
Cash-Flow Management Problem – Modelling as LP

cashflow.lp

Maximize
wealth: v

Subject To
Jan: x1 + y1 - z1 = 150
Feb: x2 + y2 - 1.01 x1 + 1.003 z1 - z2 = 100
Mar: x3 + y3 - 1.01 x2 + 1.003 z2 - z3 = -200
Apr: x4 - 1.02 y1 - 1.01 x3 + 1.003 z3 - z4 = 200
May: x5 - 1.02 y2 - 1.01 x4 + 1.003 z4 - z5 = -50
Jun: - 1.02 y3 - 1.01 x5 + 1.003 z5 - v = -300

Bounds
0 <= x1 <= 100
0 <= x2 <= 100
0 <= x3 <= 100
0 <= x4 <= 100
0 <= x5 <= 100
-Inf <= v <= Inf

End
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Cash-Flow Management Problem – Modelling as LP

Gurobi Output

Solved in 5 iterations and 0.00 seconds

Optimal objective 9.249694915e+01

v 92.4969491525

x1 0.0

y1 150.0

z1 0.0

x2 0.0

y2 100.0

z2 0.0

x3 0.0

y3 151.944167498

z3 351.944167498

x4 0.0

z4 0.0

x5 52.0

z5 0.0

Obj: 92.4969491525

Optimal Investment Strategy:

Jan: Issue commercial paper for £150k.

Feb: Issue commercial paper for £100k.

Mar: Issue paper for ⇡ £152k and invest ⇡
£352k.

Apr: Take excess to pay outgoing cashflow.

May: Take a credit of £52k

Jun: wealth ⇡ £92k
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COMP331/557

Chapter 6:

Optimal Trees and Paths

(Cook, Cunningham, Pulleyblank & Schrijver, Chapter 2)
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Trees and Forests

Definition 6.1.

i An undirected graph having no circuit is called a forest.

ii A connected forest is called a tree.

Theorem 6.2.

Let G = (V ,E ) be an undirected graph on n = |V | nodes. Then, the following

statements are equivalent:

i G is a tree.

ii G has n � 1 edges and no circuit.

iii G has n � 1 edges and is connected.

iv G is connected. If an arbitrary edge is removed, the resulting subgraph is

disconnected.

v G has no circuit. Adding an arbitrary edge to G creates a circuit.

vi G contains a unique path between any pair of nodes.
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Kruskal’s Algorithm

Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V ,E ), cost function c : E ! R.

Task: find spanning tree T = (V ,F ) of G with minimum cost
P

e2F c(e).

Kruskal’s Algorithm for MST

1 Sort the edges in E such that c(e1)  c(e2)  · · ·  c(em).

2 Set T := (V , ;).
3 For i := 1 to m do:

If adding ei to T does not create a circuit, then add ei to T .
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Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

1
5

12

18

167



Prim’s Algorithm

Notation: For a graph G = (V ,E ) and A ✓ V let

�(A) := {e = {v ,w} 2 E | v 2 A and w 2 V \ A} .

We call �(A) the cut induced by A.

Prim’s Algorithm for MST

1 Set U := {r} for some node r 2 V and F := ;; set T := (U,F ).

2 While U 6= V , determine a minimum cost edge e 2 �(U).

3 Set F := F [ {e} and U := U [ {w} with e = {v ,w}, w 2 V \ U.

168
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Correctness of the MST Algorithms

Lemma 6.3.

A graph G = (V ,E ) is connected if and only if there is no set A ✓ V , ; 6= A 6= V , with

�(A) = ;.

Notation: We say that B ✓ E is extendible to an MST if B is contained in the edge-set

of some MST of G .

Theorem 6.4.

Let B ✓ E be extendible to an MST and ; 6= A ( V with B \ �(A) = ;.
If e is a min-cost edge in �(A), then B [ {e} is extendible to an MST.

I Correctness of Prim’s Algorithm immediately follows.

I Kruskal: Whenever an edge e = {v ,w} is added, it is cheapest edge in cut induced

by subset of nodes currently reachable from v .
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Efficiency of Prim’s Algorithm

Prim’s Algorithm for MST

1 Set U := {r} for some node r 2 V and F := ;; set T := (U,F ).

2 While U 6= V , determine a minimum cost edge e 2 �(U).

3 Set F := F [ {e} and U := U [ {w} with e = {v ,w}, w 2 V \ U.

I Straightforward implementation achieves running time O(nm) where, as usual,

n := |V | and m := |E |:
I the while-loop has n � 1 iterations;

I a min-cost edge e 2 �(U) can be found in O(m) time.

I Best known running time is O(m + n log n) (uses Fibonacci heaps).
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Efficiency of Kruskal’s Algorithm

Kruskal’s Algorithm for MST

1 Sort the edges in E such that c(e1)  c(e2)  · · ·  c(em).

2 Set T := (V , ;).
3 For i := 1 to m do:

If adding ei to T does not create a circuit, then add ei to T .

Theorem 6.5.

Kruskal’s Algorithm can be implemented to run in O(m logm) time.
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Minimum Spanning Trees and Linear Programming

Notation:

I For S ✓ V let �(S) :=
�
e = {v ,w} 2 E | v ,w 2 S

 
.

I For a vector x 2 RE
and a subset B ✓ E let x(B) :=

P
e2B xe .

Consider the following integer linear program:

min c
T · x

s.t. x(�(S))  |S |� 1 for all ; 6= S ⇢ V (6.1)

x(E ) = |V |� 1 (6.2)

xe 2 {0, 1} for all e 2 E

Observations:

I Feasible solution x 2 {0, 1}E is characteristic vector of subset F ✓ E .

I F does not contain circuit due to (6.1) and n � 1 edges due to (6.2).

I Thus, F forms a spanning tree of G .

I Moreover, the edge set of an arbitrary spanning tree of G yields a feasible solution

x 2 {0, 1}E .
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