```
cashflow.lp
Maximize
 wealth: v
Subject To
  Jan: x1 + y1 - z1 = 150
 Feb: x2 + y2 - 1.01 x1 + 1.003 z1 - z2 = 100
 Mar: x3 + y3 - 1.01 x2 + 1.003 z2 - z3 = -200
 Apr: x4 - 1.02 y1 - 1.01 x3 + 1.003 z3 - z4 = 200
 May: x5 - 1.02 y2 - 1.01 x4 + 1.003 z4 - z5 = -50
  Jun: - 1.02 y3 - 1.01 x5 + 1.003 z5 - v = -300
Bounds
  0 \le x1 \le 100
  0 \le x^2 \le 100
  0 \le x3 \le 100
  0 \le x4 \le 100
  0 <= x5 <= 100
 -Inf \leq v \leq Inf
End
```

Optimal Investment Strategy:

Jan: Issue commercial paper for $\pounds150k$.

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective 9.249694915e+01 v 92.4969491525 x1 0.0 v1 150.0 z1 0.0 x2 0.0 v2 100.0 z2 0.0 x3 0.0 y3 151.944167498 z3 351,944167498 x4 0.0 z4 0.0 x5 52.0 z5 0.0 Obj: 92.4969491525

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective 9.249694915e+01 v 92,4969491525 x1 0.0 v1 150.0 z1 0.0 x2 0.0 v2 100.0 z2 0.0 x3 0.0 y3 151.944167498 z3 351,944167498 x4 0.0 z4 0.0 x5 52.0 z5 0.0 Obj: 92.4969491525

Optimal Investment Strategy:

Jan: Issue commercial paper for £150k. Feb: Issue commercial paper for £100k.

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective 9.249694915e+01 v 92,4969491525 x1 0.0 v1 150.0 z10.0x2 0.0 v2 100.0 72 0.0 x3 0.0 v3 151.944167498 23 351,944167498 x4 0.0 z4 0.0 x5 52.0 z5 0.0 Obj: 92.4969491525

Optimal Investment Strategy:

Jan: Issue commercial paper for £150k.

- Feb: Issue commercial paper for $\pounds100k$.
- Mar: Issue paper for \approx £152k and invest \approx £352k.

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective 9.249694915e+01 v 92,4969491525 x1 0.0 v1 150.0 z10.0x2 0.0 v2 100.0 72 0.0 x3 0.0 v3 151.944167498 z3 351,944167498 x4 0.0 z4 0.0 x5 52.0 z5 0.0 Obj: 92.4969491525

Optimal Investment Strategy:

- Jan: Issue commercial paper for $\pounds150k$.
- Feb: Issue commercial paper for £100k.
- Mar: Issue paper for $\approx \pounds 152k$ and invest $\approx \pounds 352k$.

Apr: Take excess to pay outgoing cashflow.

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective 9.249694915e+01 v 92,4969491525 x1 0.0 v1 150.0 z10.0x2 0.0 v2 100.0 72 0.0 x3 0.0 v3 151.944167498 z3 351,944167498 x4 0.0 z4 0.0 x5 52.0 z5 0.0 Obj: 92.4969491525

Optimal Investment Strategy:

- Jan: Issue commercial paper for $\pounds150k$.
- Feb: Issue commercial paper for £100k.
- Mar: Issue paper for \approx £152k and invest \approx £352k.
- Apr: Take excess to pay outgoing cashflow.
- May: Take a credit of £52k

Gurobi Output

Solved in 5 iterations and 0.00 seconds Optimal objective 9.249694915e+01 v 92.4969491525

x1 0.0 y1 150.0 z1 0.0 x2 0.0 y2 100.0 z2 0.0 x3 0.0 y3 151.944167498 z3 351.944167498 x4 0.0 z4 0.0

x5 52.0

z5 0.0

Obj: 92.4969491525

Optimal Investment Strategy:

Jan: Issue commercial paper for $\pounds150k$.

- Feb: Issue commercial paper for $\pounds100k$.
- Mar: Issue paper for \approx £152k and invest \approx £352k.

Apr: Take excess to pay outgoing cashflow.

