Consider LP in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and dual LP:

$$\begin{array}{ll} \min \quad c^T \cdot x & \max \quad p^T \cdot b \\ \text{s.t.} \quad A \cdot x = b & \text{s.t.} \quad p^T \cdot A \leq c^T \\ \quad x \geq 0 \end{array}$$

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and dual LP:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Observation 4.7.

A basis B yields

- ▶ a primal basic solution given by $x_B := B^{-1} \cdot b$ and
- ▶ a dual basic solution $p^T := c_B^T \cdot B^{-1}$.

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and dual LP:

$$\begin{array}{lll} \min & c^T \cdot x & \max & p^T \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^T \cdot A \leq c^T \\ & x \geq 0 \end{array}$$

Observation 4.7.

A basis B yields

- ▶ a primal basic solution given by $x_B := B^{-1} \cdot b$ and
- ▶ a dual basic solution $p^T := c_B^T \cdot B^{-1}$.

Moreover,

a the values of the primal and the dual basic solutions are equal:

$$c_B^T \cdot x_B = c_B^T \cdot B^{-1} \cdot b = p^T \cdot b$$
;

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and dual LP:

$$\begin{array}{ll} \min \quad c^T \cdot x & \max \quad p^T \cdot b \\ \text{s.t.} \quad A \cdot x = b & \text{s.t.} \quad p^T \cdot A \leq c^T \\ \quad x \geq 0 \end{array}$$

Observation 4.7.

A basis B yields

- ▶ a primal basic solution given by $x_B := B^{-1} \cdot b$ and
- ▶ a dual basic solution $p^T := c_B^T \cdot B^{-1}$.

Moreover,

a the values of the primal and the dual basic solutions are equal:

$$c_B{}^T \cdot x_B = c_B{}^T \cdot B^{-1} \cdot b = p^T \cdot b$$
;

b *p* is feasible if and only if $\bar{c} \ge 0$;

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and dual LP:

$$\begin{array}{ll} \min \quad c^T \cdot x & \max \quad p^T \cdot b \\ \text{s.t.} \quad A \cdot x = b & \text{s.t.} \quad p^T \cdot A \leq c^T \\ \quad x \geq 0 \end{array}$$

Observation 4.7.

A basis B yields

- ▶ a primal basic solution given by $x_B := B^{-1} \cdot b$ and
- a dual basic solution $p^T := c_B^T \cdot B^{-1}$.

Moreover,

a the values of the primal and the dual basic solutions are equal:

$$c_B^T \cdot x_B = c_B^T \cdot B^{-1} \cdot b = p^T \cdot b$$
;

- **b** *p* is feasible if and only if $\bar{c} \ge 0$;
- **c** reduced cost $\bar{c}_i = 0$ corresponds to active dual constraint;

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and dual LP:

$$\begin{array}{ll} \min \quad c^T \cdot x & \max \quad p^T \cdot b \\ \text{s.t.} \quad A \cdot x = b & \text{s.t.} \quad p^T \cdot A \leq c^T \\ \quad x \geq 0 \end{array}$$

Observation 4.7.

A basis B yields

- ▶ a primal basic solution given by $x_B := B^{-1} \cdot b$ and
- ▶ a dual basic solution $p^T := c_B^T \cdot B^{-1}$.

Moreover,

a the values of the primal and the dual basic solutions are equal:

$$c_B^T \cdot x_B = c_B^T \cdot B^{-1} \cdot b = p^T \cdot b$$
;

- **b** p is feasible if and only if $\overline{c} \ge 0$; $\overline{c}^{\mathsf{T}} = c^{\mathsf{T}} c_3^{\mathsf{T}} \overline{B}^{-1} A = c^{\mathsf{T}} \rho^{\mathsf{T}} A \ge 0^{\mathsf{T}}$
- **c** reduced cost $\bar{c}_i = 0$ corresponds to active dual constraint;
- **d** p is degenerate if and only if $\bar{c}_i = 0$ for some non-basic variable x_i .

• Let B be a basis whose corresponding dual basic solution p is feasible.

- Let B be a basis whose corresponding dual basic solution p is feasible.
- ▶ If also the primal basic solution x is feasible, then x, p are optimal.

- \blacktriangleright Let *B* be a basis whose corresponding dual basic solution *p* is feasible.
- ▶ If also the primal basic solution x is feasible, then x, p are optimal.
- ▶ Assume that $x_{B(\ell)} < 0$ and consider the ℓ th row of the simplex tableau

 $(x_{B(\ell)}, v_1, \ldots, v_n)$ (pivot row)

- \blacktriangleright Let *B* be a basis whose corresponding dual basic solution *p* is feasible.
- If also the primal basic solution x is feasible, then x, p are optimal.
- ▶ Assume that $x_{B(\ell)} < 0$ and consider the ℓ th row of the simplex tableau

 $(x_{B(\ell)}, v_1, \ldots, v_n)$ (pivot row)

