
Iteration 2

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 0 �4 �7/2 33 3 0 0
x1 = 0 1 �32 �4 36 4 0 0

�

x6 = 0 0 4 3/2 �15 �2 1 0

0

x7 = 1 0 0 1 0 0 0 1

�

Basis change: x2 enters the basis x6 leaves.

Bases visited
(5, 6, 7) ! (1, 6, 7)
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Iteration 3

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 0 0 �2 18 1 1 0
x1 = 0 1 0 8 �84 �12 8 0

0

x2 = 0 0 1 3/8 �15/4 �1/2 1/4 0

0

x7 = 1 0 0 1 0 0 0 1

1

Basis change: x3 enters the basis x1 leaves.

Bases visited
(5, 6, 7) ! (1, 6, 7) ! (1, 2, 7)
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Iteration 4

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 1/4 0 0 �3 �2 3 0
x3 = 0 1/8 0 1 �21/2 �3/2 1 0

�

x2 = 0 �3/64 1 0 3/16 1/16 �1/8 0

0

x7 = 1 �1/8 0 0 21/2 3/2 �1 1

2/21

Basis change: x4 enters the basis x2 leaves.

Bases visited
(5, 6, 7) ! (1, 6, 7) ! (1, 2, 7) ! (3, 2, 7)
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Iteration 4
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Basis change: x4 enters the basis x2 leaves.

Bases visited
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Iteration 5

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 �1/2 16 0 0 �1 1 0
x3 = 0 �5/2 56 1 0 2 �6 0

0

x4 = 0 �1/4 16/3 0 1 1/3 �2/3 0

0

x7 = 1 5/2 �56 0 0 �2 6 1

�

Basis change: x5 enters the basis x3 leaves.

Bases visited
(5, 6, 7) ! (1, 6, 7) ! (1, 2, 7) ! (3, 2, 7) ! (3, 4, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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Iteration 6

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 �7/4 44 1/2 0 0 �2 0
x5 = 0 �5/4 28 1/2 0 1 �3 0

�

x4 = 0 1/6 �4 �1/6 1 0 1/3 0

0

x7 = 1 0 0 1 0 0 0 1

�

Basis change: x6 enters the basis x4 leaves.

Bases visited
(5, 6, 7) ! (1, 6, 7) ! (1, 2, 7) ! (3, 2, 7) ! (3, 4, 7)
! (5, 4, 7)
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Back at the Beginning

x1 x2 x3 x4 x5 x6 x7
3 �3/4 20 �1/2 6 0 0 0

x5 = 0 1/4 �8 �1 9 1 0 0
x6 = 0 1/2 �12 �1/2 3 0 1 0
x7 = 1 0 0 1 0 0 0 1

Bases visited
(5, 6, 7) ! (1, 6, 7) ! (1, 2, 7) ! (3, 2, 7) ! (3, 4, 7)
! (5, 4, 7) ! (5, 6, 7)

This is the same basis that we started with.

Conclusion
Continuing with the pivoting rules we agreed on at the beginning, the simplex method
will never terminate in this example.
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Anticycling – Bland’s Rule
We now discuss a pivoting rule that is guaranteed to avoid cycling:

Smallest subscript pivoting rule (Bland’s rule)
1 Choose the column Aj with c̄j < 0 and j minimal to enter the basis.

2 Among all basic variables xi that could exit the basis, select the one with smallest i .

Theorem (without proof)
The simplex algorithm with Bland’s rule does not cycle and thus terminates after a
finite number of iterations.
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Finding an Initial Basic Feasible Solution
So far we always assumed that the simplex algorithm starts with a basic feasible
solution. We now discuss how such a solution can be obtained.

I Introducing artificial variables

I The two-phase simplex method

I The big-M method
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Introducing Artificial Variables
Example:

min x1 + x2 + x3
s.t. x1 + 2 x2 + 3 x3 = 3

�x1 + 2 x2 + 6 x3 = 2
4 x2 + 9 x3 = 5

3 x3 + x4 = 1
x1, . . . , x4 � 0

Auxiliary problem with artificial variables:

min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

�x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, . . . , x4, x5, . . . , x8 � 0
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Introducing Artificial Variables
Example:

min x1 + x2 + x3
s.t. x1 + 2 x2 + 3 x3 = 3

�x1 + 2 x2 + 6 x3 = 2
4 x2 + 9 x3 = 5

3 x3 + x4 = 1
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Auxiliary problem with artificial variables:
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Auxiliary Problem
Auxiliary problem with artificial variables:

min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

�x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, . . . , x4, x5, . . . , x8 � 0

Observation
x = (0, 0, 0, 0, 3, 2, 5, 1) is a basic feasible solution for this problem with basic variables
(x5, x6, x7, x8). We can form the initial tableau.

101



Auxiliary Problem
Auxiliary problem with artificial variables:

min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

�x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, . . . , x4, x5, . . . , x8 � 0

Observation
x = (0, 0, 0, 0, 3, 2, 5, 1) is a basic feasible solution for this problem with basic variables
(x5, x6, x7, x8). We can form the initial tableau.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 1 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 1 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
�3 �1 �2 �3 0 0 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
�5 0 �4 �9 0 0 0 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
�10 0 �8 �18 0 0 0 0 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
�11 0 �8 �21 �1 0 0 0 0

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

Now we can proceed as seen before...

