
The Two-phase Simplex Method

Two-phase simplex method
1 Given an LP in standard from, first run phase I.

2 If phase I yields a basic feasible solution for the original LP, enter “phase II” (see
above).

Possible outcomes of the two-phase simplex method
i Problem is infeasible (detected in phase I).

ii Problem is feasible but rows of A are linearly dependent (detected and corrected at
the end of phase I by eliminating redundant constraints.)

iii Optimal cost is �1 (detected in phase II).

iv Problem has optimal basic feasible solution (found in phase II).

Remark: (ii) is not an outcome but only an intermediate result leading to outcome (iii)
or (iv).

112



Big-M Method
Alternative idea: Combine the two phases into one by introducing sufficiently large
penalty costs for artificial variables.

This way, the LP

min
Pn

i=1 ci xi
s.t. A · x = b

x � 0

becomes:

min
Pn

i=1 ci xi + M ·
Pm

j=1 yj
s.t. A · x + Im · y = b

x , y � 0

Remark: If M is sufficiently large and the original program has a feasible solution, all
artificial variables will be driven to zero by the simplex method.
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How to Choose M?

Observation
Initially, M only occurs in the zeroth row. As the zeroth row never becomes pivot row,
this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced cost coefficients.

Order on cost coefficients
aM + b < c M + d :() (a < c) _ (a = c ^ b < d)

In particular, �aM + b < 0 < aM + b for any positive a and arbitrary b, and we can
decide whether a cost coefficient is negative or not.

! There is no need to give M a fixed numerical value.
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Example
Example:

min x1 + x2 + x3
s.t. x1 + 2 x2 + 3 x3 = 3

�x1 + 2 x2 + 6 x3 = 2
4 x2 + 9 x3 = 5

3 x3 + x4 = 1
x1, . . . , x4 � 0
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Introducing Artificial Variables and M

Auxiliary problem:

min x1 +x2 +x3 +M x5 +M x6 +M x7
s.t. x1 +2 x2 +3 x3 x5 = 3

�x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 = 1
x1, . . . , x4, x5, x6, x7 � 0

Note that this time the unnecessary artificial variable x8 has been omitted.

We start off with (x5, x6, x7, x4) = (3, 2, 5, 1).
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
0 1 1 1 0 M M M

3 1 2 3 0 1 0 0
2 �1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
�3M �M + 1 �2M + 1 �3M + 1 0 0 M M

3 1 2 3 0 1 0 0
2 �1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
�5M 1 �4M + 1 �9M + 1 0 0 0 M

3 1 2 3 0 1 0 0
2 �1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
�10M 1 �8M + 1 �18M + 1 0 0 0 0

3 1 2 3 0 1 0 0
2 �1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0
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First Iteration

x1 x2 x3 x4 x5 x6 x7
�10M 1 �8M + 1 �18M + 1 0 0 0 0

3 1 2 3 0 1 0 0
2 �1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Reduced costs for x2 and x3 are negative.

Basis change: x3 enters the basis, x4 leaves.
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Second Iteration

x1 x2 x3 x4 x5 x6 x7
�4M � 1/3 1 �8M + 1 0 6M � 1/3 0 0 0

2 1 2 0 �1 1 0 0
0 �1 2 0 �2 0 1 0
2 0 4 0 �3 0 0 1

1/3 0 0 1 1/3 0 0 0

Basis change: x2 enters the basis, x6 leaves.
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Second Iteration

x1 x2 x3 x4 x5 x6 x7
�4M � 1/3 1 �8M + 1 0 6M � 1/3 0 0 0

2 1 2 0 �1 1 0 0
0 �1 2 0 �2 0 1 0
2 0 4 0 �3 0 0 1

1/3 0 0 1 1/3 0 0 0

Basis change: x2 enters the basis, x6 leaves.
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Third Iteration

x1 x2 x3 x4 x5 x6 x7
�4M � 1/3 �4M + 3/2 0 0 �2M + 2/3 0 4M � 1/2 0

2 2 0 0 1 1 �1 0
0 �1/2 1 0 �1 0 1/2 0
2 2 0 0 1 0 �2 1

1/3 0 0 1 1/3 0 0 0

Basis change: x1 enters the basis, x5 leaves.
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Third Iteration

x1 x2 x3 x4 x5 x6 x7
�4M � 1/3 �4M + 3/2 0 0 �2M + 2/3 0 4M � 1/2 0

2 2 0 0 1 1 �1 0
0 �1/2 1 0 �1 0 1/2 0
2 2 0 0 1 0 �2 1

1/3 0 0 1 1/3 0 0 0

Basis change: x1 enters the basis, x5 leaves.
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Fourth Iteration

x1 x2 x3 x4 x5 x6 x7
�11/6 0 0 0 �1/12 2M � 3/4 2M + 1/4 0

21 1 0 0 1/2 1/2 �1/2 0
1/2 0 1 0 �3/4 1/4 1/4 0
0 0 0 0 0 �1 �1 1

1/3 0 0 1 1/3 0 0 0

Note that all artificial variables have already been driven to 0.

