Chapter 7: Maximum Flow Problems

(cp. Cook, Cunningham, Pulleyblank \& Schrijver, Chapter 3)

Maximum s-t-Flow Problem

Given: Digraph $D=(V, A)$, arc capacities $u \in \mathbb{R}_{\geq 0}^{A}$, nodes $s, t \in V$.
Definition 7.1.
A flow in D is a vector $x \in \mathbb{R}_{\geq 0}^{A}$.

Maximum s-t-Flow Problem

Given: Digraph $D=(V, A)$, arc capacities $u \in \mathbb{R}_{\geq 0}^{A}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}_{\geq 0}^{A}$. Moreover, a flow x in D
ii obeys arc capacities and is called feasible, if $x_{a} \leq u_{a}$ for each $a \in A$;

Maximum s-t-Flow Problem

Given: Digraph $D=(V, A)$, arc capacities $u \in \mathbb{R}_{\geq 0}^{A}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}_{\geq 0}^{A}$. Moreover, a flow x in D
ii obeys arc capacities and is called feasible, if $x_{a} \leq u_{a}$ for each $a \in A$;
Wif has excess ex $x_{x}(v):=x\left(\delta^{-}(v)\right)-x\left(\delta^{+}(v)\right)$ at node $v \in V$;

Maximum s-t-Flow Problem

Given: Digraph $D=(V, A)$, arc capacities $u \in \mathbb{R}_{\geq 0}^{A}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}_{\geq 0}^{A}$. Moreover, a flow x in D
ii obeys arc capacities and is called feasible, if $x_{a} \leq u_{a}$ for each $a \in A$;
II has excess ex $x_{x}(v):=x\left(\delta^{-}(v)\right)-x\left(\delta^{+}(v)\right)$ at node $v \in V$;
囲 satisfies flow conservation at node $v \in V$ if $\mathrm{ex}_{x}(v)=0$;

Maximum s-t-Flow Problem

Given: Digraph $D=(V, A)$, arc capacities $u \in \mathbb{R}_{\geq 0}^{A}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}_{\geq 0}^{A}$. Moreover, a flow x in D
ii obeys arc capacities and is called feasible, if $x_{a} \leq u_{a}$ for each $a \in A$;
II has excess ex $x_{x}(v):=x\left(\delta^{-}(v)\right)-x\left(\delta^{+}(v)\right)$ at node $v \in V$;
囲 satisfies flow conservation at node $v \in V$ if $\mathrm{ex}_{x}(v)=0$;
iv is a circulation if it satisfies flow conservation at each node $v \in V$;

Maximum s-t-Flow Problem

Given: Digraph $D=(V, A)$, arc capacities $u \in \mathbb{R}_{\geq 0}^{A}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}_{\geq 0}^{A}$. Moreover, a flow x in D
ii obeys arc capacities and is called feasible, if $x_{a} \leq u_{a}$ for each $a \in A$;
II has excess ex $x_{x}(v):=x\left(\delta^{-}(v)\right)-x\left(\delta^{+}(v)\right)$ at node $v \in V$;
囲 satisfies flow conservation at node $v \in V$ if $\mathrm{ex}_{x}(v)=0$;
[v is a circulation if it satisfies flow conservation at each node $v \in V$;
\mathbf{v} is an s - t-flow of value $\mathrm{ex}_{x}(t)$ if it satisfies flow conservation at each node $v \in V \backslash\{s, t\}$ and if $\mathrm{ex}_{x}(t) \geq 0$.

Maximum s-t-Flow Problem

Given: Digraph $D=(V, A)$, arc capacities $u \in \mathbb{R}_{\geq 0}^{A}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}_{\geq 0}^{A}$. Moreover, a flow x in D
ii obeys arc capacities and is called feasible, if $x_{a} \leq u_{a}$ for each $a \in A$;
Wif has excess ex $x_{x}(v):=x\left(\delta^{-}(v)\right)-x\left(\delta^{+}(v)\right)$ at node $v \in V$;
囲 satisfies flow conservation at node $v \in V$ if $\mathrm{ex}_{x}(v)=0$;
[v is a circulation if it satisfies flow conservation at each node $v \in V$;
\mathbf{v} is an s - t-flow of value $\mathrm{ex}_{x}(t)$ if it satisfies flow conservation at each node $v \in V \backslash\{s, t\}$ and if $\mathrm{ex}_{x}(t) \geq 0$.

The maximum s - t-flow problem asks for a feasible s - t-flow in D of maximum value.

Example

$$
e x_{4}(s)=-6
$$

s-t-Flows and s - t-Cuts

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$
\operatorname{ex}_{x}(U):=x\left(\delta^{-}(U)\right)-x\left(\delta^{+}(U)\right) .
$$

s-t-Flows and s - t-Cuts
For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$
e x_{x}(U):=x\left(\delta^{-}(U)\right)-x\left(\delta^{+}(U)\right) .
$$

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $\mathrm{ex}_{x}(U)=\sum_{v \in U} \mathrm{ex}_{x}(v)$.

s-t-Flows and s - t-Cuts

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$
e x_{x}(U):=x\left(\delta^{-}(U)\right)-x\left(\delta^{+}(U)\right) .
$$

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $\mathrm{ex}_{x}(U)=\sum_{v \in U} \mathrm{ex}_{x}(v)$. In particular, the value of an s-t-flow x is equal to

$$
\mathrm{ex}_{x}(t)=-\mathrm{ex}_{x}(s)=\mathrm{ex}_{x}(U) \text { for each } U \subseteq V \backslash\{s\} \text { with } t \in U \text {. }
$$

