Shortest Path Problem
Given: digraph $D=(V, A)$, node $r \in V$, arc costs $c_{a}, a \in A$.
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)
Remarks:

- Existence of r - v-dipath can be checked, e. g., by breadth-first search.
- Ensure existence of r - v-dipaths: add $\operatorname{arcs}(r, v)$ of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:
If $y_{v}, v \in V$, is the least cost of a dipath from r to v, then

$$
\begin{equation*}
y_{v}+c_{(v, w)} \geq y_{w} \quad \text { for all }(v, w) \in A . \tag{6.3}
\end{equation*}
$$

 L) triangular inequality

Shortest Path Problem

Given: digraph $D=(V, A)$, node $r \in V$, arc costs $c_{a}, a \in A$.
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Remarks:

- Existence of r - v-dipath can be checked, e.g., by breadth-first search.
- Ensure existence of r - v-dipaths: add arcs (r, v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:

If $y_{v}, v \in V$, is the least cost of a dipath from r to v, then

$$
\begin{equation*}
y_{v}+c_{(v, w)} \geq y_{w} \quad \text { for all }(v, w) \in A . \tag{6.3}
\end{equation*}
$$

Remarks:

- More generally, subpaths of shortest paths are shortest paths!

Shortest Path Problem

Given: digraph $D=(V, A)$, node $r \in V$, arc costs $c_{a}, a \in A$.
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Remarks:

- Existence of r - v-dipath can be checked, e.g., by breadth-first search.
- Ensure existence of r - v-dipaths: add arcs (r, v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:

If $y_{v}, v \in V$, is the least cost of a dipath from r to v, then

$$
\begin{equation*}
y_{v}+c_{(v, w)} \geq y_{w} \quad \text { for all }(v, w) \in A . \tag{6.3}
\end{equation*}
$$

Remarks:

- More generally, subpaths of shortest paths are shortest paths!
- If there is a shortest r - v-dipath for all $v \in V$, then there is a shortest path tree, i. e., a directed spanning tree T rooted at r such that the unique r - v-dipath in T is a least-cost r - v-dipath in D.

Feasible Potentials

Definition 6.8.
A vector $y \in \mathbb{R}^{V}$ is a feasible potential if it satisfies (6.3).

Feasible Potentials

Definition 6.8.
A vector $y \in \mathbb{R}^{V}$ is a feasible potential if it satisfies (6.3).

Lemma 6.9.
If y is feasible potential with $y_{r}=0$ and P an r - v-dipath, then $y_{v} \leq c(P)$.

Feasible Potentials

Definition 6.8.
A vector $y \in \mathbb{R}^{V}$ is a feasible potential if it satisfies (6.3).

Lemma 6.9.

If y is feasible potential with $y_{r}=0$ and P an r - v-dipath, then $y_{v} \leq c(P)$.
Proof: Suppose that P is $v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}$, where $v_{0}=r$ and $v_{k}=v$.

Feasible Potentials

Definition 6.8.
A vector $y \in \mathbb{R}^{V}$ is a feasible potential if it satisfies (6.3).

Lemma 6.9.

If y is feasible potential with $y_{r}=0$ and P an r - v-dipath, then $y_{v} \leq c(P)$.
Proof: Suppose that P is $v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}$, where $v_{0}=r$ and $v_{k}=v$. Then,

$$
c(P)=\sum_{i=1}^{k} c_{a_{i}} \geq \sum_{i=1}^{k}\left(y_{v_{i}}-y_{v_{i}-1}\right)=y_{v_{k}}-y_{v_{0}}=y_{v} .
$$

Feasible Potentials

Definition 6.8.
A vector $y \in \mathbb{R}^{V}$ is a feasible potential if it satisfies (6.3).

Lemma 6.9.

If y is feasible potential with $y_{r}=0$ and P an r - v-dipath, then $y_{v} \leq c(P)$.
Proof: Suppose that P is $v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}$, where $v_{0}=r$ and $v_{k}=v$. Then,

$$
c(P)=\sum_{i=1}^{k} c_{a_{i}} \geq \sum_{i=1}^{k}\left(y_{v_{i}}-y_{v_{i}-1}\right)=y_{v_{k}}-y_{v_{0}}=y_{v} .
$$

Corollary 6.10.

If y is a feasible potential with $y_{r}=0$ and P an r - v-dipath of cost y_{v}, then P is a least-cost r - v-dipath.

Ford's Algorithm

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Шت) While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \text { and } p(w):=v .
$$

Ford's Algorithm

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
III While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Question: Does the algorithm always terminate?

Ford's Algorithm

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
III While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \text { and } p(w):=v .
$$

Question: Does the algorithm always terminate?
Example:

Ford's Algorithm

Ford's Algorithm

i Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Question: Does the algorithm always terminate?
Example:

Observation:
The algorithm does not terminate because of the negative-cost dicircuit.

Validity of Ford's Algorithm

Lemma 6.11.

If there is no negative-cost dicircuit, then at any stage of the algorithm:
a if $y_{v} \neq \infty$, then y_{v} is the cost of some simple dipath from r to v;
b if $p(v) \neq$ null, then p defines a simple r - v-dipath of cost at most y_{v}.

Validity of Ford's Algorithm

Lemma 6.11.

