## Iteration 2

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0 | -4 | -7/2 | 33 | 3 | 0 | 0 |
| $x_{1}=$ | 0 | 1 | -32 | -4 | 36 | 4 | 0 | 0 |
| $x_{6}=$ | 0 | 0 | 4 | 3/2 | -15 | -2 | 1 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

## Bases visited

$(5,6,7) \rightarrow(1,6,7)$

## Iteration 2

|  |  | $x_{1}$ | $x_{2}$ | $\times_{3}$ | X4 | ${ }^{\prime} 5$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0 | -4 | -7/2 | 33 | 3 | 0 | 0 |
| $x_{1}=$ | 0 | 1 | -32 | -4 | 36 | 4 | 0 | 0 |
| $x_{6}=$ | 0 | 0 | 4 | 3/2 | -15 | -2 | 1 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7)
$$

## Iteration 2

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{B(i)}$ <br> $u_{i}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}=$ | 3 | 0 | -4 | $-7 / 2$ | 33 | 3 | 0 | 0 |
| $x_{6}=$ | 0 | 1 | -32 | -4 | 36 | 4 | 0 | 0 |
|  | - |  |  |  |  |  |  |  |
| $x_{7}=$ | 0 | 4 | $3 / 2$ | -15 | -2 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |  |

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7)
$$

## Iteration 2

|  |  | $x_{1}$ | $x_{2}$ | X3 | ${ }^{4}$ | ${ }^{\prime} 5$ | $x_{6}$ | $x_{7}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0 | -4 | -7/2 | 33 | 3 | 0 | 0 |  |
| $x_{1}=$ | 0 | 1 | -32 | -4 | 36 | 4 | 0 | 0 | - |
| $x_{6}=$ | 0 | 0 | 4 | 3/2 | -15 | -2 | 1 | 0 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | - |

Basis change: $x_{2}$ enters the basis $x_{6}$ leaves.

## Bases visited

 $(5,6,7) \rightarrow(1,6,7)$Iteration 3


## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7)
$$

Iteration 3

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | -2 | 18 | 1 | 1 | 0 |
| $x_{1}=$1 <br> $x_{2}$$=$1 <br> 0 | 0 | 8 | -84 | -12 | 8 | 0 |  |
| $x_{7}=$ | 0 | 1 | $3 / 8$ | $-15 / 4$ | $-1 / 2$ | $1 / 4$ | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7)
$$

Iteration 3

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $\chi_{5}$ | $x_{6}$ | $x_{7}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0 | 0 | -2 | 18 | 1 | 1 | 0 |  |
| $x_{1}=$ | 0 | 1 | 0 | 8 | -84 | -12 | 8 | 0 | 0 |
| $x_{2}=$ | 0 | 0 | 1 | 3/8 | -15/4 | -1/2 | 1/4 | 0 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7)
$$

## Iteration 3

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\times_{4}$ | $\times_{5}$ | $x_{6}$ | $x_{7}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0 | 0 | -2 | 18 | 1 | 1 | 0 |  |
| $x_{1}=$ | 0 | 1 | 0 | 8 | -84 | -12 | 8 | 0 | 0 |
| $x_{2}=$ | 0 | 0 | 1 | 3/8 | $-15 / 4$ | $-1 / 2$ | $1 / 4$ | 0 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |

Basis change: $x_{3}$ enters the basis $x_{1}$ leaves.

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7)
$$

Iteration 4

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\chi_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 1/4 | 0 | 0 | -3 | -2 | 3 | 0 |
| $x_{3}=$ | 0 | 1/8 | 0 | 1 | -21/2 | -3/2 | 1 | 0 |
| $x_{2}=$ | 0 | -3/64 | 1 | 0 | 3/16 | 1/16 | $-1 / 8$ | 0 |
| $x_{7}=$ | 1 | $-1 / 8$ | 0 | 0 | 21/2 | 3/2 | -1 | 1 |

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7)
$$

Iteration 4

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $1 / 4$ | 0 | 0 | -3 | -2 | 3 | 0 |
| $x_{3}=$3 <br> $x_{2}$$=$0 $1 / 8$ 0 1 $-21 / 2$ $-3 / 2$ 1 <br> 0       <br> $x_{7}=$ $-3 / 64$ 1 0 $3 / 16$ $1 / 16$ $-1 / 8$ <br> 1 $-1 / 8$ 0 0 $21 / 2$ $3 / 2$ -1 |  |  |  |  |  |  |  |

