Next Iterations

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose x_{3} to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose x_{4} to leave basis.

Geometric Interpretation in the Original Polyhedron

$$
\begin{aligned}
& A=(0,0,0)^{T} \\
& B=(0,0,10)^{T} \\
& C=(0,10,0)^{T} \\
& D=(10,0,0)^{T} \\
& E=(4,4,4)^{T}
\end{aligned}
$$

Geometric Interpretation in the Original Polyhedron

$$
\begin{aligned}
& A=(0,0,0)^{T} \\
& B=(0,0,10)^{T} \\
& C=(0,10,0)^{T} \\
& D=(10,0,0)^{T} \\
& E=(4,4,4)^{T}
\end{aligned}
$$

Geometric Interpretation in the Original Polyhedron

$$
\begin{aligned}
& A=(0,0,0)^{T} \\
& B=(0,0,10)^{T} \\
& C=(0,10,0)^{T} \\
& D=(10,0,0)^{T} \\
& E=(4,4,4)^{T}
\end{aligned}
$$

Geometric Interpretation in the Original Polyhedron

$$
\begin{aligned}
& A=(0,0,0)^{T} \\
& B=(0,0,10)^{T} \\
& C=(0,10,0)^{T} \\
& D=(10,0,0)^{T} \\
& E=(4,4,4)^{T}
\end{aligned}
$$

Next Iterations

Next Iterations

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 120 | 0 | -4 | 0 | 2 | 4 | 0 |
| $x_{3}=$10 | | | | | | |
| $x_{1}=$ | 0 | 1.5 | 1 | 1 | -0.5 | 0 |
| $x_{6}=$ | 1 | -1 | 0 | -1 | 1 | 0 |
| 10 | 0 | 2.5 | 0 | 1 | -1.5 | 1 |

Next Iterations

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{3}=$120 0 -4 0 2 4 0
 $x_{1}=$ $\frac{x_{B(i)}}{u_{i}}$
 $x_{6}=$ 0 1.5 1 1 -0.5 0
 1 -1 0 -1 1 0
 10 0 2.5 0 1 -1.5 1 | 20
 4 | | | | | |

Next Iterations

			x_{2}	x_{3}	${ }^{4}$	x_{5}	x_{6}	$\frac{x_{B(i)}}{u_{i}}$	
	120	0	-4	0	2	4	0		
$x_{3}=$	10	0	1.5	1	1	-0.5	0	$\frac{20}{3}$	
$x_{1}=$	0	1	-1	0	-1	1	0	-	
$x_{6}=$	10	0	2.5	0	1	-1.5	1	4	$<\frac{20}{3}$

Next Iterations

		x_{1}	x_{2}	χ_{3}	x_{4}	x_{5}	x_{6}
	120	0	-4	0	2	4	0
$x_{3}=$	10	0	1.5	1	1	-0.5	0
$x_{1}=$	0	1	-1	0	-1	1	0
$x_{6}=$	10	0	2.5	0	1	-1.5	1

x_{2} enters the basis, x_{6} leaves it.

Next Iterations

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
$x_{3}=$120 0 -4 0 2 4 10 0 1.5 1 1 -0.5 $x_{1}=$ $x_{6}=$ 1 -1 0 -1 1 10 0 2.5 0 1 -1.5 1						

x_{2} enters the basis, x_{6} leaves it. We get

\quad
x_{1}
:---:
$x_{3}=$
$x_{1}=$
$x_{2}=$
4
4

Next Iterations

x_{2} enters the bysis, x_{6} leaves it. We get

		x_{1}	x_{2}	x_{3}	x_{4}	χ_{5}	x_{6}
	136	0	0	0	3.6	1.6	1.6
$x_{3}=$	4	0	0	1	0.4	0.4	-0.6
$x_{1}=$	4	1	0	0	-0.6	0.4	0.4
$x_{2}=$	4	0	1	0	0.4	-0.6	0.4

and the reduced costs are all non-negative.

