Dual Basic Solutions
Consider LP in standard form with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$, and dual LP:

$$
\begin{aligned}
& \min c^{T} \cdot x \\
& \text { s.t. } A \cdot x=b \\
& x \geq 0 \\
& \max p^{T} \cdot b \\
& \text { s.t. } \quad p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Dual Basic Solutions

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$, and dual LP:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Observation 4.7.

A basis B yields

- a primal basic solution given by $x_{B}:=B^{-1} \cdot b$ and
- a dual basic solution $p^{T}:=c_{B}{ }^{T} \cdot B^{-1}$.

Dual Basic Solutions

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$, and dual LP:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Observation 4.7.

A basis B yields

- a primal basic solution given by $x_{B}:=B^{-1} \cdot b$ and
- a dual basic solution $p^{T}:=c_{B}{ }^{T} \cdot B^{-1}$.

Moreover,
a the values of the primal and the dual basic solutions are equal:

$$
c_{B}^{T} \cdot x_{B}=c_{B}^{T} \cdot B^{-1} \cdot b=p^{T} \cdot b
$$

Dual Basic Solutions

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$, and dual LP:

$$
\begin{aligned}
\min & c^{T} \cdot x & \max & p^{T} \cdot b \\
\text { s.t. } & A \cdot x=b & \text { s.t. } & p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Observation 4.7.

A basis B yields

- a primal basic solution given by $x_{B}:=B^{-1} \cdot b$ and
- a dual basic solution $p^{T}:=c_{B}{ }^{T} \cdot B^{-1}$.

Moreover,
a the values of the primal and the dual basic solutions are equal:

$$
c_{B}^{T} \cdot x_{B}=c_{B}^{T} \cdot B^{-1} \cdot b=p^{T} \cdot b
$$

b p is feasible if and only if $\bar{c} \geq 0$;

Dual Basic Solutions

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$, and dual LP:

$$
\begin{aligned}
& \min c^{T} \cdot x \\
& \text { s.t. } \quad A \cdot x=b \\
& x \geq 0 \\
& \max p^{T} \cdot b \\
& \text { s.t. } \quad p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Observation 4.7.

A basis B yields

- a primal basic solution given by $x_{B}:=B^{-1} \cdot b$ and
- a dual basic solution $p^{T}:=c_{B}{ }^{T} \cdot B^{-1}$.

Moreover,
a the values of the primal and the dual basic solutions are equal:

$$
c_{B}^{T} \cdot x_{B}=c_{B}^{T} \cdot B^{-1} \cdot b=p^{T} \cdot b
$$

b p is feasible if and only if $\bar{c} \geq 0$;
c reduced cost $\bar{c}_{i}=0$ corresponds to active dual constraint;

Dual Basic Solutions

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$, and dual LP:

$$
\begin{aligned}
& \min c^{T} \cdot x \\
& \text { s.t. } \quad A \cdot x=b \\
& x \geq 0 \\
& \max p^{T} \cdot b \\
& \text { s.t. } \quad p^{T} \cdot A \leq c^{T}
\end{aligned}
$$

Observation 4.7.

A basis B yields

- a primal basic solution given by $x_{B}:=B^{-1} \cdot b$ and
- a dual basic solution $p^{T}:=c_{B}{ }^{T} \cdot B^{-1}$.

Moreover,
a the values of the primal and the dual basic solutions are equal:

$$
c_{B}^{T} \cdot x_{B}=c_{B}^{T} \cdot B^{-1} \cdot b=p^{T} \cdot b
$$

b p is feasible if and only if $\bar{c} \geq 0 ; \quad \bar{C}^{\top}=c^{\top}-C_{B}^{\top} B^{-1} A=c^{\top}-p^{\top} A \geqslant \sigma$
c reduced cost $\bar{c}_{i}=0$ corresponds to active dual constraint;
d p is degenerate if and only if $\bar{c}_{i}=0$ for some non-basic variable x_{i}.

Dual Simplex Method

- Let B be a basis whose corresponding dual basic solution p is feasible.

