Application: Kônig's Theorem

Definition 7.10.

Consider an undirected graph $G=(V, E)$.
ii A matching in G is a subset of edges $M \subseteq E$ with $e \cap e^{\prime}=\emptyset$ for all $e, e^{\prime} \in M$ with $e \neq e^{\prime}$.

Application: Kőnig's Theorem

Definition 7.10.

Consider an undirected graph $G=(V, E)$.
ii A matching in G is a subset of edges $M \subseteq E$ with $e \cap e^{\prime}=\emptyset$ for all $e, e^{\prime} \in M$ with $e \neq e^{\prime}$.
团 A vertex cover is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Application: Kônig's Theorem
Definition 7.10.
Consider an undirected graph $G=(V, E)$.
A matching in G is a subset of edges $M \subseteq E$ with $e \cap e^{\prime}=\emptyset$ for all $e, e^{\prime} \in M$ with $e \neq e^{\prime}$.
A vertex cover is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Theorem 7.11.
In bipartite graphs, the maximum cardinality of a matching equals the minimum cardinality of a vertex cover.

ILP formulation of Max-cordinalily matching

$$
\begin{array}{ll}
\max \sum_{e \in E} x_{e} & \\
\text { sit. } \sum_{w \in \delta(v)} x_{v w} \leq 1 & \forall v \in V \\
x_{e} \in\{0,1\} & \forall e \in E
\end{array}
$$

Application: Kônig's Theorem

Definition 7.10.

Consider an undirected graph $G=(V, E)$.
if A matching in G is a subset of edges $M \subseteq E$ with $e \cap e^{\prime}=\emptyset$ for all $e, e^{\prime} \in M$ with $e \neq e^{\prime}$.
III A vertex cover is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Theorem 7.11.

In bipartite graphs, the maximum cardinality of a matching equals the minimum cardinality of a vertex cover.

Observation: In a bipartite graph $G=(P \cup \cup Q, E)$, a maximum cardinality matching can be found by a maximum flow computation.

Compating a max-courdinality matoking com be done by max-flow methods (for bipartite graphs)

$$
u_{a}=1 \quad \forall a \in A
$$

after running Ford-Fulkerson:

- flow cowrying arc define a matching flaw is integers, so all values are $0 / 1$ per arc - convarsly, every, matching defines an sit-flow with values $O / 1$

COMP331/557

Chapter 8:
 Complexity Theory

(Cook, Cunningham, Pulleyblank \& Schrijver, Chapter 9;
Korte \& Vygen, Chapter 15
Garey \& Johnson)

Efficient Algorithms: Historical Remark

Edmonds (1965):
I am claiming, as a mathematical result, the existence of a good algorithm for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty exponentially with the size of the graph. It is by no means obvious whether or not there exists an algorithm whose difficulty increases only algebraically with the size of the graph.

Tha mathemntinal sipnificance of this naner rests lown-1 .-soumation
Edmonds (1967):
We say an algorithm is good if there is a polynomial function $f(n)$ which, for every positive-integer valued n, is an upper bound on the "amount of work" the algorithm does for any input of "size" n. The concept

traveling saleman problem [cf. 4]. I conjecture that there is no good algorithm for the traveling saleman problem. My reasons are the same as for any mathematical conjecture: (1) It is a legitimate mathematical possibility, and (2) I do not know.

A $\sim-d$ nerrithm is known for findine :-nv granh

Jack Edmonds (1934-)

Is There a Good Algorithm for the TSP?

"I can't find an efficient algorithm, I guess I'm just too dumb."

Source: Garey \& Johnson, Computers and Intractability, 1979.

Is There a Good Algorithm for the TSP?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Source: Garey \& Johnson, Computers and Intractability, 1979.

Is There a Good Algorithm for the TSP?

"I can't find an efficient algorithm, but neither can all these famous people."