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7)
$$

Iteration 4

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $\frac{x_{B(i)}}{u_{i}}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $x_{3}=$ | 3 <br> 3 | $1 / 4$ | 0 | 0 | -3 | -2 | 3 | 0 |  |
| $x_{2}=$ | $1 / 8$ | 0 | 1 | $-21 / 2$ | $-3 / 2$ | 1 | 0 | - |  |
| $x_{7}=$ | $1 / 8$ | $-3 / 64$ | 1 | 0 | $3 / 16$ | $1 / 16$ | $-1 / 8$ | 0 | 0 |
| 1 | $-1 / 8$ | 0 | 0 | $21 / 2$ | $3 / 2$ | -1 | 1 | $2 / 21$ |  |

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7)
$$

## Iteration 4

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | X4 | $\chi_{5}$ | $x_{6}$ | $x_{7}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 1/4 | 0 | 0 | -3 | -2 | 3 | 0 |  |
| $x_{3}=$ | 0 | 1/8 | 0 | 1 | -21/2 | -3/2 | 1 | 0 | - |
| $x_{2}=$ | 0 | -3/64 | 1 | 0 | 3/16 | 1/16 | $-1 / 8$ | 0 | 0 |
| $x_{7}=$ | 1 | $-1 / 8$ | 0 | 0 | 21/2 | 3/2 | -1 | 1 | 2/21 |

Basis change: $x_{4}$ enters the basis $x_{2}$ leaves.

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7)
$$

## Iteration 5

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\chi_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | -1/2 | 16 | 0 | 0 | -1 | 1 | 0 |
| $x_{3}=$ | 0 | -5/2 | 56 | 1 | 0 | 2 | -6 | 0 |
| $x_{4}=$ | 0 | $-1 / 4$ | 16/3 | 0 | 1 | 1/3 | $-2 / 3$ | 0 |
| $x_{7}=$ | 1 | 5/2 | -56 | 0 | 0 | -2 | 6 | 1 |

## Bases visited

$$
(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7)
$$

## Iteration 5

$x_{3}=$|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $-1 / 2$ | 16 | 0 | 0 | -1 | 1 | 0 |
| $x_{4}=$ |  |  |  |  |  |  |  |
| $x_{7}=$ | $-5 / 2$ | 56 | 1 | 0 | 2 | -6 | 0 |
| 0 | $-1 / 4$ | $16 / 3$ | 0 | 1 | $1 / 3$ | $-2 / 3$ | 0 |
| 1 | $5 / 2$ | -56 | 0 | 0 | -2 | 6 | 1 |

## Bases visited

$(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7)$

## Observation

After 4 pivoting iterations our basic feasible solution still has not changed.

## Iteration 5

$x_{3}=$|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $-1 / 2$ | 16 | 0 | 0 | -1 | 1 | 0 |
| $x_{4}=$ | 0 | $-5 / 2$ | 56 | 1 | 0 | 2 | -6 |
| 0 | $-1 / 4$ | $16 / 3$ | 0 | 1 | $1 / 3$ | $-2 / 3$ | 0 |
| $x_{7}=$ | $5 / 2$ | -56 | 0 | 0 | -2 | 6 | 1 |

## Bases visited

$(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7)$

## Observation

After 4 pivoting iterations our basic feasible solution still has not changed.

## Iteration 5

|  |  | $x_{1}$ | $\chi_{2}$ | $x_{3}$ | $\chi_{4}$ | $\chi_{5}$ | $x_{6}$ | $x_{7}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | $-1 / 2$ | 16 | 0 | 0 | -1 | 1 | 0 |  |
| $x_{3}=$ | 0 | -5/2 | 56 | 1 | 0 | 2 | -6 | 0 | 0 |
| $x_{4}=$ | 0 | $-1 / 4$ | 16/3 | 0 | 1 | 1/3 | $-2 / 3$ | 0 | 0 |
| $x_{7}=$ | 1 | 5/2 | -56 | 0 | 0 | -2 | 6 | 1 | - |

Basis change: $x_{5}$ enters the basis $x_{3}$ leaves.

## Bases visited

$(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7)$

## Observation

After 4 pivoting iterations our basic feasible solution still has not changed.

## Iteration 5

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\chi_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | $-1 / 2$ | 16 | 0 | 0 | -1 | 1 | 0 |  |
| $x_{3}=$ | 0 | -5/2 | 56 | 1 | 0 | 2 | -6 | 0 | 0 |
| $x_{4}=$ | 0 | $-1 / 4$ | 16/3 | 0 | 1 | 1/3 | $-2 / 3$ | 0 | 0 |
| $x_{7}=$ | 1 | 5/2 | -56 | 0 | 0 | -2 | 6 | 1 | - |

Basis change: $x_{5}$ enters the basis $x_{3}$ leaves.

