Tutorials

Optimisation

2018

Exercise Sheet 5

Exercise 8:

Consider the following linear program:

Use the Simplex method (following the Bland's rule) in order to find the optimal objective function. Hint: This is the example from the lectures which is cycling.

- (a) You should first figure out from which iteration on things will be different.
- (b) Do only the final iterations.

Exercise 9:

While solving a standard form problem, we arrive at the following tableau, with x_3 , x_4 , and x_5 being the basic variables:

	x_1	x_2	x_3	x_4	x_5
-10	δ	-2	0	0	0
4	-1	η	1	0	0
1	α	-4	0	1	0
β	γ	3	0	0	1
	$-10 \\ 4 \\ 1 \\ \beta$	$ \begin{array}{c c} x_1 \\ -10 & \delta \\ 4 & -1 \\ 1 & \alpha \\ \beta & \gamma \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The entries $\alpha, \beta, \gamma, \delta, \eta$ in the tableau are unknown parameters. For each of the following statements, find some parameter values that will make the statement true:

- (a) The current solution is infeasible.
- (b) The current solution is feasible but not optimal.
- (c) The optimal cost is $-\infty$.
- (d) The current solution is optimal and there are multiple optimal solutions.

Exercise 10: Consider the following linear program:

Solve this LP with the Simplex Method using the Big-M method.