Termination of the Ford-Fulkerson Algorithm

Theorem 7.6.

a If all capacities are rational, then the algorithm terminates with a maximum $s-t$-flow.
b If all capacities are integral, it finds an integral maximum s - t-flow.

Termination of the Ford-Fulkerson Algorithm

Theorem 7.6.

a If all capacities are rational, then the algorithm terminates with a maximum s-t-flow.
b If all capacities are integral, it finds an integral maximum s - t-flow.

When an arbitrary x-augmenting path is chosen in every iteration, the Ford-Fulkerson Algorithm can behave badly:

Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.

If all capacities are integral and the maximum flow value is $K<\infty$, then the Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is $O(m \cdot K)$ in this case.

Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.

If all capacities are integral and the maximum flow value is $K<\infty$, then the Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is $O(m \cdot K)$ in this case.

Proof: In each iteration the flow value is increased by at least 1 .

Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.

If all capacities are integral and the maximum flow value is $K<\infty$, then the Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is $O(m \cdot K)$ in this case.

Proof: In each iteration the flow value is increased by at least 1 .
A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:

- In each iteration, choose shortest s - t-dipath in D_{\times}(edge lengths=1)

Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.

If all capacities are integral and the maximum flow value is $K<\infty$, then the Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is $O(m \cdot K)$ in this case.

Proof: In each iteration the flow value is increased by at least 1 .
A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:

- In each iteration, choose shortest s - t-dipath in D_{\times}(edge lengths=1)

Theorem 7.8.

The Edmonds-Karp Algorithm terminates after at most $n \cdot m$ iterations; its running time is $O\left(n \cdot m^{2}\right)$.

Remark: The Edmonds-Karp Algorithm can be implemented with running time $O\left(n^{2} \cdot m\right)$.

Arc-Based LP Formulation
Straightforward LP formulation of the maximum s-t-flow problem:

$$
\begin{aligned}
& \max \sum_{a \in \delta^{+}(s)} x_{a}-\sum_{a \in \delta^{-}(s)} x_{a} \text { net flow out of } S \\
& \text { set. } \quad \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=0 \\
& x_{a} \leq u(a) \\
& x_{a} \geq 0 \\
& \text { flow conservation } \\
& \text { for all } v \in V \backslash\{s, t\} \quad y_{v} \\
& \begin{array}{c}
\text { capacity constronints } \\
\text { for all } a \in A
\end{array} \\
& z_{a} \\
& \text { for all } a \in A
\end{aligned}
$$

Column of primal

$$
\begin{aligned}
\min \sum_{a \in A} u(a) \cdot z_{a} & & y_{+}=0 \\
\text { s.t. }-y_{v}+y_{w}+z_{v w} & \geqslant 0 & \forall(v, w) \in A=v, w \\
y_{w}+z_{s w} & \geqslant 1 & \forall(s, w) \in A \\
-y_{v}+z_{v s} & \geqslant-1 & \forall(v, s) \in A \\
-y_{v}+z_{v t} & \geqslant 0 & \forall(v, t) \in A \\
y_{w}+z_{t w} & \geqslant \sigma & \forall(t, w) \in A \\
z_{a} & \geqslant 0 & \forall a \in A
\end{aligned}
$$

Arc-Based LP Formulation

Straightforward LP formulation of the maximum s-t-flow problem:

$$
\begin{array}{lll}
\max & \sum_{a \in \delta^{+}(s)} x_{a}-\sum_{a \in \delta^{-}(s)} x_{a} & \\
\text { s.t. } & \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=0 & \text { for all } v \in V \backslash\{s, t\} \\
& x_{a} \leq u(a) & \\
& x_{a} \geq 0 & \text { for all } a \in A \\
& \text { for all } a \in A
\end{array}
$$

Dual LP:

$$
\begin{array}{lll}
\min & \sum_{a \in A} u(a) \cdot z_{a} & \\
\text { s.t. } & y_{w}-y_{v}+z_{(v, w)} \geq 0 & \text { for all }(v, w) \in A \\
& y_{s}=1, \quad y_{t}=0 & \\
& z_{a} \geq 0 & \text { for all } a \in A
\end{array}
$$