Dual Simplex Method

- Let B be a basis whose corresponding dual basic solution p is feasible.
- If also the primal basic solution x is feasible, then x, p are optimal.

Dual Simplex Method

- Let B be a basis whose corresponding dual basic solution p is feasible.
- If also the primal basic solution x is feasible, then x, p are optimal.
- Assume that $x_{B(\ell)}<0$ and consider the ℓ th row of the simplex tableau

$$
\left(x_{B(\ell)}, v_{1}, \ldots, v_{n}\right) \quad \text { (pivot row) }
$$

Dual Simplex Method

- Let B be a basis whose corresponding dual basic solution p is feasible.
- If also the primal basic solution x is feasible, then x, p are optimal.
- Assume that $x_{B(\ell)}<0$ and consider the ℓ th row of the simplex tableau

$$
\left(x_{B(\ell)}, v_{1}, \ldots, v_{n}\right) \quad \text { (pivot row) }
$$

$\|$ Let $j \in\{1, \ldots, n\}$ with $v_{j}<0$ and

$$
\frac{\bar{c}_{j}}{\left|v_{j}\right|}=\min _{i: v_{i}<0} \frac{\bar{c}_{i}}{\left|v_{i}\right|}
$$

Dual Simplex Method

- Let B be a basis whose corresponding dual basic solution p is feasible.
- If also the primal basic solution x is feasible, then x, p are optimal.
- Assume that $x_{B(\ell)}<0$ and consider the ℓ th row of the simplex tableau

$$
\left(x_{B(\ell)}, v_{1}, \ldots, v_{n}\right) \quad \text { (pivot row) }
$$

\square Let $j \in\{1, \ldots, n\}$ with $v_{j}<0$ and

$$
\frac{\bar{c}_{j}}{\left|v_{j}\right|}=\min _{i: v_{i}<0} \frac{\bar{c}_{i}}{\left|v_{i}\right|}
$$

Performing an iteration of the simplex method with pivot element v_{j} yields new basis B^{\prime} and corresponding dual basic solution $\nabla^{\prime \prime}$ with
$\underset{\text { feasible }}{\text { dual }} c_{B^{\prime}}{ }^{T} \cdot B^{\prime-1} \cdot A \leq c^{T}$ and $p^{\prime T} \cdot b \geq p^{T} \cdot b$ (with $>$ if $\bar{c}_{j}>0$).

Dual Simplex Method

- Let B be a basis whose corresponding dual basic solution p is feasible.
- If also the primal basic solution x is feasible, then x, p are optimal.
- Assume that $x_{B(\ell)}<0$ and consider the ℓ th row of the simplex tableau

$$
\left(x_{B(\ell)}, v_{1}, \ldots, v_{n}\right) \quad \text { (pivot row) }
$$

\square Let $j \in\{1, \ldots, n\}$ with $v_{j}<0$ and

$$
\frac{\bar{c}_{j}}{\left|v_{j}\right|}=\min _{i: v_{i}<0} \frac{\bar{c}_{i}}{\left|v_{i}\right|}
$$

Performing an iteration of the simplex method with pivot element v_{j} yields new basis B^{\prime} and corresponding dual basic solution p^{\prime} with

$$
c_{B^{\prime}}{ }^{\top} \cdot B^{\prime-1} \cdot A \leq c^{T} \quad \text { and } \quad p^{\prime T} \cdot b \geq p^{T} \cdot b \quad\left(\text { with }>\text { if } \bar{c}_{j}>0\right)
$$

III If $v_{i} \geq 0$ for all $i \in\{1, \ldots, n\}$, then the dual LP is unbounded and the primal LP is infeasible.

