Tutorials

Optimisation

2018

Exercise Sheet 7

Exercise 12:

Consider the following linear program:

\min	x_1	+	$2x_2$	+	$5x_3$	+	$2x_4$		
s.t.	$2x_1$	+	x_2	+	x_3	+	x_4	=	10
	$2x_1$	+	$5x_2$	+	x_3			=	6
	x_1	+	x_2					=	1
			x_2	+	x_3	+	x_4	\geq	5
				x_1 ,	$x_2,$	x_3 ,	x_4	\geq	0

- (a) Construct the dual (D) of this LP.
- (b) Verify that $x^* = (0, 1, 1, 8)$ is optimal, using complementary slackness.

Exercise 13:

Consider the example discussed in the lecture (slides 61 - 66). http://cgi.csc.liv.ac.uk/~gairing/COMP557/board/20181011.pdf http://cgi.csc.liv.ac.uk/~gairing/COMP557/board/20181016.pdf

- (a) Compute B^{-1} of basis 2 (module slide 62) and give the associated dual basic solution.
- (b) Do the same for basis 3.

Exercise 14:

Consider the following linear program:

- (a) Construct the dual (D) of this LP.
- (b) Verify that $x^* = (\frac{1}{3}, 1, \frac{2}{3}, 0)$ is optimal using complementary slackness.
- (c) Let B be the basis consisting of columns 1,2, and 4.
 - Compute B^{-1} .
 - Use B^{-1} to compute the associated primal and dual basic solutions (cf. Observation 5.7, slide 155) and state (and provide an argument) whether they are feasible or not.