If there is no negative-cost dicircuit, then at any stage of the algorithm:
a if $y_{v} \neq \infty$, then y_{v} is the cost of some simple dipath from r to v;
b if $p(v) \neq$ null, then p defines a simple r - v-dipath of cost at most y_{v}.

Theorem 6.12.

If there is no negative-cost dicircuit, then Ford's Algorithm terminates after a finite number of iterations. At termination, y is a feasible potential with $y_{r}=0$ and, for each node $v \in V, p$ defines a least-cost r - v-dipath.

Feasible Potentials and Negative-Cost Dicircuits

Theorem 6.13.
A digraph $D=(V, A)$ with arc costs $c \in \mathbb{R}^{A}$ has a feasible potential if and only if there is no negative-cost dicircuit.

Feasible Potentials and Negative-Cost Dicircuits

Theorem 6.13.

A digraph $D=(V, A)$ with arc costs $c \in \mathbb{R}^{A}$ has a feasible potential if and only if there is no negative-cost dicircuit.

Remarks:

- If there is a dipath but no least-cost dipath from r to v, it is because there are arbitrarily cheap nonsimple r - v-dipaths.

Simple

Feasible Potentials and Negative-Cost Dicircuits

Theorem 6.13.

A digraph $D=(V, A)$ with arc costs $c \in \mathbb{R}^{A}$ has a feasible potential if and only if there is no negative-cost dicircuit.

Remarks:

- If there is a dipath but no least-cost dipath from r to v, it is because there are arbitrarily cheap nonsimple r - v-dipaths.
- Finding a least-cost simple dipath from r to v is, however, difficult (anera).

Feasible Potentials and Negative-Cost Dicircuits

Theorem 6.13.

A digraph $D=(V, A)$ with arc costs $c \in \mathbb{R}^{A}$ has a feasible potential if and only if there is no negative-cost dicircuit.

Remarks:

- If there is a dipath but no least-cost dipath from r to v, it is because there are arbitrarily cheap nonsimple r - v-dipaths.
- Finding a least-cost simple dipath from r to v is, however, difficult (see later).

Lemma 6.14.

If c is integer-valued, $C:=2 \max _{a \in A}\left|c_{a}\right|+1$, and there is no negative-cost dicircuit, then Ford's Algorithm terminates after at most $C n^{2}$ iterations.

Feasible Potentials and Negative-Cost Dicircuits

Theorem 6.13.

A digraph $D=(V, A)$ with arc costs $c \in \mathbb{R}^{A}$ has a feasible potential if and only if there is no negative-cost dicircuit.

Remarks:

- If there is a dipath but no least-cost dipath from r to v, it is because there are arbitrarily cheap nonsimple r - v-dipaths.
- Finding a least-cost simple dipath from r to v is, however, difficult (see later).

Lemma 6.14.

If c is integer-valued, $C:=2 \max _{a \in A}\left|c_{a}\right|+1$, and there is no negative-cost dicircuit, then Ford's Algorithm terminates after at most $C n^{2}$ iterations.

Proof: Exercise.

Feasible Potentials and Linear Programming

As a consequence of Ford's Algorithm we get:
Theorem 6.15.
Let $D=(V, A)$ be a digraph, $r, s \in V$, and $c \in \mathbb{R}^{A}$. If, for every $v \in V$, there exists a least-cost dipath from r to v, then

$$
\min \{c(P) \mid P \text { an } r \text {-s-dipath }\}=\max \left\{y_{s}-y_{r} \mid y \text { a feasible potential }\right\} .
$$

Feasible Potentials and Linear Programming

As a consequence of Ford's Algorithm we get:

Theorem 6.15.

Let $D=(V, A)$ be a digraph, $r, s \in V$, and $c \in \mathbb{R}^{A}$. If, for every $v \in V$, there exists a least-cost dipath from r to v, then

$$
\min \{c(P) \mid P \text { an } r \text {-s-dipath }\}=\max \left\{y_{s}-y_{r} \mid y \text { a feasible potential }\right\} .
$$

Formulate the right-hand side as a linear program and consider the dual:

$$
\begin{array}{cl}
\max & y_{s}-y_{r} \\
\text { s.t. } & y_{w}-y_{v} \leq c_{(v, w)} \\
& \text { for all }(v, w) \in A
\end{array}
$$

Feasible Potentials and Linear Programming

As a consequence of Ford's Algorithm we get:

Theorem 6.15.

Let $D=(V, A)$ be a digraph, $r, s \in V$, and $c \in \mathbb{R}^{A}$. If, for every $v \in V$, there exists a least-cost dipath from r to v, then

$$
\min \{c(P) \mid P \text { an } r \text {-s-dipath }\}=\max \left\{y_{s}-y_{r} \mid y \text { a feasible potential }\right\} .
$$

Formulate the right-hand side as a linear program and consider the dual:
$\min c^{T} \cdot x$

$$
\begin{array}{cl}
\max & y_{s}-y_{r} \\
\text { s.t. } & y_{w}-y_{v} \leq c_{(v, w)} \\
& \text { sot. }
\end{array} \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=b_{v} \quad \forall v \in V
$$

with $b_{s}=1, b_{r}=-1$, and $b_{v}=0$ for all $v \notin\{r, s\}$.

