
Shortest Path Problem

Given: digraph D = (V ,A), node r 2 V , arc costs ca, a 2 A.

Task: for each v 2 V , find dipath from r to v of least cost (if one exists)

Remarks:

I Existence of r -v -dipath can be checked, e. g., by breadth-first search.

I Ensure existence of r -v -dipaths: add arcs (r , v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:

If yv , v 2 V , is the least cost of a dipath from r to v , then

yv + c(v ,w) � yw for all (v ,w) 2 A. (6.3)

Remarks:

I More generally, subpaths of shortest paths are shortest paths!

I If there is a shortest r -v -dipath for all v 2 V , then there is a shortest path tree,

i. e., a directed spanning tree T rooted at r such that the unique r -v -dipath in T is

a least-cost r -v -dipath in D.
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Feasible Potentials

Definition 6.8.

A vector y 2 RV
is a feasible potential if it satisfies (6.3).

Lemma 6.9.

If y is feasible potential with yr = 0 and P an r -v -dipath, then yv  c(P).

Proof: Suppose that P is v0, a1, v1, . . . , ak , vk , where v0 = r and vk = v . Then,

c(P) =
kX

i=1

cai �
kX

i=1

(yvi � yvi�1) = yvk � yv0 = yv .

Corollary 6.10.

If y is a feasible potential with yr = 0 and P an r -v -dipath of cost yv , then P is a

least-cost r -v -dipath.
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Ford’s Algorithm

Ford’s Algorithm

i Set yr := 0, p(r) := r , yv := 1, and p(v) := null, for all v 2 V \ {r}.
ii While there is an arc a = (v ,w) 2 A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .
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Ford’s Algorithm

Ford’s Algorithm

i Set yr := 0, p(r) := r , yv := 1, and p(v) := null, for all v 2 V \ {r}.
ii While there is an arc a = (v ,w) 2 A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

Question: Does the algorithm always terminate?

Example:

r

a

d

b

2 1

�3

1

Observation:

The algorithm does not terminate because of the negative-cost dicircuit.

179



Ford’s Algorithm

Ford’s Algorithm

i Set yr := 0, p(r) := r , yv := 1, and p(v) := null, for all v 2 V \ {r}.
ii While there is an arc a = (v ,w) 2 A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

Question: Does the algorithm always terminate?

Example:

r

a

d

b

2 1

�3

1

Observation:

The algorithm does not terminate because of the negative-cost dicircuit.

179

21at3/2O A¥
- I



Ford’s Algorithm

Ford’s Algorithm

i Set yr := 0, p(r) := r , yv := 1, and p(v) := null, for all v 2 V \ {r}.
ii While there is an arc a = (v ,w) 2 A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

Question: Does the algorithm always terminate?

Example:

r

a

d

b

2 1

�3

1

Observation:

The algorithm does not terminate because of the negative-cost dicircuit.

179



Validity of Ford’s Algorithm

Lemma 6.11.

If there is no negative-cost dicircuit, then at any stage of the algorithm:

a if yv 6= 1, then yv is the cost of some simple dipath from r to v ;

b if p(v) 6= null, then p defines a simple r -v -dipath of cost at most yv .

Theorem 6.12.

If there is no negative-cost dicircuit, then Ford’s Algorithm terminates after a finite

number of iterations. At termination, y is a feasible potential with yr = 0 and, for each

node v 2 V , p defines a least-cost r -v -dipath.
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Feasible Potentials and Negative-Cost Dicircuits

Theorem 6.13.

A digraph D = (V ,A) with arc costs c 2 RA
has a feasible potential if and only if there

is no negative-cost dicircuit.

Remarks:

I If there is a dipath but no least-cost dipath from r to v , it is because there are

arbitrarily cheap nonsimple r -v -dipaths.

I Finding a least-cost simple dipath from r to v is, however, difficult (see later).

Lemma 6.14.

If c is integer-valued, C := 2maxa2A |ca|+ 1, and there is no negative-cost dicircuit,

then Ford’s Algorithm terminates after at most C n
2

iterations.

Proof: Exercise.
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Feasible Potentials and Linear Programming

As a consequence of Ford’s Algorithm we get:

Theorem 6.15.

Let D = (V ,A) be a digraph, r , s 2 V , and c 2 RA
. If, for every v 2 V , there exists a

least-cost dipath from r to v , then

min{c(P) | P an r -s-dipath} = max{ys � yr | y a feasible potential} .

Formulate the right-hand side as a linear program and consider the dual:

max ys � yr

s.t. yw � yv  c(v ,w)

for all (v ,w) 2 A

min c
T · x

s.t.

X

a2��(v)

xa �
X

a2�+(v)

xa = bv 8v 2 V

xa � 0 for all a 2 A

with bs = 1, br = �1, and bv = 0 for all v 62 {r , s}.

Notice: The dual is the LP relaxation of an ILP formulation of the shortest r -s-dipath

problem (xa=̂ number of times a shortest r -s-dipath uses arc a).
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