Cash-Flow Management Problem - Modelling as LP

```
cashflow.lp
Maximize
    wealth: v
Subject To
    Jan: x1 + y1 - z1 = 150
    Feb: x2 + y2 - 1.01 x1 + 1.003 z1 - z2 = 100
    Mar: x3 + y3 - 1.01 x2 + 1.003 z2 - z3 = -200
    Apr: x4 - 1.02 y1 - 1.01 x3 + 1.003 z3 - z4 = 200
    May: x5 - 1.02 y2 - 1.01 x4 + 1.003 z4 - z5 = -50
    Jun: - 1.02 y3 - 1.01 x5 + 1.003 z5 - v = -300
Bounds
\[
\begin{aligned}
& 0<=\mathrm{x} 1<=100 \\
& 0<=\mathrm{x} 2<=100 \\
& 0<=\mathrm{x} 3<=100 \\
& 0<=\mathrm{x} 4<=100 \\
& 0<=\mathrm{x} 5<=100 \\
& -\operatorname{Inf}<=\mathrm{v}<=\operatorname{Inf}
\end{aligned}
\]
```


End

Cash-Flow Management Problem - Modelling as LP

Optimal Investment Strategy:

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective $9.249694915 \mathrm{e}+01$
v 92.4969491525
x1 0.0
y1 150.0
z1 0.0
x2 0.0
y2 100.0
z2 0.0
x3 0.0
y3 151.944167498
z3 351.944167498
$\times 40.0$
z4 0.0
x5 52.0
z5 0.0
Obj: 92.4969491525

Cash-Flow Management Problem - Modelling as LP

Optimal Investment Strategy:

Gurobi Output

```
Solved in 5 iterations and 0.00 seconds
Optimal objective 9.249694915e+01
v 92.4969491525
x1 0.0
y1 150.0
z1 0.0
x2 0.0
y2 100.0
z2 0.0
x3 0.0
y3 151.944167498
z3 351.944167498
x4 0.0
z4 0.0
x5 52.0
z5 0.0
Obj: 92.4969491525
```

Feb: Issue commercial paper for $£ 100 k$.

Cash-Flow Management Problem - Modelling as LP

Optimal Investment Strategy:

Gurobi Output

```
Solved in 5 iterations and 0.00 seconds
Optimal objective 9.249694915e+01
v 92.4969491525
x1 0.0
y1 150.0
z1 0.0
x2 0.0
y2 100.0
z2 0.0
x3 0.0
y3 151.944167498
z3 351.944167498
x4 0.0
z4 0.0
x5 52.0
z5 0.0
Obj: 92.4969491525
```

Feb: Issue commercial paper for $£ 100 k$.
Mar: Issue paper for $\approx £ 152 \mathrm{k}$ and invest \approx £352k.

Cash-Flow Management Problem - Modelling as LP

Optimal Investment Strategy:

Gurobi Output

```
Solved in 5 iterations and 0.00 seconds
Optimal objective 9.249694915e+01
v 92.4969491525
x1 0.0
y1 150.0
z1 0.0
x2 0.0
y2 100.0
z2 0.0
x3 0.0
y3 151.944167498
z3 351.944167498
x4 0.0
z4 0.0
x5 52.0
z5 0.0
Obj: 92.4969491525
```


Cash-Flow Management Problem - Modelling as LP

Optimal Investment Strategy:

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective $9.249694915 \mathrm{e}+01$
v 92.4969491525
x1 0.0
y1 150.0
z1 0.0
x2 0.0
y2 100.0
z2 0.0
x3 0.0
y3 151.944167498
z3 351.944167498
x4 0.0
z4 0.0
x5 52.0
z5 0.0
Obj: 92.4969491525

Jan: Issue commercial paper for $£ 150$ k.
Feb: Issue commercial paper for $£ 100 k$.
Mar: Issue paper for $\approx £ 152 \mathrm{k}$ and invest \approx £352k.
Apr: Take excess to pay outgoing cashflow.
May: Take a credit of $£ 52 \mathrm{k}$

Cash-Flow Management Problem - Modelling as LP

Optimal Investment Strategy:

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective $9.249694915 \mathrm{e}+01$
v 92.4969491525
x1 0.0
y1 150.0
z1 0.0
x2 0.0
y2 100.0
z2 0.0
x3 0.0
y3 151.944167498
z3 351.944167498
x4 0.0
z4 0.0
x5 52.0
z5 0.0
Obj: 92.4969491525

Jan: Issue commercial paper for $£ 150 \mathrm{k}$.
Feb: Issue commercial paper for $£ 100 k$.
Mar: Issue paper for $\approx £ 152 \mathrm{k}$ and invest \approx £352k.
Apr: Take excess to pay outgoing cashflow.
May: Take a credit of $£ 52 \mathrm{k}$
Jun: wealth $\approx £ 92 \mathrm{k}$

COMP331/557

Chapter 6:
 Optimal Trees and Paths

(Cook, Cunningham, Pulleyblank \& Schrijver, Chapter 2)

Trees and Forests

Definition 6.1.
if An undirected graph having no circuit is called a forest.
团 A connected forest is called a tree.

