Tutorials
 Optimisation
 2018

Exercise Sheet 3

Exercise 5 and 6 are for the tutorial session.

Exercise 5:

Consider the example discussed in the lectures (slides $61-66-1$).
http://cgi.csc.liv.ac.uk/~gairing/COMP557/board/20181011.pdf
(a) Compute B^{-1} of basis 2 and give the associated basic solution.
(b) Do the same for basis 3 (we started this in the lecture).
(c) Find more bases of A and determine the corresponding basic solutions.
(d) Which of them are feasible?

Exercise 6:

Consider the following linear program:

$$
\begin{array}{rrrlrl}
\min & -x_{1}+x_{2}-x_{3}-2 x_{4} & & \\
\text { s.t. } x_{1}+x_{2}+2 x_{3}+x_{4} & & =8 \\
& x_{2}+6 x_{3} & & & =12 \\
& x_{1} & & & =4 \\
& & & & & \\
& & & x_{5} & =6 \\
& & x_{j} & \geq 0, \quad \forall j
\end{array}
$$

(a) Determine A, b such that the constraints of the above LP can be written as

$$
A x=b, x \geq 0
$$

(b) Determine all bases B of A. Compute B^{-1} for each basis B. Give the corresponding basic solution.
(c) Which are feasible?

