R}$.

Optimality of Extreme Points

Theorem 2.25.

Let $P \subseteq \mathbb{R}^{n}$ a polyhedron and $c \in \mathbb{R}^{n}$. If P has an extreme point and $\min \left\{c^{T} \cdot x \mid x \in P\right\}$ is bounded, there is an extreme point that is optimal.

Optimality of Extreme Points

Theorem 2.25.

Let $P \subseteq \mathbb{R}^{n}$ a polyhedron and $c \in \mathbb{R}^{n}$. If P has an extreme point and $\min \left\{c^{T} \cdot x \mid x \in P\right\}$ is bounded, there is an extreme point that is optimal.

Corollary 2.26.

Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Optimality of Extreme Points

Theorem 2.25.

Let $P \subseteq \mathbb{R}^{n}$ a polyhedron and $c \in \mathbb{R}^{n}$. If P has an extreme point and $\min \left\{c^{T} \cdot x \mid x \in P\right\}$ is bounded, there is an extreme point that is optimal.

Corollary 2.26.

Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Proof: Every linear program is equivalent to an LP in standard form.
The claim thus follows from Corollary 2.24 and Theorem 2.25.

Proof of Thu 2.25:
Assume P is non-endty.
Let Q be set of optimal solutions.
Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$ and v be the value of the cost function $c^{\top} x$ in optimum.

$$
\Rightarrow Q=\left\{x \in \mathbb{R}^{n} \mid A x \neq b, c^{\top} x=v\right\}
$$

Since $Q \subseteq P$ and P contains no line
$\Rightarrow Q$ contains no line
$\Rightarrow Q$ has an extreme point.
Let x^{*} be an extreme point of Q.
We will show that x^{*} is also an extreme point of P.

Suppose it is not.

$$
\begin{aligned}
\Rightarrow \forall y, & \notin P, \quad y \neq x^{*}, z \neq x^{*} \text { st. } \\
\lambda y & +(1-\lambda) z=x^{*} \text { for some } \lambda \in[0,1]
\end{aligned}
$$

It follows that

$$
v=c^{\top} x^{*}=\lambda c^{\top} y+(1-\lambda) c^{\top} z
$$

By optimality of x^{*} :

$$
\begin{aligned}
& c^{\top} y \geqslant c^{\top} x^{*} \quad \text { and } c^{\top} z \geqslant c^{\top} x^{*} \\
& \Rightarrow c^{\top} y
\end{aligned}=c^{\top} z=c^{\top} x^{*}=v .
$$

$\Rightarrow z_{1} y \in Q \rightarrow$ contraticting to x^{*} being an extrem point of Q.
$\Rightarrow x^{*}$ is an extreme point of P.

COMP331/557

Chapter 3:

The Simplex Method
(Bertsimas \& Tsitsiklis, Chapter 3)

Linear Program in Standard Form

Throughout this chapter, we consider the following standard form problem:

```
    minimize \(c^{\top} \cdot x\)
    subject to \(A \cdot x=b\)
        \(x \geq 0\)
with \(A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m, b \in \mathbb{R}^{m}\), and \(c \in \mathbb{R}^{n}\).
```


Linear Program in Standard Form

Throughout this chapter, we consider the following standard form problem:

$$
\text { with } A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m, b \in \mathbb{R}^{m} \text {, and } c \in \mathbb{R}^{n} \text {. }
$$

Recall:

- Let $B=\left(A_{B(1)}, \ldots, A_{B(m)}\right)$ be a basis matrix of A. Then B corresponds to the basic solution $x=\left(x_{B}, x_{N}\right)^{T}$, where $x_{B}=B^{-1} b$ and $x_{N}=0$.
- $x=\left(x_{B}, x_{N}\right)^{T}$ is a basic feasible solution if $x_{B} \geq 0$.

Main Idea of the Simplex Method

Idea

Change basis by exchanging one basic column with one non-basic column.
More precisely:

- Start with a basis B defining a system with basic feasible solution.
- Then proceed in iterations. In each iteration:
- select a nonbasic column j such that bringing j into the basis decreases (or at least does not increase) the value of the objective function. Stop, if no such column exists.
- select a basic column ℓ such that exchanging columns j and ℓ maintain a basis with associated basic feasible solution
- update the corresponding system

Iterations are called pivot steps.