## Bases visited

$(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7)$

## Observation

After 4 pivoting iterations our basic feasible solution still has not changed.

Iteration 6

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | -7/4 | 44 | $1 / 2$ | 0 | 0 | -2 | 0 |
| $x_{5}=$ | 0 | $-5 / 4$ | 28 | 1/2 | 0 | 1 | -3 | 0 |
| $x_{4}=$ | 0 | 1/6 | -4 | $-1 / 6$ | 1 | 0 | 1/3 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

## Bases visited

$$
\begin{aligned}
& (5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7) \\
& \rightarrow(5,4,7)
\end{aligned}
$$

Iteration 6

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | -7/4 | 44 | 1/2 | 0 | 0 | -2 | 0 |
| $x_{5}=$ | 0 | -5/4 | 28 | 1/2 | 0 | 1 | -3 | 0 |
| $x_{4}=$ | 0 | 1/6 | -4 | $-1 / 6$ | 1 | 0 | 1/3 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

## Bases visited

$$
\begin{aligned}
& (5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7) \\
& \rightarrow(5,4,7)
\end{aligned}
$$

Iteration 6

$$
\begin{array}{l|ccccccc|}
\hline & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
\hline 3 & -7 / 4 & 44 & 1 / 2 & 0 & 0 & -2 & 0 \\
\left.x_{5}=\begin{array}{|c|cccc|c|}
x_{i} \\
x_{4} & -5 / 4 & 28 & 1 / 2 & 0 & 1 \\
\hline & -3 & 0 \\
x_{4} & 0 & 1 / 6 & -4 & -1 / 6 & 1 \\
0 & 0 & 1 / 3 & 0 & 0 \\
x_{7}= & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & - \\
\hline
\end{array}\right) . \\
\hline
\end{array}
$$

## Bases visited

$$
\begin{aligned}
& (5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7) \\
& \rightarrow(5,4,7)
\end{aligned}
$$

## Iteration 6

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | -7/4 | 44 | 1/2 | 0 | 0 | -2 | 0 |  |
| $x_{5}=$ | 0 | $-5 / 4$ | 28 | 1/2 | 0 | 1 | -3 | 0 | - |
| $x_{4}=$ | 0 | 1/6 | -4 | $-1 / 6$ | 1 | 0 | 1/3 | 0 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | - |

Basis change: $x_{6}$ enters the basis $x_{4}$ leaves.

## Bases visited

$$
\begin{aligned}
& (5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7) \\
& \rightarrow(5,4,7)
\end{aligned}
$$

Back at the Beginning

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\chi_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | -3/4 | 20 | $-1 / 2$ | 6 | 0 | 0 | 0 |
| $x_{5}=$ | 0 | 1/4 | -8 | -1 | 9 | 1 | 0 | 0 |
| $x_{6}=$ | 0 | 1/2 | -12 | $-1 / 2$ | 3 | 0 | 1 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

## Bases visited

$(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7)$
$\rightarrow(5,4,7) \rightarrow(5,6,7)$

Back at the Beginning

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | -3/4 | 20 | $-1 / 2$ | 6 | 0 | 0 | 0 |
| $x_{5}=$ | 0 | 1/4 | -8 | -1 | 9 | 1 | 0 | 0 |
| $x_{6}=$ | 0 | 1/2 | -12 | $-1 / 2$ | 3 | 0 | 1 | 0 |
| $x_{7}=$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

## Bases visited

$(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7)$
$\rightarrow(5,4,7) \rightarrow(5,6,7)$
This is the same basis that we started with.

## Back at the Beginning

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{5}=$ | 3 <br> 3 | $-3 / 4$ | 20 | $-1 / 2$ | 6 | 0 | 0 | 0 |
| $x_{6}=$ | $1 / 4$ | -8 | -1 | 9 | 1 | 0 | 0 |  |
| $x_{7}=$ | $1 / 2$ | -12 | $-1 / 2$ | 3 | 0 | 1 | 0 |  |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |  |

## Bases visited

$(5,6,7) \rightarrow(1,6,7) \rightarrow(1,2,7) \rightarrow(3,2,7) \rightarrow(3,4,7)$
$\rightarrow(5,4,7) \rightarrow(5,6,7)$
This is the same basis that we started with.

## Conclusion

Continuing with the pivoting rules we agreed on at the beginning, the simplex method will never terminate in this example.