Trees and Forests

Definition 6.1.

ii An undirected graph having no circuit is called a forest.
II A connected forest is called a tree.
Theorem 6.2.
Let $G=(V, E)$ be an undirected graph on $n=|V|$ nodes. Then, the following statements are equivalent:
ii G is a tree.

Trees and Forests

Definition 6.1.

i An undirected graph having no circuit is called a forest.
iif A connected forest is called a tree.

Theorem 6.2.

Let $G=(V, E)$ be an undirected graph on $n=|V|$ nodes. Then, the following statements are equivalent:
i G is a tree.
iii G has $n-1$ edges and no circuit.

Trees and Forests

Definition 6.1.

ii An undirected graph having no circuit is called a forest.
II A connected forest is called a tree.

Theorem 6.2.

Let $G=(V, E)$ be an undirected graph on $n=|V|$ nodes. Then, the following statements are equivalent:
i G is a tree.
iii G has $n-1$ edges and no circuit.
囲 G has $n-1$ edges and is connected.

Trees and Forests

Definition 6.1.

ii An undirected graph having no circuit is called a forest.
II A connected forest is called a tree.

Theorem 6.2.

Let $G=(V, E)$ be an undirected graph on $n=|V|$ nodes. Then, the following statements are equivalent:
i G is a tree.
iii G has $n-1$ edges and no circuit.
囲 G has $n-1$ edges and is connected.
iv G is connected. If an arbitrary edge is removed, the resulting subgraph is disconnected.

Trees and Forests

Definition 6.1.

ii An undirected graph having no circuit is called a forest.
III A connected forest is called a tree.

Theorem 6.2.

Let $G=(V, E)$ be an undirected graph on $n=|V|$ nodes. Then, the following statements are equivalent:
i G is a tree.
iii G has $n-1$ edges and no circuit.
囲 G has $n-1$ edges and is connected.
iv G is connected. If an arbitrary edge is removed, the resulting subgraph is disconnected.
v G has no circuit. Adding an arbitrary edge to G creates a circuit.

Trees and Forests

Definition 6.1.

ii An undirected graph having no circuit is called a forest.
II A connected forest is called a tree.

Theorem 6.2.

Let $G=(V, E)$ be an undirected graph on $n=|V|$ nodes. Then, the following statements are equivalent:
i G is a tree.
iii G has $n-1$ edges and no circuit.
囲 G has $n-1$ edges and is connected.
iv G is connected. If an arbitrary edge is removed, the resulting subgraph is disconnected.
v G has no circuit. Adding an arbitrary edge to G creates a circuit.
vi G contains a unique path between any pair of nodes.

Kruskal's Algorithm

Minimum Spanning Tree (MST) Problem

Given: connected graph $G=(V, E)$, cost function $c: E \rightarrow \mathbb{R}$.
Task: find spanning tree $T=(V, F)$ of G with minimum $\operatorname{cost} \sum_{e \in F} c(e)$.

Kruskal's Algorithm

Minimum Spanning Tree (MST) Problem
Given: connected graph $G=(V, E)$, cost function $c: E \rightarrow \mathbb{R}$.
Task: find spanning tree $T=(V, F)$ of G with minimum cost $\sum_{e \in F} c(e)$.

Kruskal's Algorithm for MST

1 Sort the edges in E such that $c\left(e_{1}\right) \leq c\left(e_{2}\right) \leq \cdots \leq c\left(e_{m}\right)$.
2 Set $T:=(V(1)$. emptysef
3 For $i:=1$ to m do:
If adding e_{i} to T does not create a circuit, then add e_{i} to T.

Example for Kruskal's Algorithm

Prim's Algorithm

Notation: For a graph $G=(V, E)$ and $A \subseteq V$ let

$$
\delta(A):=\{e=\{v, w\} \in E \mid v \in A \text { and } w \in V \backslash A\} .
$$

We call $\delta(A)$ the cut induced by A.

Prim's Algorithm

Notation: For a graph $G=(V, E)$ and $A \subseteq V$ let

$$
\delta(A):=\{e=\{v, w\} \in E \mid v \in A \text { and } w \in V \backslash A\} .
$$

We call $\delta(A)$ the cut induced by A.

Prim's Algorithm for MST

11 Set $U:=\{r\}$ for some node $r \in V$ and $F:=\emptyset$; set $T:=(U, F)$.
2 While $U \neq V$, determine a minimum cost edge $e \in \delta(U)$.
3 Set $F:=F \cup\{e\}$ and $U:=U \cup\{w\}$ with $e=\{v, w\}, w \in V \backslash U$.