Next Iterations

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
120	0	-4	0	2	4	0
$x_{3}=$10 0 1.5 1 1 -0.5 $x_{1}=$ 0 1 -1 0 -1 1 0 $x_{6}=$ 0 2.5 0 1 -1.5						

x_{2} enters the basis, x_{6} leaves it. We get

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
$x_{3}=$	4	0	0	1	0.4	0.4
$x_{1}=$	0	0	0	3.6	1.6	1.6
$x_{2}=0$	1	0	0	-0.6	0.4	0.4
4	0	1	0	0.4	-0.6	0.4

and the reduced costs are all non-negative.
Thus ($4,4,4,0,0,0$) is an optimal solution with cos -136.) corresponding to point $E=(4,4,4)$ in the original polyhedron.

Next Iterations

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
120	0	-4	0	2	4	0
	$x_{3}=$					
$x_{1}=$	0	1.5	1	1	-0.5	0
$x_{6}=$	1	-1	0	-1	1	0
10	0	2.5	0	1	-1.5	1

x_{2} enters the basis, x_{6} leaves it. We get

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
136	0	0	0	3.6	1.6	1.6
$x_{3}=$						
$x_{1}=$						
$x_{2}=$	0	0	1	0.4	0.4	-0.6
4	1	0	0	-0.6	0.4	0.4
4	0	1	0	0.4	-0.6	0.4

and the reduced costs are all non-negative.
Thus ($4,4,4,0,0,0$) is an optimal solution with cost -136 , corresponding to point $E=(4,4,4)$ in the original polyhedron. Why is this optimal?

All Iterations from Geometric Point of View

All Iterations from Geometric Point of View

$$
\begin{aligned}
& A=(0,0,0)^{T} \\
& B=(0,0,10)^{T} \\
& C=(0,10,0)^{T} \\
& D=(10,0,0)^{T} \\
& E=(4,4,4)^{T}
\end{aligned}
$$

All Iterations from Geometric Point of View

$$
\begin{aligned}
& A=(0,0,0)^{T} \\
& B=(0,0,10)^{T} \\
& C=(0,10,0)^{T} \\
& D=(10,0,0)^{T} \\
& E=(4,4,4)^{T}
\end{aligned}
$$

All Iterations from Geometric Point of View

$$
\begin{aligned}
& A=(0,0,0)^{T} \\
& B=(0,0,10)^{T} \\
& C=(0,10,0)^{T} \\
& D=(10,0,0)^{T} \\
& E=(4,4,4)^{T}
\end{aligned}
$$

Cycling

Problem: If an LP is degenerate, the simplex method might end up in an infinite loop (cycling).

Cycling

Problem: If an LP is degenerate, the simplex method might end up in an infinite loop (cycling).

Example:

		x_{1}	x_{2}	x_{3}		X5 $\times_{6} \times$
	3	-3/4	20	$-1 / 2$	6	0
$x_{5}=$	0	1/4	-8	-1	9	(1) 00
$x_{6}=$	0	1/2	-12	$-1 / 2$	3	0 (1) 0
$x_{7}=$	1	0	0	1	0	0 0 (1)

Cycling

Problem: If an LP is degenerate, the simplex method might end up in an infinite loop (cycling).

Example:

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	3	-3/4	20	-1/2	6	0	0	0
$x_{5}=$	0	1/4	-8	-1	9	1	0	0
$x_{6}=$	0	1/2	-12	$-1 / 2$	3	0	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Pivoting rules

- Column selection: let nonbasic variable with most negative reduced cost \bar{c}_{j} enter the basis, i. e., steepest descent rule.
- Row selection: among basic variables that are eligible to exit the basis, select the one with smallest subscript.

Iteration 1

		x_{1}	x_{2}	\times_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	3	-3/4	20	$-1 / 2$	6	0	0	0
$x_{5}=$	0	1/4	-8	-1	9	1	0	0
$x_{6}=$	0	1/2	-12	$-1 / 2$	3	0	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Bases visited

$(5,6,7)$

Iteration 1

		x_{1}	x_{2}	\times_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	3	-3/4	20	$-1 / 2$	6	0	0	0
$x_{5}=$	0	1/4	-8	-1	9	1	0	0
$x_{6}=$	0	1/2	-12	$-1 / 2$	3	0	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Bases visited