## Anticycling - Bland's Rule

We now discuss a pivoting rule that is guaranteed to avoid cycling:

## Smallest subscript pivoting rule (Bland's rule)

1 Choose the column $A_{j}$ with $\bar{c}_{j}<0$ and $j$ minimal to enter the basis.
2 Among all basic variables $x_{i}$ that could exit the basis, select the one with smallest $i$.

## Anticycling - Bland's Rule

We now discuss a pivoting rule that is guaranteed to avoid cycling:

## Smallest subscript pivoting rule (Bland's rule)

1 Choose the column $A_{j}$ with $\bar{c}_{j}<0$ and $j$ minimal to enter the basis.
2 Among all basic variables $x_{i}$ that could exit the basis, select the one with smallest $i$.

## Theorem (without proof)

The simplex algorithm with Bland's rule does not cycle and thus terminates after a finite number of iterations.

## Finding an Initial Basic Feasible Solution

So far we always assumed that the simplex algorithm starts with a basic feasible solution. We now discuss how such a solution can be obtained.

- Introducing artificial variables
- The two-phase simplex method
- The big- $M$ method

Introducing Artificial Variables
Example:

$$
\begin{array}{cr}
\min _{1}+x_{2}+x_{3} & =3 \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \\
& -x_{1}+2 x_{2}+6 x_{3} \\
& 4 x_{2}+9 x_{3} \\
3 x_{3}+x_{4} & =1 \\
x_{1}, \ldots, x_{4} & \geq 0
\end{array}
$$

Introducing Artificial Variables
Example:

$$
\begin{array}{rr}
\min _{1}+x_{2}+x_{3} & =3 \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \\
& -x_{1}+2 x_{2}+6 x_{3} \\
& 4 x_{2}+9 x_{3} \\
3 x_{3}+x_{4} & =1 \\
& x_{1}, \ldots, x_{4}
\end{array}
$$

Auxiliary problem with artificial variables:

$$
\begin{aligned}
& \min \\
& x_{5}+x_{6}+x_{7}+x_{8} \\
& \text { s.t. } x_{1}+2 x_{2}+3 x_{3} \\
& +x_{5}=3 \\
& \begin{array}{rlll}
-x_{1}+2 x_{2} & +6 x_{3} & & \\
4 x_{2} & +9 x_{3} & & \\
& & & \\
& & & \\
& & & \\
& & x_{3} & \\
& &
\end{array} \\
& 3 x_{3}+x_{4} \\
& +x_{8}=1 \\
& x_{1}, \ldots, x_{4}, x_{5}, \ldots, x_{8} \geq 0
\end{aligned}
$$

## Auxiliary Problem

Auxiliary problem with artificial variables:


## Auxiliary Problem

Auxiliary problem with artificial variables:

$$
\begin{aligned}
& \text { min } \\
& \text { s.t. } x_{1}+2 x_{2}+3 x_{3} \\
& -x_{1}+2 x_{2}+6 x_{3} \\
& 4 x_{2}+9 x_{3} \\
& 3 x_{3}+x_{4} \\
& \begin{aligned}
x_{5}+x_{6}+x_{7}+x_{8} & \\
+x_{5} & =3 \\
+x_{6} & =2 \\
+x_{7} & =5 \\
+x_{8} & =1 \\
x_{1}, \ldots, x_{4}, x_{5}, \ldots, x_{8} & \geq 0
\end{aligned}
\end{aligned}
$$

Observation
$x=(0,0,0,0,3,2,5,1)$ is a basic feasible solution for this problem with basic variables $\left(x_{5}, x_{6}, x_{7}, x_{8}\right)$. We can form the initial tableau.

## Initial Tableau

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $\chi_{5}$ | $x_{6}$ | ${ }_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 |  | 1 | 1 | $1)$ |
| $x_{5}=$ | 3 | 1 | 2 | 3 | 0 | $1)$ | 0 | 0 | 0 |
| $x_{6}=$ | 2 | -1 | 2 | 6 | 0 | 0 | (1) | 0 | 0 |
| $x_{7}=$ | 5 | 0 | 4 | 9 | 0 | 0 | 0 | (1) | 0 |
| $x_{8}=$ | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | (1) |

## Initial Tableau

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $\chi_{5}$ | $x_{6}$ | ${ }^{4}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| $x_{5}=$ | 3 | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| $x_{6}=$ | 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| $x_{7}=$ | 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| $x_{8}=$ | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

## Initial Tableau

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -3 | -1 | -2 | -3 | 0 | 0 | 1 | 1 | 1 |
| $x_{5}=$ | 3 | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| $x_{6}=$ | 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| $x_{7}=$ | 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| $x_{8}=$ | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