 $\blacksquare \text{ Let } j \in \{1, \ldots, n\} \text{ with } v_j < 0 \text{ and }$

$$\frac{\bar{c}_j}{|v_j|} = \min_{i:v_i < 0} \frac{\bar{c}_i}{|v_i|}$$

- Let B be a basis whose corresponding dual basic solution p is feasible.
- ▶ If also the primal basic solution x is feasible, then x, p are optimal.
- ▶ Assume that $x_{B(\ell)} < 0$ and consider the ℓ th row of the simplex tableau

$$(x_{B(\ell)}, v_1, \ldots, v_n)$$
 (pivot row)

Let
$$j \in \{1, ..., n\}$$
 with $v_j < 0$ and

$$\frac{\bar{c}_j}{|v_j|} = \min_{i:v_i < 0} \frac{\bar{c}_i}{|v_i|}$$
Performing an iteration of the simplex method with pivot element v_j yields new
basis B' and corresponding dual basic solution p' with
 $dual (combined on the simplex method with pivot element v_j yields new
basis B' and $corresponding dual basic solution p' with
 $dual (combined on the simplex method with pivot element v_j yields new
basis B' and $corresponding dual basic solution p' with
 $dual (combined on the simplex method with pivot element v_j yields new
 $dual (combined on the simplex method with pivot element v_j yields new
 $dual (combined on the simplex method with pivot element v_j yields new
 $dual (combined on the simplex method with pivot element v_j yields new
 $dual (combined on the simplex method with pivot element v_j yields new
 $dual (combined on the simplex method with pivot element v_j yields new
 $dual (combined on the simplex method with pivot element $v_j = 0$.$$$$$$$$$$$

- \blacktriangleright Let *B* be a basis whose corresponding dual basic solution *p* is feasible.
- ▶ If also the primal basic solution x is feasible, then x, p are optimal.
- Assume that $x_{B(\ell)} < 0$ and consider the ℓ th row of the simplex tableau

 $(x_{B(\ell)}, v_1, \ldots, v_n)$ (pivot row)

 $\blacksquare \text{ Let } j \in \{1, \ldots, n\} \text{ with } v_j < 0 \text{ and}$

$$\frac{\bar{c}_j}{|v_j|} = \min_{i:v_i < 0} \frac{\bar{c}_i}{|v_i|}$$

Performing an iteration of the simplex method with pivot element v_j yields new basis B' and corresponding dual basic solution p' with

$$c_{B'}{}^T \cdot B'^{-1} \cdot A \leq c^T \quad \text{and} \quad p'{}^T \cdot b \geq p^T \cdot b \quad (\text{with} > \text{if } \bar{c}_j > 0).$$

III If $v_i \ge 0$ for all $i \in \{1, ..., n\}$, then the dual LP is unbounded and the primal LP is infeasible.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
	0	2	6	10	0	0
$x_4 =$	2	-2	4	1	1	0
$x_4 = x_5 =$	-1	4	-2	-3	0	1

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
	0	2	6	10	0	0
$x_4 =$	2	-2	4	1	1	0
$x_{5} =$	-1	4	-2	-3	0	1

• Determine pivot row $(x_5 < 0)$

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
	0	2	6	10	0	0
$x_4 =$	2	-2	4	1	1	0
$x_5 =$	-1	4	-2	-3	0	1

- Determine pivot row $(x_5 < 0)$
- Find pivot column.

Column 2 and 3 have negative entries in pivot row.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5
	0	2	6	10	0	0
$x_4 =$	2	-2	4	1	1	0
$x_{5} =$	-1	4	-2	-3	0	1

- Determine pivot row $(x_5 < 0)$
- Find pivot column.
 - Column 2 and 3 have negative entries in pivot row.
 - Column 2 attains minimum.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5
	0	2	6	10	0	0
$x_4 =$	2	-2	4	1	1	0
$x_{5} =$	-1	4	-2	-3	0	1

- Determine pivot row $(x_5 < 0)$
- Find pivot column.
 - Column 2 and 3 have negative entries in pivot row.
 - Column 2 attains minimum.
- Perform basis change:
 - \triangleright x_5 leaves and x_2 enters basis.
 - Eliminate other entries in the pivot column.
 - Divide pivot row by pivot element.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
	-3	14	0	1	0	3
$x_4 =$	2	-2	4	1	1	0
$x_{5} =$	-1	4	-2	-3	0	1

- Determine pivot row $(x_5 < 0)$
- Find pivot column.
 - Column 2 and 3 have negative entries in pivot row.
 - Column 2 attains minimum.
- Perform basis change:
 - \triangleright x_5 leaves and x_2 enters basis.
 - Eliminate other entries in the pivot column.
 - Divide pivot row by pivot element.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
	-3	14	0	1	0	3
$x_4 =$	0	6	0	-5	1	2
$x_{5} =$	-1	4	-2	-3	0	1

- Determine pivot row $(x_5 < 0)$
- Find pivot column.
 - Column 2 and 3 have negative entries in pivot row.
 - Column 2 attains minimum.
- Perform basis change:
 - \triangleright x_5 leaves and x_2 enters basis.
 - Eliminate other entries in the pivot column.
 - Divide pivot row by pivot element.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
	-3	14	0	1	0	3
<i>x</i> ₄ =	0	6	0	-5	1	2
<i>x</i> ₂ =	1/2	-2	1	3/2	0	-1/2
-	,			,		1

- Determine pivot row $(x_5 < 0)$
- Find pivot column.
 - Column 2 and 3 have negative entries in pivot row.
 - Column 2 attains minimum.
- Perform basis change:
 - \triangleright x_5 leaves and x_2 enters basis.
 - Eliminate other entries in the pivot column.
 - Divide pivot row by pivot element.

