Proof of Thm 6.6 (cont.):
(1) Construct dual solution:

» Kruskal constructs MST T with edge set
> E(T)={fA,f,...,fo_1}, and c(f) < c(h) < ... < c(fr-1)

» Every edge f; creates a new connected component X, C V by joining two smaller
connected components. Note that X, 1 =

V.
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Proof of Thm 6.6 (cont.):
(2) Show that p is feasible for the dual:

» Sign constraints fulfilled by construction. ,omin >0 (S| = 1ps
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Proof of Thm 6.6 (cont.):
(3) Show that x* and p fulfill complementary slackness conditions:
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Shortest Path Problem
Given: digraph D = (V, A), node r € V/, arc costs c,, a € A.

Task: for each v € V, find dipath from r to v of least cost (if one exists)
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Shortest Path Problem
Given: digraph D = (V, A), node r € V/, arc costs c,, a € A.

Task: for each v € V, find dipath from r to v of least cost (if one exists)
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Shortest Path Problem
Given: digraph D = (V, A), node r € V/, arc costs c,, a € A.

Task: for each v € V, find dipath from r to v of least cost (if one exists)

Remarks:
> Existence of r-v-dipath can be checked, e. g., by breadth-first search.
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Shortest Path Problem
Given: digraph D = (V, A), node r € V/, arc costs c,, a € A.
Task: for each v € V, find dipath from r to v of least cost (if one exists)

Remarks:

> Existence of r-v-dipath can be checked, e. g., by breadth-first search.
» Ensure existence of r-v-dipaths: add arcs (r, v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:
If y,, v € V, is the least cost of a dipath from r to v, then

Yo + Cuw) = yw [forall (v,w) € A.

(6.3)
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