Full Tableau Implementation: An Example
A simple linear programming problem:

$$
\begin{array}{rrll}
\min & -10 x_{1} & -12 x_{2} & -12 x_{3} \\
\mathrm{s.t.} & x_{1} & +2 x_{2} & +2 x_{3} \leq 20 \\
& 2 x_{1} & +x_{2} & +2 x_{3} \leq 20 \\
& 2 x_{1} & +2 x_{2} & +x_{3} \leq 20 \\
& & x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Set of Feasible Solutions

$$
\begin{aligned}
& A=(0,0,0)^{T} \\
& B=(0,0,10)^{T} \\
& C=(0,10,0)^{T} \\
& D=(10,0,0)^{T} \\
& E=(4,4,4)^{T}
\end{aligned}
$$

Introducing Slack Variables

$$
\begin{array}{rrlll}
\min & -10 x_{1} & -12 x_{2} & -12 x_{3} \\
\text { s.t. } & x_{1} & +2 x_{2} & +2 x_{3} & \leq 20 \\
& 2 x_{1} & +x_{2} & +2 x_{3} & \leq 20 \\
& 2 x_{1} & +2 x_{2} & +x_{3} & \leq 20 \\
& & x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Introducing Slack Variables

$$
\begin{aligned}
& \min -10 x_{1}-12 x_{2}-12 x_{3} \\
& \text { s.t. } \quad x_{1}+2 x_{2}+2 x_{3} \leq 20 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 20 \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 20 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

LP in standard form

$$
\begin{array}{rlrlllllll}
\min & -10 x_{1} & - & 12 x_{2} & - & 12 x_{3} & & & & \\
\text { s.t. } & x_{1} & + & 2 x_{2} & + & 2 x_{3} & + & x_{4} & & \\
& 2 x_{1} & + & x_{2} & + & 2 x_{3} & & +x_{5} & & =20 \\
& 2 x_{1} & + & 2 x_{2} & + & x_{3} & & & \\
& & & & & x_{1}, \ldots, x_{6} & \geq 20 \\
& & & & &
\end{array}
$$

Introducing Slack Variables

$$
\begin{array}{rrll}
\min & -10 x_{1} & -12 x_{2} & -12 x_{3} \\
\text { s.t. } & x_{1} & +2 x_{2} & +2 x_{3} \leq 20 \\
& 2 x_{1} & +x_{2}+2 x_{3} \leq 20 \\
& 2 x_{1} & +2 x_{2}+r x_{3} \leq 20 \\
& & x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

LP in standard form

$$
\begin{array}{rrrrrlllll}
\min & -10 x_{1} & - & 12 x_{2} & - & 12 x_{3} & & & & \\
\text { s.t. } & x_{1} & + & 2 x_{2} & + & 2 x_{3} & + & x_{4} & & \\
& 2 x_{1} & + & x_{2} & + & 2 x_{3} & & +x_{5} & & =20 \\
& 2 x_{1} & + & 2 x_{2} & + & x_{3} & & & & \\
& & & & & x_{1}, \ldots, x_{6} & \geq 0
\end{array}
$$

Observation

The right hand side of the system is non-negative. Therefore the point $(0,0,0,20,20,20)^{T}$ is a basic feasible solution and we can start the simplex method with basis $B(1)=4, B(2)=5, B(3)=6$.

Setting Up the Simplex Tableau

$$
\begin{aligned}
& \min -10 x_{1}-12 x_{2}-12 x_{3} \\
& \text { s.t. } x_{1}+2 x_{2}+2 x_{3}+x_{4}=20 \\
& 2 x_{1}+x_{2}+2 x_{3}+x_{5}=20 \\
& 2 x_{1}+2 x_{2}+x_{3}+x_{6}=20 \\
& x_{1}, \ldots, x_{6} \geq 0
\end{aligned}
$$

with basic feasible solution: $\underbrace{x_{1}=x_{2}=x_{3}=0}_{\text {non-basic variables }}, \underbrace{x_{4}=20, x_{5}=20, x_{6}=20}_{\text {basic variables }}$.

