Minimum Spanning Trees and Linear Programming Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.

Minimum Spanning Trees and Linear Programming
Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.
- For a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B):=\sum_{e \in B} x_{e}$.

Minimum Spanning Trees and Linear Programming

Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.
- For a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B):=\sum_{e \in B} x_{e}$.

Consider the following integer linear program:

$$
\left.\begin{array}{rlrl}
\min & & c^{T} \cdot x & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
x(E) & =|V|-1 & & \tag{6.2}\\
& & & \\
& & \in\{0,1\} &
\end{array}\right) \text { for all } \emptyset \neq S \subset V
$$

Minimum Spanning Trees and Linear Programming

Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.
- For a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B):=\sum_{e \in B} x_{e}$.

Consider the following integer linear program:

$$
\left.\begin{array}{rlrl}
\min & & c^{T} \cdot x & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
x(E) & =|V|-1 & & \\
& & & \text { for all } \emptyset \neq S \subset V \\
& & \in\{0,1\} &
\end{array}\right) \text { for all } e \in E
$$

Observations:

- Feasible solution $x \in\{0,1\}^{E}$ is characteristic vector of subset $F \subseteq E$.

Minimum Spanning Trees and Linear Programming

Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.
- For a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B):=\sum_{e \in B} x_{e}$.

Consider the following integer linear program:

$$
\left.\begin{array}{rlrl}
\min & & c^{T} \cdot x & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
x(E) & =|V|-1 & & \\
& & & \\
& x_{e} & \in\{0,1\} &
\end{array}\right) \text { for all } \emptyset \neq S \subset V
$$

Observations:

- Feasible solution $x \in\{0,1\}^{E}$ is characteristic vector of subset $F \subseteq E$.
$-F$ does not contain circuit due to (6.1) and $n-1$ edges due to (6.2).

Minimum Spanning Trees and Linear Programming

Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.
- For a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B):=\sum_{e \in B} x_{e}$.

Consider the following integer linear program:

$$
\left.\begin{array}{rlrl}
\min & & c^{T} \cdot x & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
x(E) & =|V|-1 & & \\
& & & \text { for all } \emptyset \neq S \subset V \\
& & \in\{0,1\} &
\end{array}\right) \text { for all } e \in E
$$

Observations:

- Feasible solution $x \in\{0,1\}^{E}$ is characteristic vector of subset $F \subseteq E$.
- F does not contain circuit due to (6.1) and $n-1$ edges due to (6.2).
- Thus, F forms a spanning tree of G.

Minimum Spanning Trees and Linear Programming

Notation:

- For $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$.
- For a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B):=\sum_{e \in B} x_{e}$.

Consider the following integer linear program:

$$
\left.\begin{array}{rlrl}
\min & & c^{T} \cdot x & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
x(E) & =|V|-1 & & \tag{6.2}\\
& & & \text { for all } \emptyset \neq S \subset V \\
& & \in\{0,1\} &
\end{array}\right) \text { for all } e \in E
$$

Observations:

- Feasible solution $x \in\{0,1\}^{E}$ is characteristic vector of subset $F \subseteq E$.
- F does not contain circuit due to (6.1) and $n-1$ edges due to (6.2).
- Thus, F forms a spanning tree of G.
- Moreover, the edge set of an arbitrary spanning tree of G yields a feasible solution $x \in\{0,1\}^{E}$.

Discrete Problems as geometric problems:
Graph a : Spanning trees of a as characteristic vectors

$$
a_{0}^{q_{2}} \equiv\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \int_{0}^{3} \equiv\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad 0 \quad \equiv\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Convex hall of characteristic vector $S=$ polytope

Computing a MST $=$ lincow optimisation over this poly tope

Question: How to optain a description of this polytope by linear constraints.
We solve this here for the MST probes.

Minimum Spanning Trees and Linear Programming (cont.)
Consider LP relaxation of the integer programming formulation:

$$
\begin{aligned}
& \min c^{T} \cdot x \\
& \text { s.t. } \quad x(\gamma(S)) \leq|S|-1 \\
& x(E)=|V|-1 \\
& x_{e} \geq 0
\end{aligned}
$$

Minimum Spanning Trees and Linear Programming (cont.)

Consider LP relaxation of the integer programming formulation:

$$
\begin{array}{rlrl}
\min & c^{T} \cdot x & & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
x(E) & =|V|-1 & & \text { for all } \emptyset \neq S \subset V \\
& x_{e} & \geq 0 & \\
& & \text { for all } e \in E
\end{array}
$$

Theorem 6.6.

Let $x^{*} \in\{0,1\}^{E}$ be the characteristic vector of an MST. Then x^{*} is an optimal solution to the LP above.

Minimum Spanning Trees and Linear Programming (cont.)

Consider LP relaxation of the integer programming formulation:

$$
\left.\begin{array}{rlrl}
\min & & c^{T} \cdot x & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
x(E) & =|V|-1 & & \text { for all } \emptyset \neq S \subset V \\
& & & \\
& & \geq 0 &
\end{array}\right) \text { for all } e \in E
$$

Theorem 6.6.

Let $x^{*} \in\{0,1\}^{E}$ be the characteristic vector of an MST. Then x^{*} is an optimal solution to the LP above.

Corollary 6.7.

The vertices of the polytope given by the set of feasible LP solutions are exactly the characteristic vectors of spanning trees of G. The polytope is thus the convex hull of the characteristic vectors of all spanning trees.
by definifion of cortex

Proof of Thm 6.6:
We compute a MST with Kruskal and show that its characteristic vector x^{*} is an optimal solution of the LP.

Idea
Also construct a dual solution p with Kruskal and show that the complementary slackness conditions are fulfilled.

Primal (P):

$$
\begin{array}{rlrl}
\left.\min \begin{array}{ll}
c^{T} \cdot x & \\
\text { s.t. } & x(\gamma(S))
\end{array}\right)|S|-1 \\
& x(E) & =|V|-1 \\
& x_{e} & \geq 0 & \forall \emptyset \neq S \subset V
\end{array} \quad \rightarrow \text { dual variables } z_{s}
$$

Dual (D):

$$
\begin{aligned}
\max & \sum_{\theta \pm S \subseteq v}(|s|-1) \cdot z_{s} \\
\text { sot. } \sum_{s: e \in \gamma(s)} z_{s} & \leqslant c_{c} \quad \forall e \\
z_{s} & \leqslant 0 \quad \forall \theta \neq S \nrightarrow V \\
z_{v} & \text { free }
\end{aligned}
$$

Proof of Thm 6.6:

We compute a MST with Kruskal and show that its characteristic vector x^{*} is an optimal solution of the LP.

Idea

Also construct a dual solution p with Kruskal and show that the complementary slackness conditions are fulfilled.

Primal (P):

$$
\begin{array}{rlrl}
\min & c^{T} \cdot x & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \forall \emptyset \neq S \subset V \\
& x(E) & =|V|-1 & \\
x_{e} & \geq 0 & \forall e \in E
\end{array}
$$

Dual (D):

$$
\begin{array}{cc}
\min & \\
& \sum_{\emptyset \neq S \subseteq V}(|S|-1) p_{S} \\
\text { s.t. } & \sum_{S: e \in \gamma(S)} p_{S} \geq-c(e) \\
& p_{S} \geq 0 \\
p_{V} \text { free } & \forall e \in E \\
& \forall \emptyset \neq S \subset V
\end{array}
$$