## Initial Tableau

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $\times_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -5 | 0 | -4 | -9 | 0 | 0 | 0 | 1 | 1 |
| $x_{5}=$ | 3 | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| $x_{6}=$ | 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| $x_{7}=$ | 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| $x_{8}=$ | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

## Initial Tableau

$x_{5}=$
$\left.\left.x_{6}=\begin{array}{|c|cccccccc|}\hline-10 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\ x_{6}= & -8 & -18 & 0 & 0 & 0 & 0 & 1 \\ x_{7}= \\ x_{8}= & 1 & 2 & 3 & 0 & 1 & 0 & 0 & 0 \\ 2 & -1 & 2 & 6 & 0 & 0 & 1 & 0 & 0 \\ 5 & 0 & 4 & 9 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 1 \\ \hline\end{array}\right] . \begin{array}{ll}\end{array}\right]$

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

## Initial Tableau

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -11 | 0 | -8 | -21 | -1 | 0 | 0 | 0 | 0 |
| $x_{5}=$ | 11 |  |  |  |  |  |  |  |
| $x_{6}=$ |  |  |  |  |  |  |  |  |
| $x_{7}=$ | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| $x_{8}=$ | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
Now we can proceed as seen before...

Minimizing the Auxiliary Problem

|  |  | $x_{1}$ | $x_{2}$ | $\times_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -11 | 0 | -8 | -21 | -1 | 0 | 0 | 0 | 0 |
| $x_{5}=$ | 3 | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| $x_{6}=$ | 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| $x_{7}=$ | 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| $x_{8}=$ | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Minimizing the Auxiliary Problem

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\chi_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -11 | 0 | -8 | -21 | -1 | 0 | 0 | 0 | 0 |
| $x_{5}=$ | 3 | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| $x_{6}=$ | 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| $x_{7}=$ | 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| $x_{8}=$ | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Basis change: $x_{4}$ enters the basis, $x_{8}$ exits.

Minimizing the Auxiliary Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -10 | 0 | -8 | -18 | 0 | 0 | 0 | 0 | 1 |
| $x_{5}=$ |  |  |  |  |  |  |  |  |
| $x_{6}=$ |  |  |  |  |  |  |  |  |
| $x_{7}=$ |  |  |  |  |  |  |  |  |
| $x_{4}=$ | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Minimizing the Auxiliary Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -10 | 0 | -8 | -18 | 0 | 0 | 0 | 0 | 1 |
| $x_{5}=$ |  |  |  |  |  |  |  |  |
| $x_{6}=$ |  |  |  |  |  |  |  |  |
| $x_{7}=$ |  |  |  |  |  |  |  |  |
| $x_{4}=$ | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Basis change: $x_{3}$ enters the basis, $x_{4}$ exits.

Minimizing the Auxiliary Problem

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -4 | 0 | -8 | 0 | 6 | 0 | 0 | 0 | 7 |
| $x_{5}=$ | 2 | 1 | 2 | 0 | -1 | 1 | 0 | 0 | -1 |
| $x_{6}=$ | 0 | -1 | 2 | 0 | -2 | 0 | 1 | 0 | -2 |
| $x_{7}=$ | 2 | 0 | 4 | 0 | -3 | 0 | 0 | 1 | -3 |
| $x_{3}=$ | 1/3 | 0 | 0 | 1 | 1/3 | 0 | 0 | 0 | $1 / 3$ |

Minimizing the Auxiliary Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -4 | 0 | -8 | 0 | 6 | 0 | 0 | 0 | 7 |
| $x_{5}=$ |  |  |  |  |  |  |  |  |
| $x_{6}=$ |  |  |  |  |  |  |  |  |
| $x_{7}=$ |  |  |  |  |  |  |  |  |
| $x_{3}=$ | 1 | 2 | 0 | -1 | 1 | 0 | 0 | -1 |
| 0 | -1 | 2 | 0 | -2 | 0 | 1 | 0 | -2 |
| 2 | 0 | 4 | 0 | -3 | 0 | 0 | 1 | -3 |
| $1 / 3$ | 0 | 0 | 1 | $1 / 3$ | 0 | 0 | 0 | $1 / 3$ |

Basis change: $x_{2}$ enters the basis, $x_{6}$ exits.