Dual Simplex Example

$x_{4}=$| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{5}=$ | 2 | 6 | 10 | 0 | 0 |
| 2 | -2 | 4 | 1 | 1 | 0 |
| -1 | 4 | -2 | -3 | 0 | 1 |\(\left|\begin{array}{ll}

\hline\end{array}\right|\)

Dual Simplex Example

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$0 2 6 10 0
 2 -2 4 1 1
 $x_{5}=$
 -1 4 -2 -3 0
 0 | | | | | |

- Determine pivot row $\left(x_{5}<0\right)$

Dual Simplex Example

		x_{1}	x_{2}	${ }^{3}$	χ_{4}	χ_{5}
	0	2	6	10	0	0
$x_{4}=$	2	-2	4	1	1	0
$x_{5}=$	-1	4	-2	-3	0	1

- Determine pivot row $\left(x_{5}<0\right)$
- Find pivot column.
- Column 2 and 3 have negative entries in pivot row.

Dual Simplex Example

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$0 2 6 10 0
 2 -2 4 1 1
 $x_{5}=$
 -1 4 -2 -3 0
 0 | | | | | |

- Determine pivot row $\left(x_{5}<0\right)$
- Find pivot column.
- Column 2 and 3 have negative entries in pivot row.
- Column 2 attains minimum.

Dual Simplex Example

$\left.x_{4}=$| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{5}=$ | 2 | 6 | 10 | 0 | 0 |
| 2 | -2 | 4 | 1 | 1 | 0 |
| -1 | 4 | -2 | -3 | 0 | 1 | \right\rvert\, | |
| :--- | :--- |

- Determine pivot row $\left(x_{5}<0\right)$
- Find pivot column.
- Column 2 and 3 have negative entries in pivot row.
- Column 2 attains minimum.
- Perform basis change:
- x_{5} leaves and x_{2} enters basis.
- Eliminate other entries in the pivot column.
- Divide pivot row by pivot element.

Dual Simplex Example

		x_{1}	x_{2}	x_{3}	x_{4}	χ_{5}
	-3	14	0	1	0	3
$x_{4}=$	2	-2	4	1	1	0
$x_{5}=$	-1	4	-2	-3	0	1

- Determine pivot row $\left(x_{5}<0\right)$
- Find pivot column.
- Column 2 and 3 have negative entries in pivot row.
- Column 2 attains minimum.
- Perform basis change:
- x_{5} leaves and x_{2} enters basis.
- Eliminate other entries in the pivot column.
- Divide pivot row by pivot element.

Dual Simplex Example

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
	-3	14	0	1	0	3
$x_{4}=$	0	6	0	-5	1	2
$x_{5}=$	-1	4	-2	-3	0	1

- Determine pivot row $\left(x_{5}<0\right)$
- Find pivot column.
- Column 2 and 3 have negative entries in pivot row.
- Column 2 attains minimum.
- Perform basis change:
- x_{5} leaves and x_{2} enters basis.
- Eliminate other entries in the pivot column.
- Divide pivot row by pivot element.

Dual Simplex Example

		x_{1}	x_{2}	x3	χ_{4}	χ_{5}
	-3	14	0	1	0	3
$x_{4}=$	0	6	0	-5	1	2
$x_{2}=$	1/2	-2	1	3/2	0	$-1 / 2$

- Determine pivot row $\left(x_{5}<0\right)$
- Find pivot column.
- Column 2 and 3 have negative entries in pivot row.
- Column 2 attains minimum.
- Perform basis change:
- x_{5} leaves and x_{2} enters basis.
- Eliminate other entries in the pivot column.
- Divide pivot row by pivot element.

Remarks on the Dual Simplex Method

- Dual simplex method terminates if lexicographic pivoting rule is used:
- Choose any row ℓ with $x_{B(\ell)}<0$ to be the pivot row.
- Among all columns j with $v_{j}<0$ choose the one which is lexicographically minimal when divided by $\left|v_{j}\right|$.
- Dual simplex method is useful if, e. g., dual basic solution is readily available.
- Example: Resolve LP after right-hand-side b has changed.

COMP331/557

Chapter 5:
 Optimisation in Finance: Cash-Flow

(Cornuejols \& Tütüncü, Chapter 3)

Cash-Flow Management Problem

A company has the following net cash flow requirements (in 1000's of $£$):

Month	Jan	Feb	Mar	Apr	May	Jun
Net cash flow	-150	-100	200	-200	50	300

E.g.: In January we have to pay $£ 150 \mathrm{k}$ and in March we get $£ 200 \mathrm{k}$.