$s-t$-Flows and s - t-Cuts

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$
e_{x}(U):=x\left(\delta^{-}(U)\right)-x\left(\delta^{+}(U)\right) .
$$

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $\mathrm{ex}_{x}(U)=\sum_{v \in U} \mathrm{ex}_{x}(v)$. In particular, the value of an $s-t$-flow x is equal to

$$
\operatorname{ex}_{x}(t)=-\mathrm{ex}_{x}(s)=\mathrm{ex}_{x}(U) \text { for each } U \subseteq V \backslash\{\dot{s}\} \text { with } t \in U .
$$

For $U \subseteq V \backslash\{s\}$ with $t \in U$, the subset of arcs $\delta^{-}(U)$ is called an s - t-cut.

s-t-Flows and s - t-Cuts
For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$
e_{x}(U):=x\left(\delta^{-}(U)\right)-x\left(\delta^{+}(U)\right) .
$$

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $\mathrm{ex}_{x}(U)=\sum_{v \in U} \mathrm{ex}_{x}(v)$. In particular, the value of an s-t-flow x is equal to

$$
\mathrm{ex}_{x}(t)=-\mathrm{ex}_{x}(s)=\mathrm{ex}_{x}(U) \text { for each } U \subseteq V \backslash\{s\} \text { with } t \in U .
$$

For $U \subseteq V \backslash\{s\}$ with $t \in U$, the subset of arcs $\delta^{-}(U)$ is called an s - t-cut.

Lemma 7.3.

Let $U \subseteq V \backslash\{s\}$ with $t \in U$. The value of a feasible s - t-flow x is at most the capacity $u\left(\delta^{-}(U)\right)$ of the $s-t$-cut $\delta^{-}(U)$. Equality holds if and only if $x_{a}=u_{a}$ for each $a \in \delta^{-}(U)$ and $x_{a}=0$ for each $a \in \delta^{+}(U)$.

Lemma 7.3:

$$
\begin{aligned}
\text { flow value } & =e x_{x}(u) \\
& =x\left(\delta^{-}(u)\right)-\underbrace{x\left(\delta^{+}(u)\right)}_{\geq \sigma} \\
& \leq x\left(\delta^{-}(u)\right) \underline{=} \\
& \leq u\left(\delta^{-}(u)\right)
\end{aligned}
$$

Residual Graph and Residual Arcs

For $a=(v, w) \in A$, let $a^{-1}:=(w, v)$ be the corresponding backward arc and $A^{-1}:=\left\{a^{-1} \mid a \in A\right\}$.

Residual Graph and Residual Arcs

For $a=(v, w) \in A$, let $a^{-1}:=(w, v)$ be the corresponding backward arc and $A^{-1}:=\left\{a^{-1} \mid a \in A\right\}$.

- For a feasible flow x, the set of residual arcs is given by

$$
A_{x}:=\left\{a \in A \mid x_{a}<u_{a}\right\} \cup\left\{a^{-1} \in A^{-1} \mid x_{a}>0\right\} .
$$

- For $a \in A$, define the residual capacity $u_{x}(a)$ as

$$
u_{x}(a):=u(a)-x(a) \quad \text { if } a \in A_{x}, \quad \text { and } \quad u_{x}\left(a^{-1}\right):=x(a) \quad \text { if } a^{-1} \in A_{x}
$$

- The digraph $D_{x}:=\left(V, A_{x}\right)$ is called the residual graph of x.

x-augmenting paths

Observation:

- If x is a feasible flow in (D, u) and y a feasible flow in $\left(D_{x}, u_{x}\right)$, then

$$
z(a):=x(a)+y(a)-y\left(a^{-1}\right) \quad \text { for } a \in A
$$

yields a feasible flow z in D (we write $z:=x+y$ for short).

x-augmenting paths

Observation:

- If x is a feasible flow in (D, u) and y a feasible flow in $\left(D_{x}, u_{x}\right)$, then

$$
z(a):=x(a)+y(a)-y\left(a^{-1}\right) \quad \text { for } a \in A
$$

yields a feasible flow z in D (we write $z:=x+y$ for short).

Lemma 7.4.

If x is a feasible s - t-flow such that D_{x} does not contain an s - t-dipath, then x is a maximum s - t-flow.

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm
Theorem 7.5 (Max-Flow Min-Cut Theorem).
The maximum s - t-flow value equals the minimum capacity of an s - t-cut.

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).

The maximum s - t-flow value equals the minimum capacity of an s - t-cut.

Corollary.

A feasible $s-t$-flow x is maximum if and only if D_{x} does not contain an s - t-dipath.

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).

The maximum s - t-flow value equals the minimum capacity of an s - t-cut.

Corollary.

A feasible $s-t$-flow x is maximum if and only if D_{x} does not contain an s - t-dipath.

Ford-Fulkerson Algorithm

ii set $x:=0$;
Iii while there is an s - t-dipath P in D_{x}
困 $\operatorname{set} x:=x+\delta \cdot \chi^{P}$ with $\delta:=\min \left\{u_{x}(a) \mid a \in P\right\}$;
Here, $\chi^{P}: A \rightarrow\{0,1,-1\}$ is the characteristic vector of dipath P defined by

$$
\chi^{P}(a)=\left\{\begin{array}{ll}
1 & \text { if } a \in P, \\
-1 & \text { if } a^{-1} \in P, \\
0 & \text { otherwise, }
\end{array} \quad \text { for all } a \in A .\right.
$$

Ford-Fulkerson Example

