Geometric View

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=n$:
$\min c^{T} \cdot x$
s.t. $\quad a_{i}{ }^{T} \cdot x \geq b_{i}, \quad i=1, \ldots, m$

A

$\max p^{T} \cdot b$
$\sum_{i=1}^{m} \sum_{j=1}^{n} p_{i=1}^{m} a_{i j}=c_{j}$

$$
\forall_{j}=1 . . \mathrm{m}
$$

Geometric View

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=n$:

$$
\begin{array}{lll}
\min & c^{T} \cdot x & \max p^{T} \cdot b \\
\text { s.t. } & a_{i}{ }^{T} \cdot x \geq b_{i}, \quad i=1, \ldots, m & \text { s.t. } \sum_{i=1}^{m} p_{i} \cdot a_{i}=c \\
& p \geq 0
\end{array}
$$

Let $I \subseteq\{1, \ldots, m\}$ with $|I|=n$ and $a_{i}, i \in I$, linearly independent.

Geometric View

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=n$:

$$
\begin{array}{ll}
\min & c^{T} \cdot x \\
\text { s.t. } & a_{i}^{T} \cdot x \geq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

$$
\begin{aligned}
& \max p^{T} \cdot b \\
& \text { s.t. } \quad \sum_{i=1}^{m} p_{i} \cdot a_{i}=c \\
& p \geq 0
\end{aligned}
$$

Let $I \subseteq\{1, \ldots, m\}$ with $|I|=n$ and $a_{i}, i \in I$, linearly independent.
$\Longrightarrow \quad a_{i}{ }^{T} \cdot x=b_{i}, i \in I$, has unique solution x^{\prime} (basic solution)

Geometric View

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=n$:

$$
\begin{array}{ll}
\min & c^{T} \cdot x \\
\text { s.t. } & a_{i}^{T} \cdot x \geq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

$$
\begin{aligned}
& \max p^{T} \cdot b \\
& \text { s.t. } \quad \sum_{i=1}^{m} p_{i} \cdot a_{i}=c \\
& \qquad p \geq 0
\end{aligned}
$$

Let $I \subseteq\{1, \ldots, m\}$ with $|I|=n$ and $a_{i}, i \in I$, linearly independent.
$\Longrightarrow \quad a_{i}{ }^{T} \cdot x=b_{i}, i \in I$, has unique solution x^{\prime} (basic solution)
Let $p \in \mathbb{R}^{m}$ (dual vector). Then x, p are optimal solutions if
ii $a_{i}{ }^{T} \cdot x \geq b_{i}$ for all i (primal feasibility)
团 $p_{i}=0$ for all $i \notin I$ (complementary slackness)
田 $\sum_{i=1}^{m} p_{i} \cdot a_{i}=c$ (dual feasibility)
iv $p \geq 0$ (dual feasibility)

Geometric View

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=n$:

$$
\begin{array}{ll}
\min & c^{T} \cdot x \\
\text { s.t. } & a_{i}^{T} \cdot x \geq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

$$
\begin{aligned}
& \max p^{T} \cdot b \\
& \text { s.t. } \quad \sum_{i=1}^{m} p_{i} \cdot a_{i}=c \\
& \quad p \geq 0
\end{aligned}
$$

Let $I \subseteq\{1, \ldots, m\}$ with $|I|=n$ and $a_{i}, i \in I$, linearly independent.
$\Longrightarrow \quad a_{i}{ }^{T} \cdot x=b_{i}, i \in I$, has unique solution x^{\prime} (basic solution)
Let $p \in \mathbb{R}^{m}$ (dual vector). Then x, p are optimal solutions if
ii $a_{i}{ }^{T} \cdot x \geq b_{i}$ for all i (primal feasibility)
iii $p_{i}=0$ for all $i \notin I$ (complementary slackness)
团 $\sum_{i=1}^{m} p_{i} \cdot a_{i}=c$ (dual feasibility)
iv $p \geq 0$ (dual feasibility)
(ii) and (iii) imply $\sum_{i \in I} p_{i} \cdot a_{i}=c$ which has a unique solution p^{\prime}.