Cash-Flow Management Problem

A company has the following net cash flow requirements (in 1000's of $£$):

Month	Jan	Feb	Mar	Apr	May	Jun
Net cash flow	-150	-100	200	-200	50	300

E.g.: In January we have to pay $£ 150 \mathrm{k}$ and in March we get $£ 200 \mathrm{k}$.

Initially we have no cash but the following possibilities to borrow/invest money:
ii a line of credit of up to $£ 100 \mathrm{k}$ at an interest rate of 1% per month;
目 in any one of the first three months, it can issue 90 -day commercial paper bearing a total interest of 2% for the three-month period;
囲 excess funds can be invested at an interest rate of 0.3% per month.

Cash-Flow Management Problem

A company has the following net cash flow requirements (in 1000's of $£$):

Month	Jan	Feb	Mar	Apr	May	Jun
Net cash flow	-150	-100	200	-200	50	300

E.g.: In January we have to pay $£ 150 \mathrm{k}$ and in March we get $£ 200 \mathrm{k}$.

Initially we have no cash but the following possibilities to borrow/invest money:
ii a line of credit of up to $£ 100 \mathrm{k}$ at an interest rate of 1% per month;
Iil in any one of the first three months, it can issue 90 -day commercial paper bearing a total interest of 2% for the three-month period;
囲 excess funds can be invested at an interest rate of 0.3% per month.
Task: We want to maximise the companies wealth in June, while fulfilling all payments.

Cash-Flow Management Problem - Modelling as LP

Decision Variables

- v.. wealth in June
- x_{i}.. amount drawn from credit line in month i
- y_{i}.. amount of commercial paper issued in month i
- z_{i}.. excess funds in month i

LP formulation:

Cash-Flow Management Problem - Modelling as LP

Decision Variables

- v.. wealth in June
- x_{i}.. amount drawn from credit line in month i
- $y_{i} .$. amount of commercial paper issued in month i
- z_{i}.. excess funds in month i

LP formulation:

$$
\begin{aligned}
& \max \quad v \\
& \begin{array}{llllll}
\text { s.t. } & x_{1}+ & y_{1} & & z_{1}=150 \\
& x_{2}+ & y_{2}-1.01 x_{1}+1.003 z_{1}-z_{2}= & 100 \\
& x_{3}+ & y_{3}-1.01 x_{2}+1.003 z_{2}-z_{3}= & -200
\end{array} \\
& x_{4}-1.02 y_{1}-1.01 x_{3}+1.003 z_{3}-z_{4}=200 \\
& x_{5}-1.02 y_{2}-1.01 x_{4}+1.003 z_{4}-z_{5}=-50 \\
& -1.02 y_{3}-1.01 x_{5}+1.003 z_{5}-v=-300 \\
& x_{i}, \quad y_{i}, \quad z_{i} \geq \quad 0 \quad \forall i
\end{aligned}
$$

Cash-Flow Management Problem - Modelling as LP

```
cashflow.lp
Maximize
    wealth: v
Subject To
    Jan: x1 + y1 - z1 = 150
    Feb: x2 + y2 - 1.01 x1 + 1.003 z1 - z2 = 100
    Mar: x3 + y3 - 1.01 x2 + 1.003 z2 - z3 = -200
    Apr: x4 - 1.02 y1 - 1.01 x3 + 1.003 z3 - z4 = 200
    May: x5 - 1.02 y2 - 1.01 x4 + 1.003 z4 - z5 = -50
    Jun: - 1.02 y3 - 1.01 x5 + 1.003 z5 - v = -300
Bounds
\[
\begin{aligned}
& 0<=\mathrm{x} 1<=100 \\
& 0<=\mathrm{x} 2<=100 \\
& 0<=\mathrm{x} 3<=100 \\
& 0<=\mathrm{x} 4<=100 \\
& 0<=\mathrm{x} 5<=100 \\
& -\operatorname{Inf}<=\mathrm{v}<=\operatorname{Inf}
\end{aligned}
\]
```


End

