# Weak Duality Theorem

#### Theorem 4.3.

If x is a feasible solution to the primal LP (minimization problem) and p a feasible solution to the dual LP (maximization problem), then

$$c^T \cdot x \ge p^T \cdot b$$
 .

# Weak Duality Theorem

Theorem 4.3.

If x is a feasible solution to the primal LP (minimization problem) and p a feasible solution to the dual LP (maximization problem), then

 $c^T \cdot x \geq p^T \cdot b$  .

### Corollary 4.4.

Consider a primal-dual pair of linear programs as above.

- a If the primal LP is unbounded (i.e., optimal cost  $= -\infty$ ), then the dual LP is infeasible.
- **b** If the dual LP is unbounded (i. e., optimal cost  $= \infty$ ), then the primal LP is infeasible.
- **c** If x and p are feasible solutions to the primal and dual LP, resp., and if  $c^T \cdot x = p^T \cdot b$ , then x and p are optimal solutions.

Proof of Thm 4.2:  
By Thm 4.2 we way assume that primal (P) and  
dual (D) are of the form:  
(P) min 
$$c^{T}x = \sum_{j=1}^{n} c_{j}x_{j}$$
 (D) max  $p^{T}b = \sum_{j=1}^{m} b_{i}p_{j}$   
 $s.t Ax \ge b^{T}s = a_{ij}x_{j} \ge b_{i}, \forall i$   
 $x \ge 0$  (D) max  $p^{T}b = \sum_{j=1}^{m} b_{i}p_{j}$   
 $s.t A^{T}p^{\subseteq}c \otimes \sum_{i=1}^{m} a_{ij}p_{i} \le c_{j}$   
 $p \ge 0$  (D)  $\sum_{i=1}^{m} a_{ij}p_{i} \le c_{j}$   
Let  $x, p$  be feasible colutions for (P) and (D) repeching  
 $c^{T}x \ge (A^{T}p)^{T}x = (p^{T}A)x = p^{T}(Ax) \ge p^{T}b$   
 $\sum_{j=1}^{m} c_{j}x_{j} \ge \sum_{i=1}^{m} a_{ij}p_{i}x_{j} = \sum_{j=1}^{m} p_{i}\sum_{j=1}^{m} a_{ij}x_{j} \ge \sum_{j=1}^{m} p_{i}b_{i}$ 



y optimal => reduced 
$$\cos f_{S} \ge \sigma$$
  
 $c^{T} - C_{B}^{T} B^{-1} A \ge \sigma$   
 $=:q^{T}$   
=>  $q^{T} A \in c^{T}$   
 $=> q$  is feasible in (D)  
Then  
 $q^{T}b = (c_{B}^{T} B^{-1})b = C_{B}^{T} (B^{-1}b) = c_{B}^{T} y_{B} = c^{T} y$   
=>  $q^{T}b = c^{T} y$   
=>  $q$  is optimal in (D) by weak duality.

# Different Possibilities for Primal and Dual LP



## Different Possibilities for Primal and Dual LP

| $primal \setminus dual$ | finite optimum | unbounded  | infeasible |
|-------------------------|----------------|------------|------------|
| finite optimum          | possible       | impossible | impossible |
| unbounded               | impossible     | impossible | possible   |
| infeasible              | impossible     | possible   | possible   |
|                         |                |            |            |

Example of infeasible primal and dual LP:

| min  | $x_1 + 2 x_2$     | max  | $p_1 + 3  p_2$     |
|------|-------------------|------|--------------------|
| s.t. | $x_1 + x_2 = 1$   | s.t. | $p_1 + 2  p_2 = 1$ |
|      | $2x_1 + 2x_2 = 3$ |      | $p_1 + 2 p_2 = 2$  |