Chapter 7: Maximum Flow Problems

(cp. Cook, Cunningham, Pulleyblank & Schrijver, Chapter 3)

Given: Digraph D = (V, A), arc capacities $u \in \mathbb{R}^{A}_{>0}$, nodes $s, t \in V$.

Definition 7.1.

A flow in *D* is a vector $x \in \mathbb{R}^{A}_{\geq 0}$.

Given: Digraph D = (V, A), arc capacities $u \in \mathbb{R}^A_{>0}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}^{A}_{\geq 0}$. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if $x_a \leq u_a$ for each $a \in A$;

Given: Digraph D = (V, A), arc capacities $u \in \mathbb{R}^A_{>0}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}^{A}_{\geq 0}$. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if $x_a \leq u_a$ for each $a \in A$;

iii has excess $e_x(v) := x(\delta^-(v)) - x(\delta^+(v))$ at node $v \in V$;

Given: Digraph D = (V, A), arc capacities $u \in \mathbb{R}^A_{>0}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}^{A}_{\geq 0}$. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if $x_a \leq u_a$ for each $a \in A$;

iii has excess $e_x(v) := x(\delta^-(v)) - x(\delta^+(v))$ at node $v \in V$;

m satisfies flow conservation at node $v \in V$ if $ex_x(v) = 0$;

Given: Digraph D = (V, A), arc capacities $u \in \mathbb{R}^A_{>0}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}^{A}_{\geq 0}$. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if $x_a \leq u_a$ for each $a \in A$;

iii has excess
$$ex_x(v) := x(\delta^-(v)) - x(\delta^+(v))$$
 at node $v \in V$;

m satisfies flow conservation at node $v \in V$ if $ex_x(v) = 0$;

is a circulation if it satisfies flow conservation at each node $v \in V$;

Given: Digraph D = (V, A), arc capacities $u \in \mathbb{R}^A_{>0}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}^{A}_{\geq 0}$. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if $x_a \leq u_a$ for each $a \in A$;

iii has excess
$$e_x(v) := x(\delta^-(v)) - x(\delta^+(v))$$
 at node $v \in V$;

m satisfies flow conservation at node $v \in V$ if $ex_x(v) = 0$;

- iv is a circulation if it satisfies flow conservation at each node $v \in V$;
- is an *s*-*t*-flow of value $ex_x(t)$ if it satisfies flow conservation at each node $v \in V \setminus \{s, t\}$ and if $ex_x(t) \ge 0$.

Given: Digraph D = (V, A), arc capacities $u \in \mathbb{R}^A_{>0}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}^{A}_{\geq 0}$. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if $x_a \leq u_a$ for each $a \in A$;

iii has excess
$$ex_x(v) := x(\delta^-(v)) - x(\delta^+(v))$$
 at node $v \in V$;

m satisfies flow conservation at node $v \in V$ if $ex_x(v) = 0$;

- is a circulation if it satisfies flow conservation at each node $v \in V$;
- is an *s*-*t*-flow of value $ex_x(t)$ if it satisfies flow conservation at each node $v \in V \setminus \{s, t\}$ and if $ex_x(t) \ge 0$.

The maximum *s*-*t*-flow problem asks for a feasible *s*-*t*-flow in *D* of maximum value.

Example

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$\operatorname{ex}_{x}(U) := x(\delta^{-}(U)) - x(\delta^{+}(U))$$
 .

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$\operatorname{ex}_{x}(U) := x(\delta^{-}(U)) - x(\delta^{+}(U))$$
 .

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $e_x(U) = \sum_{v \in U} e_x(v)$.

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$\operatorname{ex}_{x}(U) := x(\delta^{-}(U)) - x(\delta^{+}(U))$$
 .

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $e_x(U) = \sum_{v \in U} e_x(v)$. In particular, the value of an s-t-flow x is equal to

$$(\operatorname{ex}_{x}(t)) = -\operatorname{ex}_{x}(s) = \operatorname{ex}_{x}(U)$$
 for each $U \subseteq V \setminus \{s\}$ with $t \in U$.

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$\operatorname{ex}_{x}(U) := x(\delta^{-}(U)) - x(\delta^{+}(U))$$
 .

