Shortest Path Problem

Given: digraph D = (V, A), node $r \in V$, arc costs c_a , $a \in A$.

Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Remarks:

- Existence of *r*-*v*-dipath can be checked, e.g., by breadth-first search.
- Ensure existence of r-v-dipaths: add arcs (r, v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem: If y_v , $v \in V$, is the least cost of a dipath from r to v, then $y_v + c_{(v,w)} \ge y_w$ for all $(v, w) \in A$. (6.3) $(f_v) = \int_{v_v} \int_$

Shortest Path Problem

Given: digraph D = (V, A), node $r \in V$, arc costs c_a , $a \in A$.

Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Remarks:

- Existence of *r*-*v*-dipath can be checked, e.g., by breadth-first search.
- Ensure existence of r-v-dipaths: add arcs (r, v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem: If y_v , $v \in V$, is the least cost of a dipath from r to v, then

$$y_{\nu} + c_{(\nu,w)} \ge y_{w} \quad \text{for all } (\nu,w) \in A. \tag{6.3}$$

Remarks:

More generally, subpaths of shortest paths are shortest paths!

Shortest Path Problem

Given: digraph D = (V, A), node $r \in V$, arc costs c_a , $a \in A$.

Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Remarks:

- Existence of *r*-*v*-dipath can be checked, e.g., by breadth-first search.
- Ensure existence of r-v-dipaths: add arcs (r, v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem: If y_v , $v \in V$, is the least cost of a dipath from r to v, then

$$y_{\nu} + c_{(\nu,w)} \ge y_{w} \quad \text{for all } (\nu,w) \in A. \tag{6.3}$$

Remarks:

- More generally, subpaths of shortest paths are shortest paths!
- If there is a shortest r-v-dipath for all v ∈ V, then there is a shortest path tree, i. e., a directed spanning tree T rooted at r such that the unique r-v-dipath in T is a least-cost r-v-dipath in D.

Definition 6.8.

A vector $y \in \mathbb{R}^V$ is a feasible potential if it satisfies (6.3).

Definition 6.8.

A vector $y \in \mathbb{R}^V$ is a feasible potential if it satisfies (6.3).

Lemma 6.9.

If y is feasible potential with $y_r = 0$ and P an r-v-dipath, then $y_v \leq c(P)$.

Definition 6.8.

A vector $y \in \mathbb{R}^V$ is a feasible potential if it satisfies (6.3).

Lemma 6.9.

If y is feasible potential with $y_r = 0$ and P an r-v-dipath, then $y_v \leq c(P)$.

Proof: Suppose that *P* is $v_0, a_1, v_1, \ldots, a_k, v_k$, where $v_0 = r$ and $v_k = v$.

Definition 6.8.

A vector $y \in \mathbb{R}^V$ is a feasible potential if it satisfies (6.3).

Lemma 6.9.

If y is feasible potential with $y_r = 0$ and P an r-v-dipath, then $y_v \le c(P)$.

Proof: Suppose that P is $v_0, a_1, v_1, \ldots, a_k, v_k$, where $v_0 = r$ and $v_k = v$. Then,

$$c(P) = \sum_{i=1}^{k} c_{a_i} \ge \sum_{i=1}^{k} (y_{v_i} - y_{v_{i-1}}) = y_{v_k} - y_{v_0} = y_v$$
.

Definition 6.8.

A vector $y \in \mathbb{R}^V$ is a feasible potential if it satisfies (6.3).

Lemma 6.9.

If y is feasible potential with $y_r = 0$ and P an r-v-dipath, then $y_v \leq c(P)$.

Proof: Suppose that P is $v_0, a_1, v_1, \ldots, a_k, v_k$, where $v_0 = r$ and $v_k = v$. Then,

$$c(P) = \sum_{i=1}^{k} c_{a_i} \ge \sum_{i=1}^{k} (y_{v_i} - y_{v_{i-1}}) = y_{v_k} - y_{v_0} = y_v$$
.

Corollary 6.10.

If y is a feasible potential with $y_r = 0$ and P an r-v-dipath of cost y_v , then P is a least-cost r-v-dipath.

Ford's Algorithm

i Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

iii While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Ford's Algorithm

1 Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

iii While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Question: Does the algorithm always terminate?

Ford's Algorithm

I Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

iii While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Question: Does the algorithm always terminate?

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

iii While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Question: Does the algorithm always terminate?

Example:

Observation:

The algorithm does not terminate because of the negative-cost dicircuit.

Validity of Ford's Algorithm

Lemma 6.11.

If there is no negative-cost dicircuit, then at any stage of the algorithm:

- a if $y_v \neq \infty$, then y_v is the cost of some simple dipath from r to v;
- **b** if $p(v) \neq$ null, then p defines a simple r-v-dipath of cost at most y_v .

