Definition 7.10.

Consider an undirected graph G = (V, E).

i A matching in G is a subset of edges $M \subseteq E$ with $e \cap e' = \emptyset$ for all $e, e' \in M$ with $e \neq e'$.

Definition 7.10.

Consider an undirected graph G = (V, E).

A matching in G is a subset of edges $M \subseteq E$ with $e \cap e' = \emptyset$ for all $e, e' \in M$ with $e \neq e'$.

ii A vertex cover is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Definition 7.10.

Consider an undirected graph G = (V, E).

A matching in G is a subset of edges $M \subseteq E$ with $e \cap e' = \emptyset$ for all $e, e' \in M$ with $e \neq e'$.

ii A vertex cover is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Theorem 7.11.

In bipartite graphs, the maximum cardinality of a matching equals the minimum cardinality of a vertex cover.

ILP formulation of Max-condinality matching
max
$$\sum_{e \in E} x_e$$

s.t. $\sum_{w \in S(v)} x_{vw} \leq 1$ trev
 $x_e \in \{0,1\}$ tree E

Definition 7.10.

Consider an undirected graph G = (V, E).

A matching in G is a subset of edges $M \subseteq E$ with $e \cap e' = \emptyset$ for all $e, e' \in M$ with $e \neq e'$.

ii A vertex cover is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Theorem 7.11.

In bipartite graphs, the maximum cardinality of a matching equals the minimum cardinality of a vertex cover.

Observation: In a bipartite graph $G = (P \cup Q, E)$, a maximum cardinality matching can be found by a maximum flow computation.

201 - 1

COMP331/557

Chapter 8: Complexity Theory

(Cook, Cunningham, Pulleyblank & Schrijver, Chapter 9; Korte & Vygen, Chapter 15 Garey & Johnson)

Efficient Algorithms: Historical Remark

Edmonds (1965):

I am claiming, as a mathematical result, the existence of a *good* algorithm for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty exponentially with the size of the graph. It is by no means obvious whether *or not* there exists an algorithm whose difficulty increases only algebraically with the size of the graph.

The mothemotical significance of this paper rests larged

Edmonds (1967):

We say an algorithm is *good* if there is a polynomial function f(n) which, for every positive-integer valued n, is an upper bound on the "amount of work" the algorithm does for any input of "size" n. The concept

traveling saleman problem [cf. 4]. I conjecture that there is no good algorithm for the traveling saleman problem. My reasons are the same as for any mathematical conjecture: (1) It is a legitimate mathematical possibility, and (2) I do not know.

A mod algorithm is known for finding in any granh

Jack Edmonds (1934-)

Is There a Good Algorithm for the TSP?

Source: Garey & Johnson, Computers and Intractability, 1979.

Is There a Good Algorithm for the TSP?

Source: Garey & Johnson, Computers and Intractability, 1979.

Is There a Good Algorithm for the TSP?

Source: Garey & Johnson, Computers and Intractability, 1979.

Decision Problems

Most of complexity theory is based on decision problems such as, e.g.:

Decision Problems

Most of complexity theory is based on decision problems such as, e.g.:

(Undirected) Hamiltonian Circuit Problem

Given: undirected graph G = (V, E).

Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.

A decision problem is a pair $\mathcal{P} = (X, Y)$. The elements of X are called instances of \mathcal{P} , the elements of $Y \subseteq X$ are the yes-instances, those of $X \setminus Y$ are no-instances.

An algorithm for a decision problem (X, Y) decides for a given $x \in X$ whether $x \in Y$.

Decision Problems

Most of complexity theory is based on decision problems such as, e.g.:

(Undirected) Hamiltonian Circuit Problem Given: undirected graph G = (V, E).

Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.

A decision problem is a pair $\mathcal{P} = (X, Y)$. The elements of X are called instances of \mathcal{P} , the elements of $Y \subseteq X$ are the yes-instances, those of $X \setminus Y$ are no-instances.

An algorithm for a decision problem (X, Y) decides for a given $x \in X$ whether $x \in Y$.

Example. For Hamiltonian Circuit, X is the set of all (undirected) graphs and $Y \subset X$ is the subset of graphs containing a Hamiltonian circuit.

Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)

Given: matrix $A \in \mathbb{Z}^{m \times n}$, vector $b \in \mathbb{Z}^m$.

Task: decide whether there is $x \in \mathbb{R}^n$ ($x \in \mathbb{Z}^n$) with $A \cdot x \ge b$.

Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)

Given: matrix $A \in \mathbb{Z}^{m \times n}$, vector $b \in \mathbb{Z}^m$.

Task: decide whether there is $x \in \mathbb{R}^n$ ($x \in \mathbb{Z}^n$) with $A \cdot x \ge b$.

Spanning Tree Problem

Given: graph G = (V, E), edge weights $w : E \to \mathbb{Z}$, positive integer k.

Task: decide whether there is a spanning subtree of weight at most k.

Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)

Given: matrix $A \in \mathbb{Z}^{m \times n}$, vector $b \in \mathbb{Z}^m$.

Task: decide whether there is $x \in \mathbb{R}^n$ ($x \in \mathbb{Z}^n$) with $A \cdot x \ge b$.

Spanning Tree Problem

Given: graph G = (V, E), edge weights $w : E \to \mathbb{Z}$, positive integer k.

Task: decide whether there is a spanning subtree of weight at most k.

Steiner Tree Problem

Given: graph G = (V, E), terminals $T \subseteq V$, edge weights $w : E \to \mathbb{Z}$, positive integer k.

Task: decide whether there is a subtree of G of weight at most k that contains all terminals in T.

Ρ

The class of all decision problems for which there is a deterministic polynomial time algorithm is denoted by P.

Ρ

The class of all decision problems for which there is a deterministic polynomial time algorithm is denoted by P.

Example: The Spanning Tree Problem is in *P*.

Ρ

The class of all decision problems for which there is a deterministic polynomial time algorithm is denoted by P.

Example: The Spanning Tree Problem is in *P*.

 NP

A decision problem belongs to the complexity class NP if solutions can be verified in polynomial time.

Ρ

The class of all decision problems for which there is a deterministic polynomial time algorithm is denoted by P.

Example: The Spanning Tree Problem is in *P*.

NP

A decision problem belongs to the complexity class NP if solutions can be verified in polynomial time.

Examples: The Hamiltonian Circuit Problem and all problems listed on the previous slides belong to *NP*.

Nondeterministic Turing Machines

Remarks.

The complexity class P consists of all decision problems that can be solved by a deterministic Turing machine in polynomial time.

