Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and rank(A) = n:

min
$$c^T \cdot x$$

s.t. $a_i^T \cdot x \ge b_i$, $i = 1, ..., m$
 A
 n
 a_i^T
 a_i^T

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and rank(A) = n:

min
$$c^T \cdot x$$
 max $p^T \cdot b$
s.t. $a_i^T \cdot x \ge b_i$, $i = 1, ..., m$ s.t. $\sum_{i=1}^m p_i \cdot a_i = c$
 $p \ge 0$

Let $I \subseteq \{1, \ldots, m\}$ with |I| = n and a_i , $i \in I$, linearly independent.

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and rank(A) = n:

min
$$c^T \cdot x$$
 max $p^T \cdot b$
s.t. $a_i^T \cdot x \ge b_i$, $i = 1, ..., m$ s.t. $\sum_{i=1}^m p_i \cdot a_i = c$
 $p \ge 0$

Let $I \subseteq \{1, ..., m\}$ with |I| = n and a_i , $i \in I$, linearly independent. $\implies a_i^T \cdot x = b_i$, $i \in I$, has unique solution x^I (basic solution)

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and rank(A) = n:

min
$$c^T \cdot x$$
 max $p^T \cdot b$
s.t. $a_i^T \cdot x \ge b_i$, $i = 1, ..., m$ s.t. $\sum_{i=1}^m p_i \cdot a_i = c$
 $p \ge 0$

Let $I \subseteq \{1, ..., m\}$ with |I| = n and a_i , $i \in I$, linearly independent. $\implies a_i^T \cdot x = b_i$, $i \in I$, has unique solution x^I (basic solution) Let $p \in \mathbb{R}^m$ (dual vector). Then x, p are optimal solutions if $a_i^T \cdot x \ge b_i$ for all i (primal feasibility) $p_i = 0$ for all $i \notin I$ (complementary slackness) $\sum_{i=1}^m p_i \cdot a_i = c$ (dual feasibility) $p \ge 0$ (dual feasibility)

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and rank(A) = n:

min
$$c^T \cdot x$$
 max $p^T \cdot b$
s.t. $a_i^T \cdot x \ge b_i$, $i = 1, ..., m$ s.t. $\sum_{i=1}^m p_i \cdot a_i = c$
 $p \ge 0$

Let $I \subseteq \{1, ..., m\}$ with |I| = n and a_i , $i \in I$, linearly independent. $\implies a_i^T \cdot x = b_i$, $i \in I$, has unique solution x^I (basic solution) Let $p \in \mathbb{R}^m$ (dual vector). Then x, p are optimal solutions if $a_i^T \cdot x \ge b_i$ for all i (primal feasibility) $p_i = 0$ for all $i \notin I$ (complementary slackness) $\sum_{i=1}^m p_i \cdot a_i = c$ (dual feasibility) $p \ge 0$ (dual feasibility) (ii) and (iii) imply $\sum_{i \in I} p_i \cdot a_i = c$ which has a unique solution p^I .

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and rank(A) = n:

min
$$c^T \cdot x$$
 max $p^T \cdot b$
s.t. $a_i^T \cdot x \ge b_i$, $i = 1, ..., m$ s.t. $\sum_{i=1}^m p_i \cdot a_i = c$
 $p \ge 0$

Let $I \subseteq \{1, ..., m\}$ with |I| = n and a_i , $i \in I$, linearly independent. $\implies a_i^T \cdot x = b_i$, $i \in I$, has unique solution x^I (basic solution) Let $p \in \mathbb{R}^m$ (dual vector). Then x, p are optimal solutions if $a_i^T \cdot x \ge b_i$ for all i (primal feasibility) $p_i = 0$ for all $i \notin I$ (complementary slackness) $\sum_{i=1}^m p_i \cdot a_i = c$ (dual feasibility) $p \ge 0$ (dual feasibility) (ii) and (iii) imply $\sum_{i \in I} p_i \cdot a_i = c$ which has a unique solution p^I .

The a_i , $i \in I$, form basis for dual LP and p^I is corresponding basic solution.

Consider the primal dual pair:

$$\begin{array}{ll} \min \quad c^T \cdot x \\ \text{s.t.} \quad A \cdot x = b \\ \quad x \ge 0 \end{array}$$

Consider the primal dual pair:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Let x^* be optimal basic feasible solution to primal LP with basis B, i. e., $x_B^* = B^{-1} \cdot b$ and assume that $x_B^* > 0$ (i. e., x^* non-degenerate).

Consider the primal dual pair:

$$\begin{array}{ll} \min \quad c^T \cdot x & \max \quad p^T \cdot b \\ \text{s.t.} \quad A \cdot x = b & \text{s.t.} \quad p^T \cdot A \leq c^T \\ \quad x \geq 0 \end{array}$$

Let x^* be optimal basic feasible solution to primal LP with basis B, i. e., $x_B^* = B^{-1} \cdot b$ and assume that $x_B^* > 0$ (i. e., x^* non-degenerate).