Validity of Ford's Algorithm

Lemma 6.11.

If there is no negative-cost dicircuit, then at any stage of the algorithm:

- a if $y_v \neq \infty$, then y_v is the cost of some simple dipath from r to v;
- **b** if $p(v) \neq$ null, then p defines a simple r-v-dipath of cost at most y_v .

Theorem 6.12.

If there is no negative-cost dicircuit, then Ford's Algorithm terminates after a finite number of iterations. At termination, y is a feasible potential with $y_r = 0$ and, for each node $v \in V$, p defines a least-cost r-v-dipath.

Theorem 6.13.

A digraph D = (V, A) with arc costs $c \in \mathbb{R}^A$ has a feasible potential if and only if there is no negative-cost dicircuit.

Theorem 6.13.

A digraph D = (V, A) with arc costs $c \in \mathbb{R}^A$ has a feasible potential if and only if there is no negative-cost dicircuit.

Remarks:

If there is a dipath but no least-cost dipath from r to v, it is because there are arbitrarily cheap nonsimple r-v-dipaths.

Theorem 6.13.

A digraph D = (V, A) with arc costs $c \in \mathbb{R}^A$ has a feasible potential if and only if there is no negative-cost dicircuit.

Remarks:

- If there is a dipath but no least-cost dipath from r to v, it is because there are arbitrarily cheap nonsimple r-v-dipaths.
- Finding a least-cost simple dipath from r to v is, however, difficult (sector).

Theorem 6.13.

A digraph D = (V, A) with arc costs $c \in \mathbb{R}^A$ has a feasible potential if and only if there is no negative-cost dicircuit.

Remarks:

- If there is a dipath but no least-cost dipath from r to v, it is because there are arbitrarily cheap nonsimple r-v-dipaths.
- Finding a least-cost simple dipath from r to v is, however, difficult (see later).

Lemma 6.14.

If c is integer-valued, $C := 2 \max_{a \in A} |c_a| + 1$, and there is no negative-cost dicircuit, then Ford's Algorithm terminates after at most $C n^2$ iterations.

Theorem 6.13.

A digraph D = (V, A) with arc costs $c \in \mathbb{R}^A$ has a feasible potential if and only if there is no negative-cost dicircuit.

Remarks:

- If there is a dipath but no least-cost dipath from r to v, it is because there are arbitrarily cheap nonsimple r-v-dipaths.
- Finding a least-cost simple dipath from r to v is, however, difficult (see later).

Lemma 6.14.

If c is integer-valued, $C := 2 \max_{a \in A} |c_a| + 1$, and there is no negative-cost dicircuit, then Ford's Algorithm terminates after at most $C n^2$ iterations.

Proof: Exercise.

Feasible Potentials and Linear Programming

As a consequence of Ford's Algorithm we get:

Theorem 6.15.

Let D = (V, A) be a digraph, $r, s \in V$, and $c \in \mathbb{R}^A$. If, for every $v \in V$, there exists a least-cost dipath from r to v, then

 $\min\{c(P) \mid P \text{ an } r\text{-s-dipath}\} = \max\{y_s - y_r \mid y \text{ a feasible potential}\}$.

Feasible Potentials and Linear Programming

As a consequence of Ford's Algorithm we get:

Theorem 6.15.

ľ

Let D = (V, A) be a digraph, $r, s \in V$, and $c \in \mathbb{R}^A$. If, for every $v \in V$, there exists a least-cost dipath from r to v, then

 $\min\{c(P) \mid P \text{ an } r\text{-s-dipath}\} = \max\{y_s - y_r \mid y \text{ a feasible potential}\}$.

Formulate the right-hand side as a linear program and consider the dual:

Feasible Potentials and Linear Programming

As a consequence of Ford's Algorithm we get:

Theorem 6.15.

Let D = (V, A) be a digraph, $r, s \in V$, and $c \in \mathbb{R}^A$. If, for every $v \in V$, there exists a least-cost dipath from r to v, then

 $\min\{c(P) \mid P \text{ an } r\text{-s-dipath}\} = \max\{y_s - y_r \mid y \text{ a feasible potential}\}$.

Formulate the right-hand side as a linear program and consider the dual:

$$\begin{array}{ll} \max & y_s - y_r \\ \text{s.t.} & y_w - y_v \leq c_{(v,w)} \\ & \text{for all } (v,w) \in A \end{array} \qquad \begin{array}{ll} \min & c^T \cdot x \\ \text{s.t.} & \sum_{a \in \delta^-(v)} x_a - \sum_{a \in \delta^+(v)} x_a = b_v \quad \forall v \in V \\ & x_a \geq 0 \quad \text{for all } a \in A \end{array}$$

with $b_s = 1$, $b_r = -1$, and $b_v = 0$ for all $v \notin \{r, s\}$.

