Next Iterations *x*₂ X_4 *X*5 -4 2 4 0 1.5 1 -0.5 $x_3 =$ 10 n -11 $x_1 =$ 1 -1 2.5 1 -1.50 $x_{6} =$

▶ $\bar{c}_2, \bar{c}_3 < 0 \implies$ two possible choices for pivot column.

- Choose x_3 to enter the new basis.
- $u_3 < 0 \implies$ third row cannot be chosen as pivot row.
- Choose x_4 to leave basis.
- New basic feasible solution (0, 0, 10, 0, 0, 10)^T with cost corresponding to point B in the original polyhedron.

 x_2 enters the basis, x_6 leaves it.

 x_2 enters the basis, x_6 leaves it. We get

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
	136	0	0	0	3.6	1.6	1.6
$x_3 =$	4	0	0		0.4	0.4	-0.6
$x_1 =$	4		0	0	-0.6	0.4	0.4
$x_2 =$	4	0	1	0	0.4	-0.6	0.4

and the reduced costs are all non-negative.

$$x_{3} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\ 120 & 0 & -4 & 0 & 2 & 4 & 0 \\ 10 & 0 & 1.5 & 1 & 1 & -0.5 & 0 \\ x_{1} = & 0 & 1 & -1 & 0 & -1 & 1 & 0 \\ x_{6} = & 10 & 0 & 2.5 & 0 & 1 & -1.5 & 1 \end{bmatrix}$$

 x_2 enters the basis, x_6 leaves it. We get

and the reduced costs are all non-negative.

Thus (4, 4, 4, 0, 0, 0) is an optimal solution with cost-136, corresponding to point E = (4, 4, 4) in the original polyhedron.

 x_2 enters the basis, x_6 leaves it. We get

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5	<i>x</i> 6
	136	0	0	0	3.6	1.6	1.6
$x_{3} =$	4	0	0	1	0.4	0.4	-0.6
$x_1 =$	4	1	0	0	-0.6	0.4	0.4
$x_2 =$	4	0	1	0	0.4	-0.6	0.4

and the reduced costs are all non-negative.

Thus (4, 4, 4, 0, 0, 0) is an optimal solution with cost -136, corresponding to point E = (4, 4, 4) in the original polyhedron. Why is this optimal?

Cycling

Problem: If an LP is degenerate, the simplex method might end up in an infinite loop (cycling).

Cycling

Problem: If an LP is degenerate, the simplex method might end up in an infinite loop (cycling).

Example:

$$x_{5} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\ 3 & -3/4 & 20 & -1/2 & 6 & 0 & 0 & 0 \\ 0 & 1/4 & -8 & -1 & 9 & 0 & 0 & 0 \\ x_{6} = & 0 & 1/2 & -12 & -1/2 & 3 & 0 & 0 \\ x_{7} = & 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Cycling

Problem: If an LP is degenerate, the simplex method might end up in an infinite loop (cycling).

Example:

Pivoting rules

- Column selection: let nonbasic variable with most negative reduced cost \(\bar{c}_j\) enter the basis, i. e., steepest descent rule.
- Row selection: among basic variables that are eligible to exit the basis, select the one with smallest subscript.

1

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 7
	3	-3/4	20	-1/2	6	0	0	0
$x_{5} =$	0	1/4	-8	-1	9	1	0	0
$x_{6} =$	0	1/2	-12	-1/2	3	0	1	0
<i>x</i> ₇ =	1	0	0	1	0	0	0	1

Bases visited

(5, 6, 7)

1

Bases visited

(5, 6, 7)

1

Bases visited

(5, 6, 7)

1

Basis change: x_1 enters the basis x_5 leaves.

1

Basis change: x_1 enters the basis x_5 leaves.

1

Basis change: x_1 enters the basis x_5 leaves.

1

Basis change: x_1 enters the basis x_5 leaves.

1

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 7
	3	0	-4	-7/2	33	3	0	0
$x_{5} =$	0	1/4	-8	-1	9	1	0	0
<i>x</i> ₆ =	0	0	4	3/2	-15	-2	1	0
<i>x</i> ₇ =	1	0	0	1	0	0	0	1

Basis change: x_1 enters the basis x_5 leaves.

1

Basis change: x_1 enters the basis x_5 leaves.

1

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7
	3	0	-4	-7/2	33	3	0	0
$x_{5} =$	0	1/4	-8	-1	9	1	0	0
$x_{6} =$	0	0	4	3/2	-15	-2	1	0
<i>x</i> ₇ =	1	0	0	1	0	0	0	1

Basis change: x_1 enters the basis x_5 leaves.

1

Basis change: x_1 enters the basis x_5 leaves.

Bases visited (5,6,7) \rightarrow (1,6,7)

92