Minimizing the Auxiliary Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -4 | -4 | 0 | 0 | -2 | 0 | 4 | 0 | -1 |  |
| $x_{5}=$ |  |  |  |  |  |  |  |  |  |
| $x_{2}=$ | 2 | 2 | 0 | 0 | 1 | 1 | -1 | 0 | 1 |
| $x_{7}=$ |  |  |  |  |  |  |  |  |  |
| $x_{3}=$ | $-1 / 2$ | 1 | 0 | -1 | 0 | $1 / 2$ | 0 | -1 |  |
| 2 | 2 | 0 | 0 | 1 | 0 | -2 | 1 | 1 |  |
| $1 / 3$ | 0 | 0 | 1 | $1 / 3$ | 0 | 0 | 0 | $1 / 3$ |  |

Minimizing the Auxiliary Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -4 | -4 | 0 | 0 | -2 | 0 | 4 | 0 | -1 |
| $x_{5}=$ |  |  |  |  |  |  |  |  |
| $x_{2}=$ | 2 | 2 | 0 | 0 | 1 | 1 | -1 | 0 |
| $x_{7}=$ |  |  |  |  |  |  |  |  |
| $x_{3}=$ | $-1 / 2$ | 1 | 0 | -1 | 0 | $1 / 2$ | 0 | -1 |
| 2 | 2 | 0 | 0 | 1 | 0 | -2 | 1 | 1 |
| $1 / 3$ | 0 | 0 | 1 | $1 / 3$ | 0 | 0 | 0 | $1 / 3$ |

Basis change: $x_{1}$ enters the basis, $x_{5}$ exits.

Minimizing the Auxiliary Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 1 |
| $x_{1}=$ |  |  |  |  |  |  |  |  |
| $x_{2}=$ |  |  |  |  |  |  |  |  |
| $x_{7}=$ | 1 | 1 | 0 | 0 | $1 / 2$ | $1 / 2$ | $-1 / 2$ | 0 |
| $x_{3}=$ | $1 / 2$ | 0 | 1 | 0 | $-3 / 4$ | $1 / 4$ | $1 / 4$ | 0 |
| 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 0 |
| $1 / 3$ | 0 | 0 | 1 | $1 / 3$ | 0 | 0 | 0 | $1 / 3$ |

Minimizing the Auxiliary Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 1 |
| $x_{1}=$ | 1 | 1 | 0 | 0 | $1 / 2$ | $1 / 2$ | $-1 / 2$ | 0 | $1 / 2$ |
| $x_{2}=$ |  |  |  |  |  |  |  |  |  |
| $x_{7}=$ |  |  |  |  |  |  |  |  |  |
| $x_{3}=$ | $1 / 2$ | 0 | 1 | 0 | $-3 / 4$ | $1 / 4$ | $1 / 4$ | 0 | $-3 / 4$ |
| 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 0 |  |
| $1 / 3$ | 0 | 0 | 1 | $1 / 3$ | 0 | 0 | 0 | $1 / 3$ |  |

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0

## Minimizing the Auxiliary Problem

|  $x_{1}$ $x_{2}$ $x_{3}$ $x_{4}$ $x_{5}$ $x_{6}$ $x_{7}$ $x_{8}$ <br> 0 0 0 0 0 2 2 0 1 <br> $x_{1}=$ 1 1 0 0 $1 / 2$ $1 / 2$ $-1 / 2$ 0 <br> $x_{2}=$ $1 / 2$ 0 1 0 $-3 / 4$ $1 / 4$ $1 / 4$ 0 <br> $x_{7}$ $=0$ 0 $-3 / 4$      <br> $x_{3}=$ $1 / 3$ 0 0 1 $1 / 3$ 0 0 0 <br> $x_{3}$ $1 / 3$        |
| :--- |
| feasible solution for auxiliary problem with (auxiliary) cost value 0 |

$\Rightarrow$ Also feasible for the original problem - but not (yet) basic.

## Obtaining a Basis for the Original Problem

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 1 |
| $x_{1}=$ | 1 | 1 | 0 | 0 | 1/2 | 1/2 | -1/2 | 0 | 1/2 |
| $x_{2}=$ | $1 / 2$ | 0 | 1 | 0 | $-3 / 4$ | 1/4 | $1 / 4$ | 0 | -3/4 |
| $x_{7}=$ | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 0 |
| $x_{3}=$ | $1 / 3$ | 0 | 0 | 1 | $1 / 3$ | 0 | 0 | 0 | $1 / 3$ |

## Obtaining a Basis for the Original Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 1 |  |
| $x_{1}=$ |  |  |  |  |  |  |  |  |  |
| $x_{2}=$ |  |  |  |  |  |  |  |  |  |
| $x_{7}=$ | 1 | 1 | 0 | 0 | $1 / 2$ | $1 / 2$ | $-1 / 2$ | 0 | $1 / 2$ |
| $x_{3}=$ | 0 | 0 | 1 | 0 | $-3 / 4$ | $1 / 4$ | $1 / 4$ | 0 | $-3 / 4$ |
| $1 / 3$ | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 0 |  |

## Observation

Restricting the tableau to the original variables, we get a zero-row.

