
Proof of Thm 6.6 (cont.):

(1) Construct dual solution:

I Kruskal constructs MST T with edge set

I E (T ) = {f1, f2, . . . , fn�1}, and c(f1)  c(f2)  . . .  c(fn�1)

I Every edge fk creates a new connected component Xk ✓ V by joining two smaller

connected components. Note that Xn�1 = V .
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Proof of Thm 6.6 (cont.):

(2) Show that p is feasible for the dual:

I Sign constraints fulfilled by construction. min
X
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Proof of Thm 6.6 (cont.):

(3) Show that x
⇤

and p fulfill complementary slackness conditions:
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Shortest Path Problem

Given: digraph D = (V ,A), node r 2 V , arc costs ca, a 2 A.

Task: for each v 2 V , find dipath from r to v of least cost (if one exists)
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Shortest Path Problem

Given: digraph D = (V ,A), node r 2 V , arc costs ca, a 2 A.

Task: for each v 2 V , find dipath from r to v of least cost (if one exists)

Remarks:

I Existence of r -v -dipath can be checked, e. g., by breadth-first search.

I Ensure existence of r -v -dipaths: add arcs (r , v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:

If yv , v 2 V , is the least cost of a dipath from r to v , then

yv + c(v ,w) � yw for all (v ,w) 2 A. (6.3)

Remarks:

I More generally, subpaths of shortest paths are shortest paths!

I If there is a shortest r -v -dipath for all v 2 V , then there is a shortest path tree,

i. e., a directed spanning tree T rooted at r such that the unique r -v -dipath in T is

a least-cost r -v -dipath in D.
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