Remarks on the Dual Simplex Method

- > Dual simplex method terminates if lexicographic pivoting rule is used:
 - Choose any row ℓ with $x_{B(\ell)} < 0$ to be the pivot row.
 - Among all columns j with $v_j < 0$ choose the one which is lexicographically minimal when divided by $|v_j|$.
- Dual simplex method is useful if, e.g., dual basic solution is readily available.
- Example: Resolve LP after right-hand-side b has changed.

COMP331/557

Chapter 5: Optimisation in Finance: Cash-Flow

(Cornuejols & Tütüncü, Chapter 3)

Cash-Flow Management Problem

A company has the following net cash flow requirements (in 1000's of \pounds):

Month	Jan	Feb	Mar	Apr	May	Jun
Net cash flow	v -150	-100	200	-200	50	300

E.g.: In January we have to pay £150k and in March we get £200k.

Cash-Flow Management Problem

A company has the following net cash flow requirements (in 1000's of \pounds):

	Jan					
Net cash flow	-150	-100	200	-200	50	300

E.g.: In January we have to pay $\pounds150k$ and in March we get $\pounds200k.$

Initially we have no cash but the following possibilities to borrow/invest money:

- \blacksquare a line of credit of up to £100k at an interest rate of 1% per month;
- ii in any one of the first three months, it can issue 90-day commercial paper bearing a total interest of 2% for the three-month period;
- iii excess funds can be invested at an interest rate of 0.3% per month.

Cash-Flow Management Problem

A company has the following net cash flow requirements (in 1000's of \pounds):

	Jan					
Net cash flow	-150	-100	200	-200	50	300

E.g.: In January we have to pay £150k and in March we get £200k.

Initially we have no cash but the following possibilities to borrow/invest money:

- 1 a line of credit of up to £100k at an interest rate of 1% per month;
- ii in any one of the first three months, it can issue 90-day commercial paper bearing a total interest of 2% for the three-month period;
- iii excess funds can be invested at an interest rate of 0.3% per month.

Task: We want to maximise the companies wealth in June, while fulfilling all payments.

Cash-Flow Management Problem – Modelling as LP

Decision Variables

- ▶ v .. wealth in June
- \blacktriangleright x_i .. amount drawn from credit line in month i
- > y_i .. amount of commercial paper issued in month i
- \triangleright z_i ... excess funds in month *i*

LP formulation:

Cash-Flow Management Problem – Modelling as LP

Decision Variables

- ▶ v .. wealth in June
- \blacktriangleright x_i .. amount drawn from credit line in month i
- > y_i .. amount of commercial paper issued in month i
- \triangleright z_i ... excess funds in month i

LP formulation:

max	v											
s.t.	x_1	+	<i>y</i> 1					_	z_1	=	150	
	<i>x</i> ₂	+	<i>y</i> ₂	_	$1.01x_1$	+	1.003 <i>z</i> 1	_	<i>z</i> ₂	=	100	
	<i>x</i> 3	+	<i>У</i> 3	_	$1.01x_2$	+	1.003 <i>z</i> 2	_	<i>Z</i> 3	=	-200	
	<i>x</i> ₄	_	$1.02y_1$	_	$1.01x_{3}$	+	1.003 <i>z</i> 3	_	<i>z</i> 4	=	200	
	X_5	_	1.02 <i>y</i> ₂	_	$1.01x_{4}$	+	1.003 <i>z</i> 4	_	<i>Z</i> 5	=	-50	
		_	1.02 <i>y</i> ₃	_	$1.01x_{5}$	+	1.003 <i>z</i> 5	_	v	=	-300	
									xi	\leq	100	$\forall i$
							x_i ,	yi,	Zi	\geq	0	$\forall i$

Cash-Flow Management Problem – Modelling as LP

```
cashflow.lp
Maximize
  wealth: v
Subject To
  Jan: x1 + y1 - z1 = 150
 Feb: x2 + y2 - 1.01 x1 + 1.003 z1 - z2 = 100
  Mar: x3 + y3 - 1.01 x2 + 1.003 z2 - z3 = -200
 Apr: x4 - 1.02 y1 - 1.01 x3 + 1.003 z3 - z4 = 200
  May: x5 - 1.02 y2 - 1.01 x4 + 1.003 z4 - z5 = -50
  Jun: -1.02 \text{ y3} - 1.01 \text{ x5} + 1.003 \text{ z5} - \text{v} = -300
Bounds
  0 \le x1 \le 100
  0 \le x^2 \le 100
  0 \le x3 \le 100
  0 \le x4 \le 100
  0 <= x5 <= 100
  -Inf \leq v \leq Inf
End
```