Setting Up the Simplex Tableau

$$
\begin{aligned}
& \min -10 x_{1}-12 x_{2}-12 x_{3} \\
& \text { s.t. } \begin{array}{rrrrr}
x_{1} & +2 x_{2} & +2 x_{3} & +x_{4} & \\
2 x_{1} & +x_{2} & +2 x_{3} & & \\
2 x_{1} & +2 x_{2} & +x_{3} & & =20 \\
& & & x_{1}, \ldots, x_{6} & =20 \\
& & & \geq 0
\end{array}
\end{aligned}
$$

with basic feasible solution: $\underbrace{x_{1}=x_{2}=x_{3}=0}_{\text {non-basic variables }}, \underbrace{x_{4}=20, x_{5}=20, x_{6}=20}_{\text {basic variables }}$.

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
	0	-10	-12	-12	0	0	0
$x_{4}=$	20	1	2	2	1	0	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

Setting Up the Simplex Tableau

$$
\begin{array}{crrrll}
\min & -10 x_{1} & -12 x_{2} & -12 x_{3} & & \\
\text { s.t. } & x_{1} & +2 x_{2} & +2 x_{3} & +x_{4} & \\
& 2 x_{1} & +x_{2} & +2 x_{3} & & +x_{5} \\
& 2 x_{1} & +2 x_{2} & +x_{3} & & \\
& & & & x_{1}, \ldots, x_{6} & \geq 20 \\
& & & \geq 0
\end{array}
$$

with basic feasible solution: $\underbrace{x_{1}=x_{2}=x_{3}=0}_{\text {non-basic variables }}, \underbrace{x_{4}=20, x_{5}=20, x_{6}=20}_{\text {basic variables }}$.

		x_{1}	x_{2}	x_{3}	χ_{4}	${ }^{\prime} 5$	x_{6}
	0	-10	-12	-12	0	0	0
$x_{4}=$	20	1	2	2	1	0	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

Remark: Initialisation not always that easy. See next week.

Pivoting

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
	0	-10	-12	-12	0	0	0
$x_{4}=$	20	1	2	2	1	0	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

Pivoting

		x_{1}	x_{2}	\times_{3}	X_{4}	x_{5}	x_{6}
	0	-10	-12	-12	0	0	0
$x_{4}=$	20	1	2	2	1	0	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?

Pivoting

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}
	0	-10	-12	-12	0	0	0
$x_{4}=$	20	1	2	2	1	0	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.

Pivoting

		x_{1}	x_{2}	X3	X_{4}	\times_{5}	x_{6}	$x_{1} \leq \frac{x_{B(i)}}{u_{i}}$
	0	-10	-12	-12	0	0	0	
$x_{4}=$	20	1	2	2	1	0	0	
$x_{5}=$	20	2	1	2	0	1	0	
$x_{6}=$	20	2	2	1	0	0	1	

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?

Pivoting

		x_{1}	x_{2}	x_{3}	${ }^{4}$	\times_{5}	x_{6}	$x_{1} \leq \frac{x_{B(i)}}{u_{i}}$
	0	-10	-12	-12	0	0	0	
$x_{4}=$	20	1	2	2	1	0	0	$\Rightarrow x_{1} \leq 20$
$x_{5}=$	20	2	1	2	0	1	0	
$x_{6}=$	20	2	2	1	0	0	1	

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?

Pivoting

		x_{1}	x_{2}	x_{3}	χ_{4}	\times_{5}	x_{6}	$x_{1} \leq \frac{x_{B(i)}}{u_{i}}$
	0	-10	-12	-12	0	0	0	
$x_{4}=$	20	1	2	2	1	0	0	$\Rightarrow x_{1} \leq 20$
$x_{5}=$	20	2	1	2	0	1	0	$\Rightarrow x_{1} \leq 10$
$x_{6}=$	20	2	2	1	0	0	1	

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?