Decision Problems
Most of complexity theory is based on decision problems such as, e. g.:
(Undirected) Hamiltonian Circuit Problem
Given: undirected graph $G=(V, E)$.
Task: decide whether G contains Hamiltonian circuit.
C) circan't visiting each node exactly once

Decision Problems

Most of complexity theory is based on decision problems such as, e. g.:

(Undirected) Hamiltonian Circuit Problem

Given: undirected graph $G=(V, E)$.
Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.

ii A decision problem is a pair $\mathcal{P}=(X, Y)$. The elements of X are called instances of \mathcal{P}, the elements of $Y \subseteq X$ are the yes-instances, those of $X \backslash Y$ are no-instances.
III An algorithm for a decision problem (X, Y) decides for a given $x \in X$ whether $x \in Y$.

Decision Problems

Most of complexity theory is based on decision problems such as, e. g.:

(Undirected) Hamiltonian Circuit Problem

Given: undirected graph $G=(V, E)$.
Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.

ii A decision problem is a pair $\mathcal{P}=(X, Y)$. The elements of X are called instances of \mathcal{P}, the elements of $Y \subseteq X$ are the yes-instances, those of $X \backslash Y$ are no-instances.
III An algorithm for a decision problem (X, Y) decides for a given $x \in X$ whether $x \in Y$.

Example. For Hamiltonian Circuit, X is the set of all (undirected) graphs and $Y \subset X$ is the subset of graphs containing a Hamiltonian circuit.

Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)
Given: matrix $A \in \mathbb{Z}^{m \times n}$, vector $b \in \mathbb{Z}^{m}$.
Task: decide whether there is $x \in \mathbb{R}^{n}\left(x \in \mathbb{Z}^{n}\right)$ with $A \cdot x \geq b$.

Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)

Given: matrix $A \in \mathbb{Z}^{m \times n}$, vector $b \in \mathbb{Z}^{m}$.
Task: decide whether there is $x \in \mathbb{R}^{n}\left(x \in \mathbb{Z}^{n}\right)$ with $A \cdot x \geq b$.

Spanning Tree Problem

Given: graph $G=(V, E)$, edge weights $w: E \rightarrow \mathbb{Z}$, positive integer k.
Task: decide whether there is a spanning subtree of weight at most k.

Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)

Given: matrix $A \in \mathbb{Z}^{m \times n}$, vector $b \in \mathbb{Z}^{m}$.
Task: decide whether there is $x \in \mathbb{R}^{n}\left(x \in \mathbb{Z}^{n}\right)$ with $A \cdot x \geq b$.

Spanning Tree Problem

Given: graph $G=(V, E)$, edge weights $w: E \rightarrow \mathbb{Z}$, positive integer k.
Task: decide whether there is a spanning subtree of weight at most k.

Steiner Tree Problem

Given: graph $G=(V, E)$, terminals $T \subseteq V$, edge weights $w: E \rightarrow \mathbb{Z}$, positive integer k.

Task: decide whether there is a subtree of G of weight at most k that contains all terminals in T.

Complexity Classes P and NP

The class of all decision problems for which there is a deterministic polynomial time algorithm is denoted by P.

Complexity Classes P and NP

P

The class of all decision problems for which there is a deterministic polynomial time algorithm is denoted by P.

Example: The Spanning Tree Problem is in P.

Complexity Classes P and NP

P

The class of all decision problems for which there is a deterministic polynomial time algorithm is denoted by P.

Example: The Spanning Tree Problem is in P.

NP

A decision problem belongs to the complexity class NP if solutions can be verified in polynomial time.

Complexity Classes P and NP

The class of all decision problems for which there is a deterministic polynomial time algorithm is denoted by P.

Example: The Spanning Tree Problem is in P.

NP

A decision problem belongs to the complexity class NP if solutions can be verified in polynomial time.

Examples: The Hamiltonian Circuit Problem and all problems listed on the previous slides belong to $N P$.

Nondeterministic Turing Machines

Remarks.

- The complexity class P consists of all decision problems that can be solved by a deterministic Turing machine in polynomial time.

