
Application: Kőnig’s Theorem

Definition 7.10.
Consider an undirected graph G = (V ,E ).

i A matching in G is a subset of edges M ⊆ E with e ∩ e ′ = ∅ for all e, e ′ ∈ M with
e ∕= e ′.

ii A vertex cover is a subset of nodes C ⊆ V with e ∩ C ∕= ∅ for all e ∈ E .

Theorem 7.11.
In bipartite graphs, the maximum cardinality of a matching equals the minimum
cardinality of a vertex cover.

Observation: In a bipartite graph G = (P∪̇Q,E ), a maximum cardinality matching can
be found by a maximum flow computation.
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Efficient Algorithms: Historical Remark
Edmonds (1965):

Edmonds (1967):

Jack Edmonds (1934–)
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Is There a Good Algorithm for the TSP?

Source: Garey & Johnson, Computers and Intractability, 1979.
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Decision Problems
Most of complexity theory is based on decision problems such as, e. g.:

(Undirected) Hamiltonian Circuit Problem
Given: undirected graph G = (V ,E ).

Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.
i A decision problem is a pair P = (X ,Y ). The elements of X are called instances of
P, the elements of Y ⊆ X are the yes-instances, those of X \ Y are no-instances.

ii An algorithm for a decision problem (X ,Y ) decides for a given x ∈ X whether
x ∈ Y .

Example. For Hamiltonian Circuit, X is the set of all (undirected) graphs and Y ⊂ X is
the subset of graphs containing a Hamiltonian circuit.
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Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)

Given: matrix A ∈ Zm×n, vector b ∈ Zm.

Task: decide whether there is x ∈ Rn (x ∈ Zn) with A · x ≥ b.

Spanning Tree Problem
Given: graph G = (V ,E ), edge weights w : E → Z, positive integer k .

Task: decide whether there is a spanning subtree of weight at most k .

Steiner Tree Problem
Given: graph G = (V ,E ), terminals T ⊆ V , edge weights w : E → Z,

positive integer k .

Task: decide whether there is a subtree of G of weight at most k that
contains all terminals in T .
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Complexity Classes P and NP

P
The class of all decision problems for which there is a deterministic polynomial time
algorithm is denoted by P .

Example: The Spanning Tree Problem is in P .

NP
A decision problem belongs to the complexity class NP if solutions can be verified in
polynomial time.

Examples: The Hamiltonian Circuit Problem and all problems listed on the previous
slides belong to NP .
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Nondeterministic Turing Machines
Remarks.
◮ The complexity class P consists of all decision problems that can be solved by a

deterministic Turing machine in polynomial time.

◮ The complexity class NP consists of all decision problems that can be solved by a
non-deterministic Turing machine in polynomial time.
◮ Guess a solution and check in polynomial time.

◮ NP stands for Non-deterministic Polynomial.

Lemma 8.2.
P ⊆ NP .

NP P

Proof: Deterministic Turing machines are a special case of non-deterministic Turing
machines.
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