Tutorials

Optimisation
 2018

Exercise Sheet 5

Exercise 8:

Consider the following linear program:

$$
\begin{aligned}
& \min -\frac{3}{4} x_{1}+20 x_{2}-\frac{1}{2} x_{3}+6 x_{4}-3 \\
& \text { s.t. } \quad \frac{1}{4} x_{1}-8 x_{2}-x_{3}+9 x_{4} \leq 0 \\
& \frac{1}{2} x_{1}-12 x_{2}-\frac{1}{2} x_{3}+3 x_{4} \leq 0 \\
& x_{3} \quad \leq 1 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

Use the Simplex method (following the Bland's rule) in order to find the optimal objective function. Hint: This is the example from the lectures which is cycling.
(a) You should first figure out from which iteration on things will be different.
(b) Do only the final iterations.

Exercise 9:

While solving a standard form problem, we arrive at the following tableau, with x_{3}, x_{4}, and x_{5} being the basic variables:

$x_{3}=$| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -10 | δ | -2 | 0 | 0 | 0 |
| $x_{4}=$4 -1 η 1 0 0
 1 α -4 0 1 0
 x_{5} γ 3 0 0 1 l | | | | | |

The entries $\alpha, \beta, \gamma, \delta, \eta$ in the tableau are unknown parameters. For each of the following statements, find some parameter values that will make the statement true:
(a) The current solution is infeasible.
(b) The current solution is feasible but not optimal.
(c) The optimal cost is $-\infty$.
(d) The current solution is optimal and there are multiple optimal solutions.

Exercise 10:

Consider the following linear program:

$$
\begin{array}{rrl}
\min & 4 x_{1}+4 x_{2}+x_{3} \\
\text { s.t. } & x_{1}+x_{2}+x_{3} & =2 \\
& 2 x_{1}+x_{2} & =3 \\
& 3 x_{1}+2 x_{2}+x_{3} & =5 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Solve this LP with the Simplex Method using the Big-M method.