Pivoting

		x_{1}	\times_{2}	X3	X_{4}	χ_{5}	x_{6}	$x_{1} \leq \frac{x_{B(i)}}{u_{i}}$
	0	-10	-12	-12	0	0	0	
$x_{4}=$	20	1	2	2	1	0	0	$\Rightarrow x_{1} \leq 20$
$x_{5}=$	20	2	1	2	0	1	0	$\Rightarrow x_{1} \leq 10$
$x_{6}=$	20	2	2	1	0	0	1	$\Rightarrow x_{1} \leq 10$

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?

Pivoting

		x_{1}	X_{2}	x_{3}	${ }^{4}$	χ_{5}	x_{6}	$x_{1} \leq \frac{x_{B(i)}}{u_{i}}$
	0	-10	-12	-12	0	0	0	
$x_{4}=$	20	1	2	2	1	0	0	$\Rightarrow x_{1} \leq 20$
$x_{5}=$	20	2	1	2	0	1	0	$\Rightarrow x_{1} \leq 10$
$x_{6}=$	20	2	2	1	0	0	1	$\Rightarrow x_{1} \leq 10$

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.

Pivoting

		x_{1}	x_{2}	x_{3}	χ_{4}	\times_{5}	x_{6}	$x_{1} \leq \frac{x_{B(i)}}{u_{i}}$
	0	-10	-12	-12	0	0	0	
$x_{4}=$	20	1	2	2	1	0	0	$\Rightarrow x_{1} \leq 20$
$x_{5}=$	20	2	1	2	0	1	0	$\Rightarrow x_{1} \leq 10$
$x_{6}=$	20	(2)	2	1	0	0	1	$\Rightarrow x_{1} \leq 10$

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow \quad x_{5}$ leaves the basis.

Pivoting

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}
	0	-10	-12	-12	0	0	0
$x_{4}=$	20	1	2	2	1	0	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

Pivoting

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}
	100	0	-7	-2	0	5	0
$x_{4}=$	20	1	2	2	1	0	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

Pivoting

		x_{1}	x_{2}	χ_{3}	x_{4}	x_{5}	x_{6}
	100	0	-7	-2	0	5	0
$x_{4}=$	20	1	2	2	1	0	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

Pivoting

		x_{1}	x_{2}	χ_{3}	x_{4}	χ_{5}	x_{6}
	100	0	-7	-2	0	5	0
$x_{4}=$	10	0	1.5	1	1	-0.5	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

Pivoting

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
	100	0	-7	-2	0	5	0
$x_{4}=$	10	0	1.5	1	1	-0.5	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	20	2	2	1	0	0	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

Pivoting

		x_{1}	x_{2}	x_{3}	x_{4}	χ_{5}	x_{6}
	100	0	-7	-2	0	5	0
$x_{4}=$	10	0	1.5	1	1	-0.5	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	0	0	1	-1	0	-1	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

Pivoting

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}
	100	0	-7	-2	0	5	0
$x_{4}=$	10	0	1.5	1	1	-0.5	0
$x_{5}=$	20	2	1	2	0	1	0
$x_{6}=$	0	0	1	-1	0	-1	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

Pivoting

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}
	100	0	-7	-2	0	5	0
$x_{4}=$	10	0	1.5	1	1	-0.5	0
$x_{1}=$	10	1	0.5	1	0	0.5	0
$x_{6}=$	0	0	1	-1	0	-1	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

Pivoting

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}
	100	0	-7	-2	0	5	0
$x_{4}=$	10	0	1.5	1	1	-0.5	0
$x_{1}=$	10	1	0.5	1	0	0.5	0
$x_{6}=$	0	0	1	-1	0	-1	1

- Determine pivot column
- Which non-basic variable can we increase to improve objective value?
- E.g., smallest subscript rule: $\quad \bar{c}_{1}<0$ and x_{1} enters the basis.
- Find pivot row. How large can we make x_{1} and stay feasible?
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.
- Obtain new basic feasible solution $(10,0,0,10,0,0)^{T}$ with cost -100 .

