Application: Kénig's Theorem

Definition 7.10.
Consider an undirected graph G = (V, E).

B A matching in G is a subset of edges M C E with en e’ = () for all e, e’ € M with
e#e.
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B A matching in G is a subset of edges M C E with en e’ = () for all e, e’ € M with
e#e.
H A vertex cover is a subset of nodes C C V with eN C # () for all e € E.

201



Application: Kénig's Theorem

Definition 7.10.
Consider an undirected graph G = (V, E).
H A matching in G is a subset of edges M C E with ene’ = () for all e, ¢’ € M with
e#e.
H A vertex cover is a subset of nodes C C V with enN C # () for all e € E.

Theorem 7.11.
In bipartite graphs, the maximum cardinality of a matching equals the minimum
cardinality of a vertex cover.
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Application: Kénig's Theorem

Definition 7.10.
Consider an undirected graph G = (V, E).
B A matching in G is a subset of edges M C E with en e’ = () for all e, e’ € M with
e#e.
H A vertex cover is a subset of nodes C C V with enN C # () for all e € E.

Theorem 7.11.

In bipartite graphs, the maximum cardinality of a matching equals the minimum
cardinality of a vertex cover.

Observation: In a bipartite graph G = (PUQ, E), a maximum cardinality matching can
be found by a maximum flow computation.
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Chapter 8:
Complexity Theory

(Cook, Cunningham, Pulleyblank & Schrijver, Chapter 9;
Korte & Vygen, Chapter 15
Garey & Johnson)
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Efficient Algorithms: Historical Remark
Edmonds (1965):

I am claiming, as a mathematical result, the existence of a good algorithm

for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether
or not there exists an algorithm whose difficulty increases only algcbmlcal]\

thh the size of the graph.

Thea m~thepa+icgl sipnific ,u'[c( of this naner reete lar~-

PERSe—
Edmonds (1967):

" We say an algonthm is good if there is a polynomlal 2
function f(n) which, for every posmve integer valued
n. is an upper bound on the “amount of work™ the
algomhm does for any input of “size’” n. The concept ¢

il Leae r‘;la"un coy te T ~hi

travelmg saleman problem |[cf. 4| [ conjecture that
there is no good algorithm for the traveling saleman
problem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical |
possnblllty. and (2) I do not know. 4
~l-arithm is known for findin~ —o_ov aranh

——-—-

I

1

Jack Edmonds (1934-)




Is There a Good Algorithm for the TSP?

7

“I' can’t find an efficient algorithm, I guess I’'m just too dumb.”
R r———

Source: Garey & Johnson, Computers and Intractability, 1979.
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Is There a Good Algorithm for the TSP?

C w ‘
I can’t find an efficient algorithm, because no such algorithm is possible!”’

R EEe—

Source: Garey & Johnson, Computers and Intractability, 1979.
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Is There a Good Algorithm for the TSP?

MO LL L L |

c'.
=g 'Y

““I can’t find an efficient algorithm, but neither can all these famous people.”

PES—

Source: Garey & Johnson, Computers and Intractability, 1979. so



Decision Problems

Most of complexity theory is based on decision problems such as, e. g.:

(Undirected) Hamiltonian Circuit Problem
Given: undirected graph G = (V, E).

Task: decide whether G contains § Hamiltonian circuit.
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Decision Problems

Most of complexity theory is based on decision problems such as, e. g.:

(Undirected) Hamiltonian Circuit Problem
Given: undirected graph G = (V, E).

Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.

H A decision problem is a pair P = (X, Y). The elements of X are called instances of
P, the elements of Y C X are the yes-instances, those of X \ Y are no-instances.

H An algorithm for a decision problem (X, Y') decides for a given x € X whether
xeY.




Decision Problems

Most of complexity theory is based on decision problems such as, e. g.:
(Undirected) Hamiltonian Circuit Problem

Given: undirected graph G = (V, E).

Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.

H A decision problem is a pair P = (X, Y). The elements of X are called instances of
P, the elements of Y C X are the yes-instances, those of X \ Y are no-instances.

H An algorithm for a decision problem (X, Y) decides for a given x € X whether
xeY.

Example. For Hamiltonian Circuit, X is the set of all (undirected) graphs and Y C X is
the subset of graphs containing a Hamiltonian circuit.



Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)
Given: matrix A € Z™m*" vector b € Z™.

Task: decide whether there is x € R" (x € Z") with A-x > b.




Further Examples of Decision Problems
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Spanning Tree Problem

Given: graph G = (V, E), edge weights w : E — Z, positive integer k.

Task: decide whether there is a spanning subtree of weight at most k.




Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)
Given: matrix A € Z™*" vector b € Z™.
Task: decide whether there is x € R" (x € Z") with A-x > b.

Spanning Tree Problem

Given: graph G = (V, E), edge weights w : E — Z, positive integer k.

Task: decide whether there is a spanning subtree of weight at most k.

Steiner Tree Problem
Given: graph G = (V,E), terminals T C V, edge weights w : E — Z,
positive integer k.

Task: decide whether there is a subtree of G of weight at most k that
contains all terminals in T.




Complexity Classes P and NP

P

The class of all decision problems for which there is a deterministic polynomial time
algorithm is denoted by P.
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The class of all decision problems for which there is a deterministic polynomial time
algorithm is denoted by P.

Example: The Spanning Tree Problem is in P.

NP

A decision problem belongs to the complexity class NP if solutions can be verified in
polynomial time.
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Complexity Classes P and NP

P

The class of all decision problems for which there is a deterministic polynomial time
algorithm is denoted by P.

Example: The Spanning Tree Problem is in P.

NP

A decision problem belongs to the complexity class NP if solutions can be verified in
polynomial time.

Examples: The Hamiltonian Circuit Problem and all problems listed on the previous
slides belong to NP.
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Nondeterministic Turing Machines

Remarks.

» The complexity class P consists of all decision problems that can be solved by a
deterministic Turing machine in polynomial time.
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