$(5,6,7)$

Iteration 1

		x_{1}	x_{2}	x_{3}	χ_{4}	\times_{5}	x_{6}	x_{7}	$\frac{x_{B(i)}}{u_{i}}$
	3	-3/4	20	$-1 / 2$	6	0	0	0	
$x_{5}=$	0	1/4	-8	-1	9	1	0	0	0
$x_{6}=$	0	1/2	-12	$-1 / 2$	3	0	1	0	0
$x_{7}=$	1	0	0	1	0	0	0	1	-

Bases visited

$(5,6,7)$

Iteration 1

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}	x_{7}	$\frac{x_{B(i)}}{u_{i}}$
	33	$-3 / 40$	20-4	-1/2-3.5	633	03	00	00	
$x_{5}=$	0	1/4	-8	-1	9	1	0	0	0
$x_{6}=$	0	1/2	-12	$-1 / 2$	3	0	1	0	0
$x_{7}=$	1	0	0	1	0	0	0	1	-

Basis change: x_{1} enters the basis x_{5} leaves.

Bases visited

$(5,6,7)$

Iteration 1

$x_{5}=$ x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{5} $-3 / 4$ 20 $-1 / 2$ 6 0 0 0 $x_{6}=$ $1 / 4$ -8 -1 9 1 0 0 $x_{7}=$ $1 / 2$ -12 $-1 / 2$ 3 0 1 0 0 1 0 0 1 0 0 0 1

Basis change: x_{1} enters the basis x_{5} leaves.

Bases visited
 $(5,6,7)$

Iteration 1

		x_{1}	x_{2}	x_{3}	${ }^{4}$	x_{5}	x_{6}	x_{7}
	3	0	-4	-7/2	33	3	0	0
$x_{5}=$	0	1/4	-8	-1	9	1	0	0
$x_{6}=$	0	(12)	-12	$-1 / 2$	3	0	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Basis change: x_{1} enters the basis x_{5} leaves.

Bases visited
 $(5,6,7)$

Iteration 1

		x_{1}	x_{2}	x_{3}	${ }^{4}$	x_{5}	x_{6}	x_{7}
	3	0	-4	$-7 / 2$	33	3	0	0
$x_{5}=$	0	1/4	-8	-1	9	1	0	0
$x_{6}=$	0	1/2	-12	-1/2	3	0	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Basis change: x_{1} enters the basis x_{5} leaves.

Bases visited
 $(5,6,7)$

Iteration 1

		x_{1}	x_{2}	x_{3}	${ }^{4}$	χ_{5}	x_{6}	x_{7}
	3	0	-4	$-7 / 2$	33	3	0	0
$x_{5}=$	0	1/4	-8	-1	9	1	0	0
$x_{6}=$	0	0	4	3/2	-15	-2	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Basis change: x_{1} enters the basis x_{5} leaves.

Bases visited
 $(5,6,7)$

Iteration 1

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	3	0	-4	-7/2	33	3	0	0
$x_{5}=$	0	1/4	-8	-1	9	1	0	0
$x_{6}=$	0	0	4	3/2	-15	-2	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Basis change: x_{1} enters the basis x_{5} leaves.

Bases visited
 $(5,6,7)$

Iteration 1

		x_{1}	x_{2}	x_{3}	${ }^{4}$	x_{5}	x_{6}	x_{7}
	3	0	-4	$-7 / 2$	33	3	0	0
$x_{5}=$	0	1/4	-8	-1	9	1	0	0
$x_{6}=$	0	0	4	3/2	-15	-2	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Basis change: x_{1} enters the basis x_{5} leaves.

Bases visited
 $(5,6,7)$

Iteration 1

		x_{1}	x_{2}	\times_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	3	0	-4	$-7 / 2$	33	3	0	0
$x_{1}=$	0	(1)	-32	-4	36	4	0	0
$x_{6}=$	0	0	4	3/2	-15	-2	(1)	0
$x_{7}=$	1	0	0	1	0	0	0	(1)

Basis change: x_{1} enters the basis x_{5} leaves.

Bases visited
 $(5,6,7)$

Iteration 2

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	3	0	-4	-7/2	33	3	0	0
$x_{1}=$	0	1	-32	-4	36	4	0	0
$x_{6}=$	0	0	4	3/2	-15	-2	1	0
$x_{7}=$	1	0	0	1	0	0	0	1

Bases visited

$(5,6,7) \rightarrow(1,6,7)$