Replace b by b + d. For small d, the basis B remains feasible and optimal:

$$B^{-1} \cdot (b+d) = B^{-1} \cdot b + B^{-1} \cdot d \ge 0 \qquad (feasibility)$$
reduced
$$\bar{c}^{T} = c^{T} - c_{B}^{T} \cdot B^{-1} \cdot A \ge 0 \qquad (optimality)$$

Consider the primal dual pair:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Let x^* be optimal basic feasible solution to primal LP with basis B, i. e., $x_B^* = B^{-1} \cdot b$ and assume that $x_B^* > 0$ (i. e., x^* non-degenerate).

Replace b by b + d. For small d, the basis B remains feasible and optimal:

$$B^{-1} \cdot (b+d) = B^{-1} \cdot b + B^{-1} \cdot d \ge 0 \qquad (feasibility)$$
$$\bar{c}^{T} = c^{T} - c_{B}^{T} \cdot B^{-1} \cdot A \ge 0 \qquad (optimality)$$

Optimal cost of perturbed problem is

$$c_B^T \cdot B^{-1} \cdot (b+d) = c_B^T \cdot x_B^* + \underbrace{(c_B^T \cdot B^{-1})}_{=p^T} \cdot d$$

Consider the primal dual pair:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Let x^* be optimal basic feasible solution to primal LP with basis B, i. e., $x_B^* = B^{-1} \cdot b$ and assume that $x_B^* > 0$ (i. e., x^* non-degenerate).

Replace b by b + d. For small d, the basis B remains feasible and optimal:

$$B^{-1} \cdot (b+d) = B^{-1} \cdot b + B^{-1} \cdot d \ge 0 \qquad (feasibility)$$
$$\bar{c}^{T} = c^{T} - c_{B}^{T} \cdot B^{-1} \cdot A \ge 0 \qquad (optimality)$$

Optimal cost of perturbed problem is

$$c_B^T \cdot B^{-1} \cdot (b+d) = c_B^T \cdot x_B^* + \underbrace{(c_B^T \cdot B^{-1})}_{=p^T} \cdot d$$

Thus, p_i is the marginal cost per unit increase of b_i .

Diet problem:

- ▶ *a_{ij}* := amount of nutrient *i* in one unit of food *j*
- $b_i :=$ requirement of nutrient *i* in some ideal diet
- c_j := cost of one unit of food j on the food market

Diet problem:

- ▶ $a_{ij} :=$ amount of nutrient *i* in one unit of food *j*
- $b_i :=$ requirement of nutrient *i* in some ideal diet
- c_j := cost of one unit of food j on the food market

LP duality: Let $x_j :=$ number of units of food j in the diet:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Diet problem:

- $a_{ij} :=$ amount of nutrient *i* in one unit of food *j*
- $b_i :=$ requirement of nutrient *i* in some ideal diet
- c_j := cost of one unit of food j on the food market

LP duality: Let $x_j :=$ number of units of food j in the diet:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Dual interpretation:

p_i is "fair" price per unit of nutrient *i*

Diet problem:

- $a_{ij} :=$ amount of nutrient *i* in one unit of food *j*
- $b_i :=$ requirement of nutrient *i* in some ideal diet
- $c_j := \text{cost of one unit of food } j$ on the food market

LP duality: Let $x_j :=$ number of units of food j in the diet:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Dual interpretation:

- *p_i* is "fair" price per unit of nutrient *i*
- \triangleright $p^T \cdot A_j$ is value of one unit of food j on the nutrient market

Diet problem:

- $a_{ij} :=$ amount of nutrient *i* in one unit of food *j*
- $b_i :=$ requirement of nutrient *i* in some ideal diet
- $c_j := \text{cost of one unit of food } j$ on the food market

LP duality: Let $x_j :=$ number of units of food j in the diet:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Dual interpretation:

- *p_i* is "fair" price per unit of nutrient *i*
- $p^T \cdot A_j$ is value of one unit of food j on the nutrient market
- ▶ food j used in ideal diet (x_j^{*} > 0) is consistently priced at the two markets (by complementary slackness)

Diet problem:

- $a_{ij} :=$ amount of nutrient *i* in one unit of food *j*
- $b_i :=$ requirement of nutrient *i* in some ideal diet
- $c_j := \text{cost of one unit of food } j$ on the food market

LP duality: Let $x_j :=$ number of units of food j in the diet:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Dual interpretation:

- *p_i* is "fair" price per unit of nutrient *i*
- $p^T \cdot A_j$ is value of one unit of food j on the nutrient market
- ▶ food j used in ideal diet (x_j^{*} > 0) is consistently priced at the two markets (by complementary slackness)
- ideal diet has the same value on both markets (by strong duality)