May: Take a credit of $\pounds 52k$

Jun: wealth $\approx \pounds$ 92k

COMP331/557

Chapter 6: Optimal Trees and Paths

(Cook, Cunningham, Pulleyblank & Schrijver, Chapter 2)

Definition 6.1.

i An undirected graph having no circuit is called a forest.

ii A connected forest is called a tree.

Definition 6.1.

i An undirected graph having no circuit is called a forest.

A connected forest is called a tree.

Theorem 6.2.

Definition 6.1.

i An undirected graph having no circuit is called a forest.

A connected forest is called a tree.

Theorem 6.2.

Let G = (V, E) be an undirected graph on n = |V| nodes. Then, the following statements are equivalent:

 \blacksquare G has n-1 edges and no circuit.

Definition 6.1.

i An undirected graph having no circuit is called a forest.

A connected forest is called a tree.

Theorem 6.2.

- **G** is a tree.
- \blacksquare G has n-1 edges and no circuit.
- \blacksquare G has n-1 edges and is connected.

Definition 6.1.

i An undirected graph having no circuit is called a forest.

A connected forest is called a tree.

Theorem 6.2.

- **G** is a tree.
- \blacksquare G has n-1 edges and no circuit.
- \blacksquare G has n-1 edges and is connected.
- \bigcirc G is connected. If an arbitrary edge is removed, the resulting subgraph is disconnected.

Definition 6.1.

i An undirected graph having no circuit is called a forest.

A connected forest is called a tree.

Theorem 6.2.

- **G** is a tree.
- \blacksquare G has n-1 edges and no circuit.
- \blacksquare G has n-1 edges and is connected.
- \bigcirc G is connected. If an arbitrary edge is removed, the resulting subgraph is disconnected.
- \Box G has no circuit. Adding an arbitrary edge to G creates a circuit.

Definition 6.1.

i An undirected graph having no circuit is called a forest.

A connected forest is called a tree.

Theorem 6.2.

- **G** is a tree.
- \blacksquare G has n-1 edges and no circuit.
- \blacksquare G has n-1 edges and is connected.
- \bigcirc G is connected. If an arbitrary edge is removed, the resulting subgraph is disconnected.
- \blacksquare G has no circuit. Adding an arbitrary edge to G creates a circuit.
- \mathbf{v} G contains a unique path between any pair of nodes.

Kruskal's Algorithm

Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V, E), cost function $c : E \to \mathbb{R}$.

Task: find spanning tree T = (V, F) of G with minimum cost $\sum_{e \in F} c(e)$.

Kruskal's Algorithm

Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V, E), cost function $c : E \to \mathbb{R}$.

Task: find spanning tree T = (V, F) of G with minimum cost $\sum_{e \in F} c(e)$.

Kruskal's Algorithm for MST

1 Sort the edges in E such that $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$.

2 Set
$$T := (V, \emptyset)$$
. Cmpty set

3 For i := 1 to m do: If adding e_i to T does not create a circuit, then add e_i to T.

Example for Kruskal's Algorithm

Example for Kruskal's Algorithm

Prim's Algorithm

Notation: For a graph G = (V, E) and $A \subseteq V$ let

$$\delta(A) := \{e = \{v, w\} \in E \mid v \in A \text{ and } w \in V \setminus A\}$$
.

We call $\delta(A)$ the cut induced by A.

Prim's Algorithm

Notation: For a graph G = (V, E) and $A \subseteq V$ let

$$\delta(A) := \{e = \{v, w\} \in E \mid v \in A \text{ and } w \in V \setminus A\}$$
.

We call $\delta(A)$ the cut induced by A.

Prim's Algorithm for MST

1 Set $U := \{r\}$ for some node $r \in V$ and $F := \emptyset$; set T := (U, F).

2 While $U \neq V$, determine a minimum cost edge $e \in \delta(U)$.

3 Set
$$F := F \cup \{e\}$$
 and $U := U \cup \{w\}$ with $e = \{v, w\}$, $w \in V \setminus U$.

Lemma 6.3.

A graph G = (V, E) is connected if and only if there is no set $A \subseteq V$, $\emptyset \neq A \neq V$, with $\delta(A) = \emptyset$.

Lemma 6.3.

A graph G = (V, E) is connected if and only if there is no set $A \subseteq V$, $\emptyset \neq A \neq V$, with $\delta(A) = \emptyset$.

Notation: We say that $B \subseteq E$ is extendible to an MST if B is contained in the edge-set of some MST of G.