## Obtaining a Basis for the Original Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 1 |  |
| $x_{1}=$ |  |  |  |  |  |  |  |  |  |
| $x_{2}=$ |  |  |  |  |  |  |  |  |  |
| $x_{7}=$ | 1 | 1 | 0 | 0 | $1 / 2$ | $1 / 2$ | $-1 / 2$ | 0 | $1 / 2$ |
| $x_{3}=$ | 0 | 0 | 1 | 0 | $-3 / 4$ | $1 / 4$ | $1 / 4$ | 0 | $-3 / 4$ |
| $1 / 3$ | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 0 |  |

## Observation

Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.

## Obtaining a Basis for the Original Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 1 |  |
| $x_{1}=$ |  |  |  |  |  |  |  |  |  |
| $x_{2}=$ |  |  |  |  |  |  |  |  |  |
| $x_{7}=$ | 1 | 1 | 0 | 0 | $1 / 2$ | $1 / 2$ | $-1 / 2$ | 0 | $1 / 2$ |
| $x_{3}=$ | 0 | 0 | 1 | 0 | $-3 / 4$ | $1 / 4$ | $1 / 4$ | 0 | $-3 / 4$ |
| $1 / 3$ | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 0 |  |

## Observation

Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.
$\rightarrow$ We can remove the third row.

## Obtaining a Basis for the Original Problem

$x_{1}=$|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $*$ | $*$ | $*$ | $*$ | $*$ |
| $x_{2}=1$ | 1 | 0 | 0 | $1 / 2$ |
| $x_{3}=$ | $1 / 2$ | 0 | 1 | 0 |
| $1 / 3$ | 0 | 0 | 1 | $1 / 3$ |

## Obtaining a Basis for the Original Problem

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | * | * | * | * | * |
| $x_{1}=$ | 1 | 1 | 0 | 0 | 1/2 |
| $x_{2}=$ | 1/2 | 0 | 1 | 0 | -3/4 |
| $x_{3}=$ | 1/3 | 0 | 0 | 1 | 1/3 |

We finally obtain a basic feasible solution for the original problem.

## Obtaining a Basis for the Original Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 | 0 |
| $x_{1}=$     <br> $x_{2}$ $=1$ 1 0 0 <br> $1 / 2$ 0 1 0 $-3 / 4$ <br> $x_{3}=$ $1 / 3$ 0 0 1 | $1 / 3$ |  |  |  |

We finally obtain a basic feasible solution for the original problem.
Computing the reduced costs for this basis:

- Put original objective function in row 0 .


## Obtaining a Basis for the Original Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :--- | :---: | :---: | :---: | :---: |
| $x_{1}=$ |  |  |  |  |
| $x_{2}=$ |  |  |  |  |
| $x_{3}=$ | $11 / 6$ | 0 | 0 | 0 |$-1 / 12$.

We finally obtain a basic feasible solution for the original problem.
Computing the reduced costs for this basis:

- Put original objective function in row 0 .
- Compute reduced costs by eliminating the nonzero entries for the basic variables.


## Obtaining a Basis for the Original Problem

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :--- | :---: | :---: | :---: | :---: |
| $x_{1}=$$-11 / 6$ 0 0 0 $-1 / 12$ <br> $x_{2}=1$ 1 0 0 $1 / 2$ <br> $x_{3}=$ $1 / 2$ 0 1 0 <br> $-3 / 4$     <br> $1 / 3$ 0 0 1 $1 / 3$$~$ |  |  |  |  |

We finally obtain a basic feasible solution for the original problem.
Computing the reduced costs for this basis:

- Put original objective function in row 0 .
- Compute reduced costs by eliminating the nonzero entries for the basic variables.

The simplex method (phase II) can now start with its typical iterations.

## Omitting Artificial Variables

## Auxiliary problem

$$
\begin{aligned}
& \min \quad x_{5}+x_{6}+x_{7}+x_{8}
\end{aligned}
$$

Artificial variable $x_{8}$ could have been omitted by setting $x_{4}$ to 1 in the initial basis. This is possible as $x_{4}$ does only appear in one constraint.