Basis change: x4 enters the basis, x3 leaves.
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Fifth Iteration

x1 x2 x3 x4 x5 x6 x7
�7/4 0 0 1/4 0 2M � 3/4 2M + 1/4 0
1/2 1 0 �3/2 0 1/2 �1/2 0
5/4 0 1 9/4 0 1/4 1/4 0
0 0 0 0 0 �1 �1 1
1 0 0 3 1 0 0 0

We now have an optimal solution of the auxiliary problem, as all costs are nonnegative
(M presumed large enough).

By elimiating the third row as in the previous example, we get a basic feasible and also
optimal solution to the original problem.
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Computational Efficiency of the Simplex Method

Observation
The computational efficiency of the simplex method is determined by

i the computational effort of each iteration;
ii the number of iterations.

Question: How many iterations are needed in the worst case?

Idea for negative answer (lower bound)
Describe
I a polyhedron with an exponential number of vertices;
I a path that visits all vertices and always moves from a vertex to an adjacent one

that has lower costs.
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Computational Efficiency of the Simplex Method

Unit cube
Consider the unit cube in Rn, defined by the constraints

0  xi  1, i = 1, . . . , n

The unit cube has
I 2n vertices;
I a spanning path, i. e., a path traveling the edges of the cube visiting each vertex

exactly once.

x1

x2

x1

x2

x3
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Computational Efficiency of the Simplex Method (cont.)

Klee-Minty cube
Consider a perturbation of the unit cube in Rn, defined by the constraints

0  x1  1,
✏xi�1  xi  1 � ✏xi�1, i = 2, . . . , n

for some ✏ 2 (0, 1/2).

x1

x2

x1

x2

x3
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Computational Efficiency of the Simplex Method (cont.)

Klee-Minty cube

0  x1  1,
✏xi�1  xi  1 � ✏xi�1, i = 2, . . . , n, ✏ 2 (0, 1/2)

Theorem 3.1.
Consider the linear programming problem of minimizing �xn subject to the constraints
above. Then,

a the feasible set has 2n vertices;
b the vertices can be ordered so that each one is adjacent to and has lower cost than

the previous one;
c there exists a pivoting rule under which the simplex method requires 2n � 1

changes of basis before it terminates.
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Computational Efficiency of the Simplex Method (cont.)
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Diameter of Polyhedra

Definition 3.2.
I The distance d(x , y) between two vertices x , y is the minimum number of edges

required to reach y starting from x .

I The diameter D(P) of polyhedron P is the maximum d(x , y) over all pairs of
vertices (x , y).

I �(n,m) is the maximum D(P) over all polytopes in Rn that are represented in
terms of m inequality constraints.

I �u(n,m) is the maximum D(P) over all polyhedra in Rn that are represented in
terms of m inequality constraints.

127



Diameter of Polyhedra

Definition 3.2.
I The distance d(x , y) between two vertices x , y is the minimum number of edges

required to reach y starting from x .

I The diameter D(P) of polyhedron P is the maximum d(x , y) over all pairs of
vertices (x , y).

I �(n,m) is the maximum D(P) over all polytopes in Rn that are represented in
terms of m inequality constraints.

I �u(n,m) is the maximum D(P) over all polyhedra in Rn that are represented in
terms of m inequality constraints.

�(2, 8) =
⌅8
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⇧
= 4
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Hirsch Conjecture
Observation: The diameter of the feasible set in a linear programming problem is a
lower bound on the number of steps required by the simplex method, no matter which
pivoting rule is being used.

Polynomial Hirsch Conjecture

�(n,m)  poly(m, n)

Remarks
I Known lower bounds: �u(n,m) � m � n +

⌅
n
5
⇧

I Known upper bounds:

�(n,m)  �u(n,m) < m
1+log2 n = (2n)log2 m

I The Strong Hirsch Conjecture

�(n,m)  m � n

was disproven in 2010 by Paco Santos for n = 43, m = 86.
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Average Case Behavior of the Simplex Method

I Despite the exponential lower bounds on the worst case behavior of the simplex
method (Klee-Minty cubes etc.), the simplex method usually behaves well in
practice.

I The number of iterations is “typically” O(m).

I There have been several attempts to explain this phenomenon from a more
theoretical point of view.

I These results say that “on average” the number of iterations is O(·) (usually
polynomial).

I One main difficulty is to come up with a meaningful and, at the same time,
manageable definition of the term “on average”.
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