Geometric View

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=n$:

$$
\begin{array}{ll}
\min & c^{T} \cdot x \\
\text { s.t. } & a_{i}^{T} \cdot x \geq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

$$
\begin{aligned}
& \max p^{T} \cdot b \\
& \text { s.t. } \quad \sum_{i=1}^{m} p_{i} \cdot a_{i}=c \\
& \quad p \geq 0
\end{aligned}
$$

Let $I \subseteq\{1, \ldots, m\}$ with $|I|=n$ and $a_{i}, i \in I$, linearly independent.
$\Longrightarrow \quad a_{i}{ }^{T} \cdot x=b_{i}, i \in I$, has unique solution x^{\prime} (basic solution)
Let $p \in \mathbb{R}^{m}$ (dual vector). Then x, p are optimal solutions if
ii $a_{i}{ }^{T} \cdot x \geq b_{i}$ for all i (primal feasibility)
Iit $p_{i}=0$ for all $i \notin I$ (complementary slackness)
团 $\sum_{i=1}^{m} p_{i} \cdot a_{i}=c$ (dual feasibility)
iv $p \geq 0$ (dual feasibility)
(ii) and (iii) imply $\sum_{i \in I} p_{i} \cdot a_{i}=c$ which has a unique solution p^{\prime}.

The $a_{i}, i \in I$, form basis for dual LP and p^{\prime} is corresponding basic solution.

Geometric View (cont.)

Geometric View (cont.)

Geometric View (cont.)

Geometric View (cont.)

Dual Variables as Marginal Costs
Consider the primal dual pair:

$$
\begin{aligned}
\min & c^{T} \cdot x \\
\text { s.t. } & A \cdot x
\end{aligned}=b
$$

$$
\begin{array}{ll}
\max & p^{T} \cdot b \\
\text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{array} \not A^{\top} p \leq c
$$

Dual Variables as Marginal Costs

Consider the primal dual pair:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Let x^{*} be optimal basic feasible solution to primal LP with basis B, i. e., $x_{B}^{*}=B^{-1} \cdot b$ and assume that $x_{B}^{*}>0$ (i. e., x^{*} non-degenerate).

Dual Variables as Marginal Costs

Consider the primal dual pair:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Let x^{*} be optimal basic feasible solution to primal LP with basis B, i.e., $x_{B}^{*}=B^{-1} \cdot b$ and assume that $x_{B}^{*}>0$ (i. e., x^{*} non-degenerate).
Replace b by $b+d$. For small d, the basis B remains feasible and optimal:

$$
\begin{align*}
& \quad B^{-1} \cdot(b+d)=B^{-1} \cdot b+B^{-1} \cdot d \geq 0 \tag{feasibility}\\
& \text { reduced } \\
& \text { cosds }
\end{align*} \bar{c}^{T}=c^{T}-c_{B}^{T} \cdot B^{-1} \cdot A \geq 0
$$

(optimality)

Dual Variables as Marginal Costs

Consider the primal dual pair:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Let x^{*} be optimal basic feasible solution to primal LP with basis B, i. e., $x_{B}^{*}=B^{-1} \cdot b$ and assume that $x_{B}^{*}>0$ (i. e., x^{*} non-degenerate).
Replace b by $b+d$. For small d, the basis B remains feasible and optimal:

$$
\begin{array}{r}
B^{-1} \cdot(b+d)=B^{-1} \cdot b+B^{-1} \cdot d \geq 0 \\
\bar{c}^{T}=c^{T}-c_{B}^{T} \cdot B^{-1} \cdot A \geq 0
\end{array}
$$

Optimal cost of perturbed problem is

$$
c_{B}^{T} \cdot B^{-1} \cdot(b+d)=c_{B}^{T} \cdot x_{B}^{*}+\underbrace{\left(c_{B}^{T} \cdot B^{-1}\right)}_{=p^{T}} \cdot d
$$

Dual Variables as Marginal Costs

Consider the primal dual pair:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Let x^{*} be optimal basic feasible solution to primal LP with basis B, i. e., $x_{B}^{*}=B^{-1} \cdot b$ and assume that $x_{B}^{*}>0$ (i. e., x^{*} non-degenerate).