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Correctness of the MST Algorithms

Lemma 6.3.

A graph $G=(V, E)$ is connected if and only if there is no set $A \subseteq V, \emptyset \neq A \neq V$, with $\delta(A)=\emptyset$.

Correctness of the MST Algorithms

Lemma 6.3.

A graph $G=(V, E)$ is connected if and only if there is no set $A \subseteq V, \emptyset \neq A \neq V$, with $\delta(A)=\emptyset$.

Notation: We say that $B \subseteq E$ is extendible to an MST if B is contained in the edge-set of some MST of G.

Correctness of the MST Algorithms

Lemma 6.3.

A graph $G=(V, E)$ is connected if and only if there is no set $A \subseteq V, \emptyset \neq A \neq V$, with $\delta(A)=\emptyset$.

Notation: We say that $B \subseteq E$ is extendible to an MST if B is contained in the edge-set of some MST of G.

Theorem 6.4.

Let $B \subseteq E$ be extendible to an MST and $\emptyset \neq A \subsetneq V$ with $B \cap \delta(A)=\emptyset$. If e is a min-cost edge in $\delta(A)$, then $B \cup\{e\}$ is extendible to an MST.

Correctness of the MST Algorithms

Lemma 6.3.

A graph $G=(V, E)$ is connected if and only if there is no set $A \subseteq V, \emptyset \neq A \neq V$, with $\delta(A)=\emptyset$.

Notation: We say that $B \subseteq E$ is extendible to an MST if B is contained in the edge-set of some MST of G.

Theorem 6.4.

Let $B \subseteq E$ be extendible to an MST and $\emptyset \neq A \subsetneq V$ with $B \cap \delta(A)=\emptyset$. If e is a min-cost edge in $\delta(A)$, then $B \cup\{e\}$ is extendible to an MST.

- Correctness of Prim's Algorithm immediately follows.

Correctness of the MST Algorithms

Lemma 6.3.

A graph $G=(V, E)$ is connected if and only if there is no set $A \subseteq V, \emptyset \neq A \neq V$, with $\delta(A)=\emptyset$.

Notation: We say that $B \subseteq E$ is extendible to an MST if B is contained in the edge-set of some MST of G.

Theorem 6.4.

Let $B \subseteq E$ be extendible to an MST and $\emptyset \neq A \subsetneq V$ with $B \cap \delta(A)=\emptyset$. If e is a min-cost edge in $\delta(A)$, then $B \cup\{e\}$ is extendible to an MST.

- Correctness of Prim's Algorithm immediately follows.
- Kruskal: Whenever an edge $e=\{v, w\}$ is added, it is cheapest edge in cut induced by subset of nodes currently reachable from v.

Efficiency of Prim's Algorithm

Prim's Algorithm for MST

1 Set $U:=\{r\}$ for some node $r \in V$ and $F:=\emptyset$; set $T:=(U, F)$.
2 While $U \neq V$, determine a minimum cost edge $e \in \delta(U)$.
3 Set $F:=F \cup\{e\}$ and $U:=U \cup\{w\}$ with $e=\{v, w\}, w \in V \backslash U$.

- Straightforward implementation achieves running time $O(n m)$ where, as usual, $n:=|V|$ and $m:=|E|:$
- the while-loop has $n-1$ iterations;
- a min-cost edge $e \in \delta(U)$ can be found in $O(m)$ time.

Efficiency of Prim's Algorithm

Prim's Algorithm for MST

1 Set $U:=\{r\}$ for some node $r \in V$ and $F:=\emptyset$; set $T:=(U, F)$.
2 While $U \neq V$, determine a minimum cost edge $e \in \delta(U)$.
3 Set $F:=F \cup\{e\}$ and $U:=U \cup\{w\}$ with $e=\{v, w\}, w \in V \backslash U$.

- Straightforward implementation achieves running time $O(n m)$ where, as usual, $n:=|V|$ and $m:=|E|:$
- the while-loop has $n-1$ iterations;
- a min-cost edge $e \in \delta(U)$ can be found in $O(m)$ time.
- Best known running time is $O(m+n \log n)$ (uses Fibonacci heaps).

Efficiency of Kruskal's Algorithm
Kruskal's Algorithm for MST
11 Sort the edges in E such that $c\left(e_{1}\right) \leq c\left(e_{2}\right) \leq \cdots \leq c\left(e_{m}\right)$.
2 Set $T:=(V, \emptyset)$.
3 For $i:=1$ to m do:
If adding e_{i} to T does not create a circuit, then add e_{i} to T.

Theorem 6.5.

Kruskal's Algorithm can be implemented to run in $O(m \log m)$ time.

Minimum Spanning Trees and Linear Programming Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.

Minimum Spanning Trees and Linear Programming
Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.
- For a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B):=\sum_{e \in B} x_{e}$.