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $e_x(U) = \sum_{v \in U} e_x(v)$. In particular, the value of an s-t-flow x is equal to

$$\operatorname{ex}_{x}(t) = -\operatorname{ex}_{x}(s) = \operatorname{ex}_{x}(U) \quad \text{for each } U \subseteq V \setminus \{s\} \text{ with } t \in U.$$

For $U \subseteq V \setminus \{s\}$ with $t \in U$, the subset of arcs $\delta^{-}(U)$ is called an *s*-*t*-cut.

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$\operatorname{ex}_{x}(U) := x(\delta^{-}(U)) - x(\delta^{+}(U))$$
 .

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $e_x(U) = \sum_{v \in U} e_x(v)$. In particular, the value of an *s*-*t*-flow x is equal to

$$\operatorname{ex}_{x}(t) = -\operatorname{ex}_{x}(s) = \operatorname{ex}_{x}(U)$$
 for each $U \subseteq V \setminus \{s\}$ with $t \in U$.

For $U \subseteq V \setminus \{s\}$ with $t \in U$, the subset of arcs $\delta^{-}(U)$ is called an *s*-*t*-cut.

Lemma 7.3.

Let $U \subseteq V \setminus \{s\}$ with $t \in U$. The value of a feasible *s*-*t*-flow *x* is at most the capacity $u(\delta^{-}(U))$ of the *s*-*t*-cut $\delta^{-}(U)$. Equality holds if and only if $x_a = u_a$ for each $a \in \delta^{-}(U)$ and $x_a = 0$ for each $a \in \delta^{+}(U)$.

Lemma 7.3: flow value = exx(U) $= \times (f(u)) - \chi (f(u))$ 30 $\leq x \left(\int (u) \right)$ $\leq u(f(U))$

Residual Graph and Residual Arcs

For $a = (v, w) \in A$, let $a^{-1} := (w, v)$ be the corresponding backward arc and $A^{-1} := \{a^{-1} \mid a \in A\}.$

Residual Graph and Residual Arcs

For $a = (v, w) \in A$, let $a^{-1} := (w, v)$ be the corresponding backward arc and $A^{-1} := \{a^{-1} \mid a \in A\}.$

For a feasible flow x, the set of residual arcs is given by

$$A_x := \{ a \in A \mid x_a < u_a \} \cup \{ a^{-1} \in A^{-1} \mid x_a > 0 \}$$

For $a \in A$, define the residual capacity $u_x(a)$ as

 $u_x(a) := u(a) - x(a)$ if $a \in A_x$, and $u_x(a^{-1}) := x(a)$ if $a^{-1} \in A_x$.

• The digraph $D_x := (V, A_x)$ is called the residual graph of x.

x-augmenting paths

Observation:

• If x is a feasible flow in (D, u) and y a feasible flow in (D_x, u_x) , then

$$z(a):=x(a)+y(a)-y(a^{-1})$$
 for $a\in A$

yields a feasible flow z in D (we write z := x + y for short).

x-augmenting paths

Observation:

• If x is a feasible flow in (D, u) and y a feasible flow in (D_x, u_x) , then

$$z(a) := x(a) + y(a) - y(a^{-1})$$
 for $a \in A$

yields a feasible flow z in D (we write z := x + y for short).

Lemma 7.4.

If x is a feasible s-t-flow such that D_x does not contain an s-t-dipath, then x is a maximum s-t-flow.

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).

The maximum *s*-*t*-flow value equals the minimum capacity of an *s*-*t*-cut.

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).

The maximum *s*-*t*-flow value equals the minimum capacity of an *s*-*t*-cut.

Corollary.

A feasible *s*-*t*-flow x is maximum if and only if D_x does not contain an *s*-*t*-dipath.

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).

The maximum *s*-*t*-flow value equals the minimum capacity of an *s*-*t*-cut.

Corollary.

A feasible s-t-flow x is maximum if and only if D_x does not contain an s-t-dipath.

Ford-Fulkerson Algorithm

i set
$$x := 0$$
;
while there is an *s*-*t*-dipath *P* in D_x
set $x := x + \delta \cdot \chi^P$ with $\delta := \min\{u_x(a) \mid a \in P\}$

Here, $\chi^P: A \to \{0, 1, -1\}$ is the characteristic vector of dipath P defined by

$$\chi^{P}(a) = \begin{cases} 1 & \text{if } a \in P, \\ -1 & \text{if } a^{-1} \in P, \\ 0 & \text{otherwise,} \end{cases} \quad \text{for all } a \in A$$

с

196

t