Proof of Thm 6.6 (cont.):
(1) Construct dual solution:

Kruskal constructs MST T with edge set

$$
E(T)=\left\{f_{1}, f_{2}, \ldots, f_{n-1}\right\}, \text { and } c\left(f_{1}\right) \leq c\left(f_{2}\right) \leq \ldots \leq c\left(f_{n-1}\right)
$$

Every edge f_{k} creates a new connected component $X_{k} \subseteq V$ by joining two smaller connected components. Note that $X_{n-1}=V$.

Define:

$$
\begin{aligned}
& p_{x_{k}}=c_{e}\left(f_{l}\right)-c_{e}\left(f_{k}\right) \geq 0 \\
& p_{v}=-c\left(f_{n-1}\right) \\
& P_{S}=0 \text { for all other } S \leq V
\end{aligned}
$$

Proof of Chm 6.6 (cont.):
(2) Show that p is feasible for the dual:

Sign constraints fulfilled by construction.

$$
\text { . } \min \sum_{\theta \neq s \leq v}(|S|-1) p_{S}
$$

$$
\begin{aligned}
\sum_{s: e \in \gamma(s)} p_{s} & =\sum_{k: e \in \gamma\left(x_{k}\right)} p x_{x_{k}} \\
=p_{x_{i}} & +p_{x_{R_{1}}}+p_{x_{l_{2}}}+\ldots+p_{v}
\end{aligned}
$$

C sets conforining e growing w.r.t S
let x_{i} be the smallest such sets.

$$
\begin{aligned}
& =\left[c\left(f_{e_{1}}\right)-c\left(f_{i}\right)\right]+\left[c\left(f_{e_{2}}\right)-c\left(f_{l_{1}}\right)\right]+\ldots+\left[-c\left(f_{n-1}\right)\right] \\
& =-c\left(f_{i}\right) \\
& \geqslant-c(e)
\end{aligned}
$$

\Rightarrow dual constraints are fulfilled $\Rightarrow(e) \geqslant c\left(f_{i}\right)$
$\Rightarrow p$ is dual feasible

Proof of Chm 6.6 (cont.):
(3) Show that x^{*} and p fulfill complementary slackness conditions:

$$
\text { - } \begin{aligned}
x_{e}^{*}>\sigma \quad(e \in E(T)) \\
\Rightarrow \sum_{S: e \in f(s)} p_{s}=-c(e)
\end{aligned}
$$

- $P_{S} \neq \sigma \Rightarrow \quad S=X_{k}$ for some k
$\xrightarrow{\text { Def } x_{k}} \underset{\Longrightarrow}{\Rightarrow} S=$ vertex set of tree edges that form a subtree of the final MST

$$
\Rightarrow x(\gamma(s))=|s|-1
$$

\Rightarrow primal slack $=\sigma$
$\Rightarrow p$ and x^{*} are optimal

Shortest Path Problem

Given: digraph $D=(V, A)$, node $r \in V$, arc costs $c_{a}, a \in A$.
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Shortest Path Problem

Given: digraph $D=(V, A)$, node $r \in V$, arc costs $c_{a}, a \in A$.
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Shortest Path Problem

Given: digraph $D=(V, A)$, node $r \in V$, arc costs $c_{a}, a \in A$.
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Remarks:

- Existence of r - v-dipath can be checked, e.g., by breadth-first search.

Shortest Path Problem

Given: digraph $D=(V, A)$, node $r \in V$, arc costs $c_{a}, a \in A$.
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Remarks:

- Existence of r - v-dipath can be checked, e.g., by breadth-first search.
- Ensure existence of r - v-dipaths: add arcs (r, v) of suffic. large cost.

Shortest Path Problem
Given: digraph $D=(V, A)$, node $r \in V$, arc costs $c_{a}, a \in A$.
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)
Remarks:

- Existence of r - v-dipath can be checked, e. g., by breadth-first search.
- Ensure existence of r - v-dipaths: add $\operatorname{arcs}(r, v)$ of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:
If $y_{v}, v \in V$, is the least cost of a dipath from r to v, then

$$
\begin{equation*}
y_{v}+c_{(v, w)} \geq y_{w} \quad \text { for all }(v, w) \in A . \tag{6.3}
\end{equation*}
$$

 L) triangular inequality