102



Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
�11 0 �8 �21 �1 0 0 0 0

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Basis change: x4 enters the basis, x8 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
�11 0 �8 �21 �1 0 0 0 0

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Basis change: x4 enters the basis, x8 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
�10 0 �8 �18 0 0 0 0 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x4 = 1 0 0 3 1 0 0 0 1

Basis change: x3 enters the basis, x4 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
�10 0 �8 �18 0 0 0 0 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 �1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x4 = 1 0 0 3 1 0 0 0 1

Basis change: x3 enters the basis, x4 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
�4 0 �8 0 6 0 0 0 7

x5 = 2 1 2 0 �1 1 0 0 �1
x6 = 0 �1 2 0 �2 0 1 0 �2
x7 = 2 0 4 0 �3 0 0 1 �3
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x2 enters the basis, x6 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
�4 0 �8 0 6 0 0 0 7

x5 = 2 1 2 0 �1 1 0 0 �1
x6 = 0 �1 2 0 �2 0 1 0 �2
x7 = 2 0 4 0 �3 0 0 1 �3
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x2 enters the basis, x6 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
�4 �4 0 0 �2 0 4 0 �1

x5 = 2 2 0 0 1 1 �1 0 1
x2 = 0 �1/2 1 0 �1 0 1/2 0 �1
x7 = 2 2 0 0 1 0 �2 1 1
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x1 enters the basis, x5 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
�4 �4 0 0 �2 0 4 0 �1

x5 = 2 2 0 0 1 1 �1 0 1
x2 = 0 �1/2 1 0 �1 0 1/2 0 �1
x7 = 2 2 0 0 1 0 �2 1 1
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x1 enters the basis, x5 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 2 2 0 1

x1 = 1 1 0 0 1/2 1/2 �1/2 0 1/2
x2 = 1/2 0 1 0 �3/4 1/4 1/4 0 �3/4
x7 = 0 0 0 0 0 �1 �1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0

) Also feasible for the original problem - but not (yet) basic.

107



Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 2 2 0 1

x1 = 1 1 0 0 1/2 1/2 �1/2 0 1/2
x2 = 1/2 0 1 0 �3/4 1/4 1/4 0 �3/4
x7 = 0 0 0 0 0 �1 �1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0

) Also feasible for the original problem - but not (yet) basic.

107



Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 2 2 0 1

x1 = 1 1 0 0 1/2 1/2 �1/2 0 1/2
x2 = 1/2 0 1 0 �3/4 1/4 1/4 0 �3/4
x7 = 0 0 0 0 0 �1 �1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0

) Also feasible for the original problem - but not (yet) basic.

107

1-



Obtaining a Basis for the Original Problem

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 2 2 0 1

x1 = 1 1 0 0 1/2 1/2 �1/2 0 1/2
x2 = 1/2 0 1 0 �3/4 1/4 1/4 0 �3/4
x7 = 0 0 0 0 0 �1 �1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Observation
Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.
! We can remove the third row.
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Thus the original equations are linearily dependent.
! We can remove the third row.
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Obtaining a Basis for the Original Problem

x1 x2 x3 x4
⇤ ⇤ ⇤ ⇤ ⇤

x1 = 1 1 0 0 1/2
x2 = 1/2 0 1 0 �3/4
x3 = 1/3 0 0 1 1/3

We finally obtain a basic feasible solution for the original problem.

Computing the reduced costs for this basis:
I Put original objective function in row 0.
I Compute reduced costs by eliminating the nonzero entries for the basic variables.

The simplex method (phase II) can now start with its typical iterations.
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Omitting Artificial Variables

Auxiliary problem

min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

�x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, . . . , x8 � 0

Artificial variable x8 could have been omitted by setting x4 to 1 in the initial basis. This
is possible as x4 does only appear in one constraint.

Generally, this can be done, e. g., with all slack variables that have nonnegative right
hand sides.
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Phase I of the Simplex Method
Given: LP in standard form: min{cT · x | A · x = b, x � 0}

1 Transform problem such that b � 0 (multiply constraints by �1).

2 Introduce artificial variables y1, . . . , ym and solve auxiliary problem

min
mX

i=1

yi s.t. A · x + Im · y = b, x , y � 0 .

3 If optimal cost is positive, then STOP (original LP is infeasible).

4 If no artificial variable is in final basis, eliminate artificial variables and columns and
STOP (feasible basis for original LP has been found).

5 If `th basic variable is artificial, find j 2 {1, . . . , n} with `th entry in B
�1 · Aj

nonzero. Use this entry as pivot element and replace `th basic variable with xj .

6 If no such j 2 {1, . . . , n} exists, eliminate `th row (constraint).
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The Two-phase Simplex Method

Two-phase simplex method
1 Given an LP in standard from, first run phase I.

2 If phase I yields a basic feasible solution for the original LP, enter “phase II” (see
above).

Possible outcomes of the two-phase simplex method
i Problem is infeasible (detected in phase I).

ii Problem is feasible but rows of A are linearly dependent (detected and corrected at
the end of phase I by eliminating redundant constraints.)

iii Optimal cost is �1 (detected in phase II).

iv Problem has optimal basic feasible solution (found in phase II).

Remark: (ii) is not an outcome but only an intermediate result leading to outcome (iii)
or (iv).
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