Minimum Spanning Trees and Linear Programming

Notation:
> For SC Vet y(S):={e={v,w} e E|v,we S}

O
v Y

§(<)

173



Minimum Spanning Trees and Linear Programming

Notation:
> For SC Vet y(S):={e={v,w} e E|v,we S}

» For a vector x € RE and a subset B C E let x(B) := Y ecB Xe-
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Minimum Spanning Trees and Linear Programming

Notation:
> For SC Vet y(S):={e={v,w} e E|v,we S}
> For a vector x € RE and a subset B C E let x(B) := Y .. Xe.

Consider the following integer linear program:

min ¢’ -x
st. x(v(S)) <|S] -1 forallp £ScV
x(E)=|V|-1

xe € {0,1} forallec E

(6.1)
(6.2)

173



Minimum Spanning Trees and Linear Programming

Notation:
> For SC Vet y(S):={e={v,w} e E|v,we S}

> For a vector x € RE and a subset B C E let x(B) := Y .. Xe.
Consider the following integer linear program:
min ¢’ -x
st. x(v(S)) <|S] -1 forallp £ScV
x(E)=|V|-1
xe € {0,1} foralleec E

Observations:

> Feasible solution x € {0,1}£ is characteristic vector of subset F C E.

(6.1)
(6.2)
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Minimum Spanning Trees and Linear Programming
Notation:

> For SC Vet y(S):={e={v,w} e E|v,we S}

> For a vector x € RE and a subset B C E let x(B) := Y .. Xe.

Consider the following integer linear program:

T

st. x(9(5)) < |51 —1 forallp £ScV (6.1)
x(E)=|V|-1 (6.2)

xe €{0,1} foralle e E

Observations:

> Feasible solution x € {0,1}£ is characteristic vector of subset F C E.
» F does not contain circuit due to (6.1) and n — 1 edges due to (6.2).
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Minimum Spanning Trees and Linear Programming
Notation:

> For SC Vet y(S):={e={v,w} e E|v,we S}

> For a vector x € RE and a subset B C E let x(B) := Y .. Xe.

Consider the following integer linear program:

T

min ¢ -x
st. x(v(S)) <|S] -1 forallp £ScV
x(E)=|V|-1

xe €{0,1} foralle e E

Observations:

> Feasible solution x € {0,1}£ is characteristic vector of subset F C E.
» F does not contain circuit due to (6.1) and n — 1 edges due to (6.2).

» Thus, F forms a spanning tree of G.

(6.1)
(6.2)
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Minimum Spanning Trees and Linear Programming

Notation:
> For SC Vet y(S):={e={v,w} e E|v,we S}
> For a vector x € RE and a subset B C E let x(B) := Y .. Xe.

Consider the following integer linear program:

T

min ¢’ -x
st. x(v(S5)) <|S] -1 forall £ScV (6.1)
x(E)=|V|-1 (6.2)
xe € {0,1} foralleec E

Observations:
> Feasible solution x € {0,1}£ is characteristic vector of subset F C E.
» F does not contain circuit due to (6.1) and n — 1 edges due to (6.2).
» Thus, F forms a spanning tree of G.

» Moreover, the edge set of an arbitrary spanning tree of G yields a feasible solution
x € {0,1}E.
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Minimum Spanning Trees and Linear Programming (cont.)

Consider LP relaxation of the integer programming formulation:

min c¢' -x
st. x(v(S)) <|S] -1 forall0 £#ScV
x(E)=|V|-1

Xe >0 forallec E
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Minimum Spanning Trees and Linear Programming (cont.)

Consider LP relaxation of the integer programming formulation:

min ¢’ -x
st. x(v(S)) <|S] -1 forall0 £#ScV
x(E)=|V|-1
Xe >0 forallec E

Theorem 6.6.

Let x* € {0,1}F be the characteristic vector of an MST. Then x* is an optimal solution

to the LP above.
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Minimum Spanning Trees and Linear Programming (cont.)

Consider LP relaxation of the integer programming formulation:

min ¢’ -x
st. x(v(S)) <|S] -1 forall0 £#ScV
x(E)=|V|-1
Xe >0 forallec E

Theorem 6.6.

Let x* € {0,1}F be the characteristic vector of an MST. Then x* is an optimal solution
to the LP above.

Corollary 6.7.

The vertices of the polytope given by the set of feasible LP solutions are exactly the
characteristic vectors of spanning trees of G. The polytope is thus the convex hull of
the characteristic vectors of all spanning trees.

by deliafio of weriex
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Proof of Thm 6.6:
We compute a MST with Kruskal and show that its characteristic vector x* is an

optimal solution of the LP.

Idea
Also construct a dual solution p with Kruskal and show that the complementary
slackness conditions are fulfilled.
Primal (P):
min ¢’ - x
st. x(v(S)) <5 -1 WEscV =D daal vewiabln 2

x(E)=|V|—1
xe >0 Vee E S olaal vomven bl 2

e [es= 2]
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Proof of Thm 6.6:
We compute a MST with Kruskal and show that its characteristic vector x* is an

optimal solution of the LP.
Idea

Also construct a dual solution p with Kruskal and show that the complementary
slackness conditions are fulfilled.

Primal (P):
min ¢’ - x
st. x(y(8)) < |S| -1 Vp#£SCV
x(E)y=1|V|-1
xe >0 Ve € E
Dual (D):
min 3 (S| - 1)ps
P#SCV
s.t. Z ps > —c(e) Ve € E
S:ee(S)
ps >0 VO#£ASCV
py free
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