Lemma 6.3.

A graph G = (V, E) is connected if and only if there is no set $A \subseteq V$, $\emptyset \neq A \neq V$, with $\delta(A) = \emptyset$.

Notation: We say that $B \subseteq E$ is extendible to an MST if B is contained in the edge-set of some MST of G.

Theorem 6.4.

Let $B \subseteq E$ be extendible to an MST and $\emptyset \neq A \subsetneq V$ with $B \cap \delta(A) = \emptyset$. If *e* is a min-cost edge in $\delta(A)$, then $B \cup \{e\}$ is extendible to an MST.

Lemma 6.3. A graph G = (V, E) is connected if and only if there is no set $A \subseteq V$, $\emptyset \neq A \neq V$, with $\delta(A) = \emptyset$.

Notation: We say that $B \subseteq E$ is extendible to an MST if B is contained in the edge-set of some MST of G.

Theorem 6.4.

Let $B \subseteq E$ be extendible to an MST and $\emptyset \neq A \subsetneq V$ with $B \cap \delta(A) = \emptyset$. If *e* is a min-cost edge in $\delta(A)$, then $B \cup \{e\}$ is extendible to an MST.

Correctness of Prim's Algorithm immediately follows.

Lemma 6.3.

A graph G = (V, E) is connected if and only if there is no set $A \subseteq V$, $\emptyset \neq A \neq V$, with $\delta(A) = \emptyset$.

Notation: We say that $B \subseteq E$ is extendible to an MST if B is contained in the edge-set of some MST of G.

Theorem 6.4.

Let $B \subseteq E$ be extendible to an MST and $\emptyset \neq A \subsetneq V$ with $B \cap \delta(A) = \emptyset$. If *e* is a min-cost edge in $\delta(A)$, then $B \cup \{e\}$ is extendible to an MST.

- Correctness of Prim's Algorithm immediately follows.
- Kruskal: Whenever an edge e = {v, w} is added, it is cheapest edge in cut induced by subset of nodes currently reachable from v.

Efficiency of Prim's Algorithm

Prim's Algorithm for MST

- **1** Set $U := \{r\}$ for some node $r \in V$ and $F := \emptyset$; set T := (U, F).
- **2** While $U \neq V$, determine a minimum cost edge $e \in \delta(U)$.
- 3 Set $F := F \cup \{e\}$ and $U := U \cup \{w\}$ with $e = \{v, w\}$, $w \in V \setminus U$.
- Straightforward implementation achieves running time O(nm) where, as usual, n := |V| and m := |E|:
 - the while-loop has n-1 iterations;
 - ▶ a min-cost edge $e \in \delta(U)$ can be found in O(m) time.

Efficiency of Prim's Algorithm

Prim's Algorithm for MST

1 Set $U := \{r\}$ for some node $r \in V$ and $F := \emptyset$; set T := (U, F).

2 While $U \neq V$, determine a minimum cost edge $e \in \delta(U)$.

- 3 Set $F := F \cup \{e\}$ and $U := U \cup \{w\}$ with $e = \{v, w\}$, $w \in V \setminus U$.
- Straightforward implementation achieves running time O(nm) where, as usual, n := |V| and m := |E|:
 - the while-loop has n-1 iterations;
 - ▶ a min-cost edge $e \in \delta(U)$ can be found in O(m) time.
- Best known running time is $O(m + n \log n)$ (uses Fibonacci heaps).

Efficiency of Kruskal's Algorithm

Kruskal's Algorithm for MST

 Sort the edges in E such that c(e₁) ≤ c(e₂) ≤ ··· ≤ c(e_m).
 Set T := (V, Ø).
 For i := 1 to m do: If adding e_i to T does not create a circuit, then add e_i to T.

Theorem 6.5.

Kruskal's Algorithm can be implemented to run in $O(m \log m)$ time.

Minimum Spanning Trees and Linear Programming

Notation:

► For
$$S \subseteq V$$
 let $\gamma(S) := \{e = \{v, w\} \in E \mid v, w \in S\}.$

Minimum Spanning Trees and Linear Programming

Notation:

- ▶ For $S \subseteq V$ let $\gamma(S) := \{e = \{v, w\} \in E \mid v, w \in S\}.$
- ▶ For a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B) := \sum_{e \in B} x_e$.