Replace b by $b+d$. For small d, the basis B remains feasible and optimal:

$$
\begin{array}{r}
B^{-1} \cdot(b+d)=B^{-1} \cdot b+B^{-1} \cdot d \geq 0 \\
\bar{c}^{T}=c^{T}-c_{B}^{T} \cdot B^{-1} \cdot A \geq 0
\end{array}
$$

Optimal cost of perturbed problem is

$$
c_{B}^{T} \cdot B^{-1} \cdot(b+d)=c_{B}^{T} \cdot x_{B}^{*}+\underbrace{\left(c_{B}^{T} \cdot B^{-1}\right)}_{=p^{T}} \cdot d
$$

Thus, p_{i} is the marginal cost per unit increase of b_{i}.

Dual Variables as Shadow Prices

Diet problem:

- $a_{i j}:=$ amount of nutrient i in one unit of food j
- $b_{i}:=$ requirement of nutrient i in some ideal diet
- $c_{j}:=$ cost of one unit of food j on the food market

Dual Variables as Shadow Prices
Diet problem:

- $a_{i j}:=$ amount of nutrient i in one unit of food j
- $b_{i}:=$ requirement of nutrient i in some ideal diet
- $c_{j}:=$ cost of one unit of food j on the food market

LP duality: Let $x_{j}:=$ number of units of food j in the diet:

$$
\begin{array}{rrr}
\min & c^{T} \cdot x & \max
\end{array} p^{T} \cdot b
$$

Dual Variables as Shadow Prices

Diet problem:

- $a_{i j}:=$ amount of nutrient i in one unit of food j
- $b_{i}:=$ requirement of nutrient i in some ideal diet
- $c_{j}:=$ cost of one unit of food j on the food market

LP duality: Let $x_{j}:=$ number of units of food j in the diet:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Dual interpretation:

- p_{i} is "fair" price per unit of nutrient i

Dual Variables as Shadow Prices

Diet problem:

- $a_{i j}:=$ amount of nutrient i in one unit of food j
- $b_{i}:=$ requirement of nutrient i in some ideal diet
- $c_{j}:=$ cost of one unit of food j on the food market

LP duality: Let $x_{j}:=$ number of units of food j in the diet:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Dual interpretation:

- p_{i} is "fair" price per unit of nutrient i
- $p^{T} \cdot A_{j}$ is value of one unit of food j on the nutrient market

Dual Variables as Shadow Prices

Diet problem:

- $a_{i j}:=$ amount of nutrient i in one unit of food j
- $b_{i}:=$ requirement of nutrient i in some ideal diet
- $c_{j}:=$ cost of one unit of food j on the food market

LP duality: Let $x_{j}:=$ number of units of food j in the diet:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Dual interpretation:

- p_{i} is "fair" price per unit of nutrient i
$-p^{T} \cdot A_{j}$ is value of one unit of food j on the nutrient market
- food j used in ideal $\operatorname{diet}\left(x_{j}^{*}>0\right)$ is consistently priced at the two markets (by complementary slackness)

Dual Variables as Shadow Prices

Diet problem:

- $a_{i j}$:= amount of nutrient i in one unit of food j
- $b_{i}:=$ requirement of nutrient i in some ideal diet
- $c_{j}:=$ cost of one unit of food j on the food market

LP duality: Let $x_{j}:=$ number of units of food j in the diet:

$$
\begin{array}{rrrr}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x & =b & \text { s.t. } \\
& p^{T} \cdot A \\
& x & &
\end{array}
$$

Dual interpretation:

- p_{i} is "fair" price per unit of nutrient i
- $p^{T} \cdot A_{j}$ is value of one unit of food j on the nutrient market
- food j used in ideal diet $\left(x_{j}^{*}>0\right)$ is consistently priced at the two markets (by complementary slackness)
- ideal diet has the same value on both markets (by strong duality)