## Omitting Artificial Variables

## Auxiliary problem

$$
\begin{aligned}
& \min \quad x_{5}+x_{6}+x_{7}+x_{8}
\end{aligned}
$$

Artificial variable $x_{8}$ could have been omitted by setting $x_{4}$ to 1 in the initial basis. This is possible as $x_{4}$ does only appear in one constraint.

Generally, this can be done, e. g., with all slack variables that have nonnegative right hand sides.

## Phase I of the Simplex Method

Given: LP in standard form: $\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\}$

## Phase I of the Simplex Method

Given: LP in standard form: $\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\}$
1 Transform problem such that $b \geq 0$ (multiply constraints by -1 ).

## Phase I of the Simplex Method

Given: LP in standard form: $\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\}$
1 Transform problem such that $b \geq 0$ (multiply constraints by -1 ).
2 Introduce artificial variables $y_{1}, \ldots, y_{m}$ and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A \cdot x+I_{m} \cdot y=b, x, y \geq 0
$$

## Phase I of the Simplex Method

Given: LP in standard form: $\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\}$
1 Transform problem such that $b \geq 0$ (multiply constraints by -1 ).
2 Introduce artificial variables $y_{1}, \ldots, y_{m}$ and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A \cdot x+I_{m} \cdot y=b, x, y \geq 0
$$

3 If optimal cost is positive, then STOP (original LP is infeasible).

## Phase I of the Simplex Method

Given: LP in standard form: $\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\}$
1 Transform problem such that $b \geq 0$ (multiply constraints by -1 ).
2 Introduce artificial variables $y_{1}, \ldots, y_{m}$ and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A \cdot x+I_{m} \cdot y=b, x, y \geq 0
$$

3 If optimal cost is positive, then STOP (original LP is infeasible).
4 If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found).

## Phase I of the Simplex Method

Given: LP in standard form: $\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\}$
1 Transform problem such that $b \geq 0$ (multiply constraints by -1 ).
2 Introduce artificial variables $y_{1}, \ldots, y_{m}$ and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A \cdot x+I_{m} \cdot y=b, x, y \geq 0
$$

3 If optimal cost is positive, then STOP (original LP is infeasible).
4 If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found).
5 If $\ell$ th basic variable is artificial, find $j \in\{1, \ldots, n\}$ with $\ell$ th entry in $B^{-1} \cdot A_{j}$ nonzero. Use this entry as pivot element and replace $\ell$ th basic variable with $x_{j}$.

## Phase I of the Simplex Method

Given: LP in standard form: $\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\}$
1 Transform problem such that $b \geq 0$ (multiply constraints by -1 ).
2 Introduce artificial variables $y_{1}, \ldots, y_{m}$ and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A \cdot x+I_{m} \cdot y=b, x, y \geq 0
$$

3 If optimal cost is positive, then STOP (original LP is infeasible).
4 If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found).
5 If $\ell$ th basic variable is artificial, find $j \in\{1, \ldots, n\}$ with $\ell$ th entry in $B^{-1} \cdot A_{j}$ nonzero. Use this entry as pivot element and replace $\ell$ th basic variable with $x_{j}$.
б If no such $j \in\{1, \ldots, n\}$ exists, eliminate $\ell$ th row (constraint).

## The Two-phase Simplex Method

## Two-phase simplex method

1 Given an LP in standard from, first run phase I.
2 If phase I yields a basic feasible solution for the original LP, enter "phase II" (see above).

## The Two-phase Simplex Method

## Two-phase simplex method

1 Given an LP in standard from, first run phase I.
2 If phase I yields a basic feasible solution for the original LP, enter "phase II" (see above).

## Possible outcomes of the two-phase simplex method

ii Problem is infeasible (detected in phase I).
团 Problem is feasible but rows of $A$ are linearly dependent (detected and corrected at the end of phase I by eliminating redundant constraints.)

罒 Optimal cost is $-\infty$ (detected in phase II).
iv Problem has optimal basic feasible solution (found in phase II).


## The Two-phase Simplex Method

## Two-phase simplex method

1 Given an LP in standard from, first run phase I.
2 If phase I yields a basic feasible solution for the original LP, enter "phase II" (see above).

## Possible outcomes of the two-phase simplex method

ii Problem is infeasible (detected in phase I).
III Problem is feasible but rows of $A$ are linearly dependent (detected and corrected at the end of phase I by eliminating redundant constraints.)

团 Optimal cost is $-\infty$ (detected in phase II).
Iv Problem has optimal basic feasible solution (found in phase II).
Remark: (ii) is not an outcome but only an intermediate result leading to outcome (iii) or (iv).

