
Dual Basic Solutions
Consider LP in standard form with A 2 Rm⇥n

, rank(A) = m, and dual LP:

min cT · x max pT · b
s.t. A · x = b s.t. pT · A  cT

x � 0

Observation 4.7.

A basis B yields

I a primal basic solution given by xB := B�1 · b and

I a dual basic solution pT := cBT · B�1
.

Moreover,

a the values of the primal and the dual basic solutions are equal:

cB
T · xB = cB

T · B�1 · b = pT · b ;

b p is feasible if and only if c̄ � 0;

c reduced cost c̄i = 0 corresponds to active dual constraint;

d p is degenerate if and only if c̄i = 0 for some non-basic variable xi .

155



Dual Basic Solutions
Consider LP in standard form with A 2 Rm⇥n

, rank(A) = m, and dual LP:

min cT · x max pT · b
s.t. A · x = b s.t. pT · A  cT

x � 0

Observation 4.7.

A basis B yields

I a primal basic solution given by xB := B�1 · b and

I a dual basic solution pT := cBT · B�1
.

Moreover,

a the values of the primal and the dual basic solutions are equal:

cB
T · xB = cB

T · B�1 · b = pT · b ;

b p is feasible if and only if c̄ � 0;

c reduced cost c̄i = 0 corresponds to active dual constraint;

d p is degenerate if and only if c̄i = 0 for some non-basic variable xi .

155



Dual Basic Solutions
Consider LP in standard form with A 2 Rm⇥n

, rank(A) = m, and dual LP:

min cT · x max pT · b
s.t. A · x = b s.t. pT · A  cT

x � 0

Observation 4.7.

A basis B yields

I a primal basic solution given by xB := B�1 · b and

I a dual basic solution pT := cBT · B�1
.

Moreover,

a the values of the primal and the dual basic solutions are equal:

cB
T · xB = cB

T · B�1 · b = pT · b ;

b p is feasible if and only if c̄ � 0;

c reduced cost c̄i = 0 corresponds to active dual constraint;

d p is degenerate if and only if c̄i = 0 for some non-basic variable xi .

155



Dual Basic Solutions
Consider LP in standard form with A 2 Rm⇥n

, rank(A) = m, and dual LP:

min cT · x max pT · b
s.t. A · x = b s.t. pT · A  cT

x � 0

Observation 4.7.

A basis B yields

I a primal basic solution given by xB := B�1 · b and

I a dual basic solution pT := cBT · B�1
.

Moreover,

a the values of the primal and the dual basic solutions are equal:

cB
T · xB = cB

T · B�1 · b = pT · b ;

b p is feasible if and only if c̄ � 0;

c reduced cost c̄i = 0 corresponds to active dual constraint;

d p is degenerate if and only if c̄i = 0 for some non-basic variable xi .

155



Dual Basic Solutions
Consider LP in standard form with A 2 Rm⇥n

, rank(A) = m, and dual LP:

min cT · x max pT · b
s.t. A · x = b s.t. pT · A  cT

x � 0

Observation 4.7.

A basis B yields

I a primal basic solution given by xB := B�1 · b and

I a dual basic solution pT := cBT · B�1
.

Moreover,

a the values of the primal and the dual basic solutions are equal:

cB
T · xB = cB

T · B�1 · b = pT · b ;

b p is feasible if and only if c̄ � 0;

c reduced cost c̄i = 0 corresponds to active dual constraint;

d p is degenerate if and only if c̄i = 0 for some non-basic variable xi .

155



Dual Basic Solutions
Consider LP in standard form with A 2 Rm⇥n

, rank(A) = m, and dual LP:

min cT · x max pT · b
s.t. A · x = b s.t. pT · A  cT

x � 0

Observation 4.7.

A basis B yields

I a primal basic solution given by xB := B�1 · b and

I a dual basic solution pT := cBT · B�1
.

Moreover,

a the values of the primal and the dual basic solutions are equal:

cB
T · xB = cB

T · B�1 · b = pT · b ;

b p is feasible if and only if c̄ � 0;

c reduced cost c̄i = 0 corresponds to active dual constraint;

d p is degenerate if and only if c̄i = 0 for some non-basic variable xi .

155

ET = et - GT B
-  '

A  = CT - PTA 20



Dual Simplex Method

I Let B be a basis whose corresponding dual basic solution p is feasible.

I If also the primal basic solution x is feasible, then x , p are optimal.

