
Minimum Spanning Trees and Linear Programming

Notation:

I For S ✓ V let �(S) :=
�
e = {v ,w} 2 E | v ,w 2 S

 
.

I For a vector x 2 RE
and a subset B ✓ E let x(B) :=

P
e2B xe .

Consider the following integer linear program:

min c
T · x

s.t. x(�(S))  |S |� 1 for all ; 6= S ⇢ V (6.1)

x(E ) = |V |� 1 (6.2)

xe 2 {0, 1} for all e 2 E

Observations:

I Feasible solution x 2 {0, 1}E is characteristic vector of subset F ✓ E .

I F does not contain circuit due to (6.1) and n � 1 edges due to (6.2).

I Thus, F forms a spanning tree of G .

I Moreover, the edge set of an arbitrary spanning tree of G yields a feasible solution

x 2 {0, 1}E .
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Discrete Problems as geometric problems :

-

Graph a .

. Spanning trees of G as oharacteristic vectors

o =L!) = .fi/.Y.=fg )
convex hall of characteristic vectors = polytope
'

t÷i÷÷÷::÷::÷÷÷÷÷÷÷
description of this polytope

by linear constraints
.

We solve this here for the
MST problem .



Minimum Spanning Trees and Linear Programming (cont.)

Consider LP relaxation of the integer programming formulation:

min c
T · x

s.t. x(�(S))  |S |� 1 for all ; 6= S ⇢ V

x(E ) = |V |� 1

xe � 0 for all e 2 E

Theorem 6.6.

Let x
⇤ 2 {0, 1}E be the characteristic vector of an MST. Then x

⇤
is an optimal solution

to the LP above.

Corollary 6.7.

The vertices of the polytope given by the set of feasible LP solutions are exactly the

characteristic vectors of spanning trees of G . The polytope is thus the convex hull of

the characteristic vectors of all spanning trees.
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Minimum Spanning Trees and Linear Programming (cont.)
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Proof of Thm 6.6:

We compute a MST with Kruskal and show that its characteristic vector x
⇤

is an

optimal solution of the LP.

Idea

Also construct a dual solution p with Kruskal and show that the complementary

slackness conditions are fulfilled.

Primal (P):

min cT · x
s.t. x(�(S))  |S |� 1 8; 6= S ⇢ V

x(E) = |V |� 1
xe � 0 8e 2 E

Dual (D):

min
X

;6=S✓V

(|S |� 1)pS

s.t.
X

S :e2�(S)

pS � �c(e) 8e 2 E

pS � 0 8; 6= S ⇢ V

pV free
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→ dual variables Zs

IS
dual variable 2-

✓

max E ( 1st - l ) . Zs
0±SEV Tps :  = - Zs )

sat . E
s :  eegcsg

Zs ⇐ Ce He

Zs E O t 0¥ SEV

Z v free
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