Martin Gairing
Handout: 9.11.2018
Flávia Alves

Tutorials
 Optimisation
 2018
 Exercise Sheet 7

Exercise 12:

Consider the following linear program:

$$
\begin{aligned}
& \min x_{1}+2 x_{2}+5 x_{3}+2 x_{4} \\
& \text { s.t. } 2 x_{1}+x_{2}+x_{3}+x_{4}=10 \\
& 2 x_{1}+5 x_{2}+x_{3}=6 \\
& \begin{aligned}
x_{1}+x_{2} & =1 \\
x_{2}+x_{3}+x_{4} & \geq 5
\end{aligned} \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

(a) Construct the dual (D) of this LP.
(b) Verify that $x^{*}=(0,1,1,8)$ is optimal, using complementary slackness.

Exercise 13:

Consider the example discussed in the lecture (slides $61-66$).
http://cgi.csc.liv.ac.uk/~gairing/COMP557/board/20181011.pdf
http://cgi.csc.liv.ac.uk/~gairing/COMP557/board/20181016.pdf
(a) Compute B^{-1} of basis 2 (module slide 62) and give the associated dual basic solution.
(b) Do the same for basis 3 .

Exercise 14:

Consider the following linear program:

$$
\begin{array}{ccccc}
\min & 9 x_{1} & +x_{2}+3 x_{3} \\
\text { s.t. } & 2 x_{1}+3 x_{2} & -x_{3}+x_{4}= & 3 \\
& 4 x_{1}+3 & +4 x_{3}-2 x_{4}= & 4 \\
& -x_{1} & -2 x_{2}+2 x_{3}+x_{4}= & -1 \\
& & x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq & 0
\end{array}
$$

(a) Construct the dual (D) of this LP.
(b) Verify that $x^{*}=\left(\frac{1}{3}, 1, \frac{2}{3}, 0\right)$ is optimal using complementary slackness.
(c) Let B be the basis consisting of columns 1,2 , and 4 .

- Compute B^{-1}.
- Use B^{-1} to compute the associated primal and dual basic solutions (cf. Observation 5.7, slide 155) and state (and provide an argument) whether they are feasible or not.