Dual Solutions and s - t-Cuts

$$
\begin{array}{lll}
\min & \sum_{a \in A} u(a) \cdot z_{a} & \\
\text { s.t. } & y_{w}-y_{v}+z_{(v, w)} \geq 0 & \text { for all }(v, w) \in A \\
& y_{s}=1, \quad y_{t}=0 & \\
& z_{a} \geq 0 & \text { for all } a \in A
\end{array}
$$

Observation: An s-t-cut $\delta^{+}(U)$ (with $U \subseteq V \backslash\{t\}, s \in U$) yields feasible dual solution (y, z) of value $u\left(\delta^{+}(U)\right)$:

Dual Solutions and s - t-Cuts

$$
\begin{array}{lll}
\min & \sum_{a \in A} u(a) \cdot z_{a} & \\
\text { s.t. } & y_{w}-y_{v}+z_{(v, w)} \geq 0 & \text { for all }(v, w) \in A \\
& y_{s}=1, \quad y_{t}=0 & \\
& z_{a} \geq 0 & \text { for all } a \in A
\end{array}
$$

Observation: An s-t-cut $\delta^{+}(U)$ (with $U \subseteq V \backslash\{t\}, s \in U$) yields feasible dual solution (y, z) of value $u\left(\delta^{+}(U)\right)$:

- let y be the characteristic vector χ^{U} of U
(i. e., $y_{v}=1$ for $v \in U, y_{v}=0$ for $v \in V \backslash U$)

Dual Solutions and s - t-Cuts

$$
\begin{array}{ll}
\min & \sum_{a \in A} u(a) \cdot z_{a} \\
\text { s.t. } & y_{w}-y_{v}+z_{(v, w)} \geq 0 \\
& y_{s}=1, \quad y_{t}=0 \\
& z_{a} \geq 0
\end{array}
$$

for all $a \in A$
Observation: An s-t-cut $\delta^{+}(U)$ (with $U \subseteq V \backslash\{t\}, s \in U$) yields feasible dual solution (y, z) of value $u\left(\delta^{+}(U)\right)$:

- let y be the characteristic vector χ^{U} of U
(i.e., $y_{v}=1$ for $v \in U, y_{v}=0$ for $v \in V \backslash U$)
- let z be the characteristic vector $\chi^{\delta^{+}(U)}$ of $\delta^{+}(U)$
(i. e., $z_{a}=1$ for $a \in \delta^{+}(U), z_{a}=0$ for $\left.a \in A \backslash \delta^{+}(U)\right)$

Dual Solutions and s - t-Cuts

$$
\begin{array}{lll}
\min & \sum_{a \in A} u(a) \cdot z_{a} & \\
\text { s.t. } & y_{w}-y_{v}+z_{(v, w)} \geq 0 & \text { for all }(v, w) \in A \\
& y_{s}=1, \quad y_{t}=0 & \\
& z_{a} \geq 0 & \text { for all } a \in A
\end{array}
$$

Observation: An s-t-cut $\delta^{+}(U)$ (with $U \subseteq V \backslash\{t\}, s \in U$) yields feasible dual solution (y, z) of value $u\left(\delta^{+}(U)\right)$:

- let y be the characteristic vector χ^{U} of U
(i.e., $y_{v}=1$ for $v \in U, y_{v}=0$ for $v \in V \backslash U$)
- let z be the characteristic vector $\chi^{\delta^{+}(U)}$ of $\delta^{+}(U)$
(i. e., $z_{a}=1$ for $a \in \delta^{+}(U), z_{a}=0$ for $a \in A \backslash \delta^{+}(U)$)

Theorem 7.9.

There exists an s - t-cut $\delta^{+}(U)$ (with $U \subseteq V \backslash\{t\}, s \in U$) such that the corresponding dual solution (y, z) is an optimal dual solution.

Proof The 4.9:
opt value of dual \min cap of a cut 11 strong duality max - flow 11 min -cat opt value of primal $=$ max flow value them