I Assume that xB(`) < 0 and consider the `th row of the simplex tableau

(xB(`), v1, . . . , vn) (pivot row)

I Let j 2 {1, . . . , n} with vj < 0 and

c̄j
|vj |

= min
i :vi<0

c̄i
|vi |

Performing an iteration of the simplex method with pivot element vj yields new

basis B 0
and corresponding dual basic solution p0 with

cB0T · B 0�1 · A  cT and p0T · b � pT · b (with > if c̄j > 0).

II If vi � 0 for all i 2 {1, . . . , n}, then the dual LP is unbounded and the primal LP is

infeasible.
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Dual Simplex Example

x1 x2 x3 x4 x5
0 2 6 10 0 0

x4 = 2 �2 4 1 1 0

x5 = �1 4 �2 �3 0 1

I Determine pivot row (x5 < 0)

I Find pivot column.

I Column 2 and 3 have negative entries in pivot row.

I Column 2 attains minimum.

I Perform basis change:

I x5 leaves and x2 enters basis.

I Eliminate other entries in the pivot column.

I Divide pivot row by pivot element.
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Dual Simplex Example

x1 x2 x3 x4 x5
�3 14 0 1 0 3

x4 = 0 6 0 �5 1 2

x2 = 1/2 �2 1 3/2 0 �1/2

I Determine pivot row (x5 < 0)

I Find pivot column.
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Remarks on the Dual Simplex Method

I Dual simplex method terminates if lexicographic pivoting rule is used:

I Choose any row ` with xB(`) < 0 to be the pivot row.

I Among all columns j with vj < 0 choose the one which is lexicographically

minimal when divided by |vj |.

I Dual simplex method is useful if, e. g., dual basic solution is readily available.

I Example: Resolve LP after right-hand-side b has changed.
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COMP331/557

Chapter 5:

Optimisation in Finance: Cash-Flow

(Cornuejols & Tütüncü, Chapter 3)
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Cash-Flow Management Problem

A company has the following net cash flow requirements (in 1000’s of £):

Month Jan Feb Mar Apr May Jun

Net cash flow �150 �100 200 �200 50 300

E.g.: In January we have to pay £150k and in March we get £200k.

Initially we have no cash but the following possibilities to borrow/invest money:

i a line of credit of up to £100k at an interest rate of 1% per month;

ii in any one of the first three months, it can issue 90-day commercial paper bearing

a total interest of 2% for the three-month period;

iii excess funds can be invested at an interest rate of 0.3% per month.

Task: We want to maximise the companies wealth in June, while fulfilling all payments.
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Cash-Flow Management Problem – Modelling as LP

Decision Variables

I v .. wealth in June

I xi .. amount drawn from credit line in month i

I yi .. amount of commercial paper issued in month i

I zi .. excess funds in month i

LP formulation:
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I v .. wealth in June

I xi .. amount drawn from credit line in month i

I yi .. amount of commercial paper issued in month i

I zi .. excess funds in month i

LP formulation:

max v

s.t. x1 + y1 � z1 = 150

x2 + y2 � 1.01x1 + 1.003z1 � z2 = 100

x3 + y3 � 1.01x2 + 1.003z2 � z3 = �200

x4 � 1.02y1 � 1.01x3 + 1.003z3 � z4 = 200

x5 � 1.02y2 � 1.01x4 + 1.003z4 � z5 = �50

� 1.02y3 � 1.01x5 + 1.003z5 � v = �300

xi  100 8i
xi , yi , zi � 0 8i
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Cash-Flow Management Problem – Modelling as LP

cashflow.lp

Maximize
wealth: v

Subject To
Jan: x1 + y1 - z1 = 150
Feb: x2 + y2 - 1.01 x1 + 1.003 z1 - z2 = 100
Mar: x3 + y3 - 1.01 x2 + 1.003 z2 - z3 = -200
Apr: x4 - 1.02 y1 - 1.01 x3 + 1.003 z3 - z4 = 200
May: x5 - 1.02 y2 - 1.01 x4 + 1.003 z4 - z5 = -50
Jun: - 1.02 y3 - 1.01 x5 + 1.003 z5 - v = -300

Bounds
0 <= x1 <= 100
0 <= x2 <= 100
0 <= x3 <= 100
0 <= x4 <= 100
0 <= x5 <= 100
-Inf <= v <= Inf

End
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