
Termination of the Ford-Fulkerson Algorithm

Theorem 7.6.
a If all capacities are rational, then the algorithm terminates with a maximum

s-t-flow.
b If all capacities are integral, it finds an integral maximum s-t-flow.

When an arbitrary x-augmenting path is chosen in every iteration, the Ford-Fulkerson
Algorithm can behave badly:
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Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.
If all capacities are integral and the maximum flow value is K < ∞, then the
Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is
O(m · K ) in this case.

Proof: In each iteration the flow value is increased by at least 1.

A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:
◮ In each iteration, choose shortest s-t-dipath in Dx (edge lengths=1)

Theorem 7.8.
The Edmonds-Karp Algorithm terminates after at most n ·m iterations; its running time
is O(n ·m2).

Remark: The Edmonds-Karp Algorithm can be implemented with running time
O(n2 ·m).
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Arc-Based LP Formulation
Straightforward LP formulation of the maximum s-t-flow problem:

max
!

a∈δ+(s)

xa −
!

a∈δ−(s)

xa

s.t.
!

a∈δ−(v)

xa −
!

a∈δ+(v)

xa = 0 for all v ∈ V \ {s, t}

xa ≤ u(a) for all a ∈ A

xa ≥ 0 for all a ∈ A

Dual LP:

min
!

a∈A
u(a) · za

s.t. yw − yv + z(v ,w) ≥ 0 for all (v ,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A
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Dual Solutions and s-t-Cuts

min
!

a∈A
u(a) · za

s.t. yw − yv + z(v ,w) ≥ 0 for all (v ,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A

Observation: An s-t-cut δ+(U) (with U ⊆ V \ {t}, s ∈ U) yields feasible dual solution
(y , z) of value u(δ+(U)):

◮ let y be the characteristic vector χU of U
(i. e., yv = 1 for v ∈ U, yv = 0 for v ∈ V \ U)

◮ let z be the characteristic vector χδ+(U) of δ+(U)
(i. e., za = 1 for a ∈ δ+(U), za = 0 for a ∈ A \ δ+(U))

Theorem 7.9.
There exists an s-t-cut δ+(U) (with U ⊆ V \ {t}, s ∈ U) such that the corresponding
dual solution (y , z) is an optimal dual solution.
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