Tutorials

Optimisation

2018

Exercise Sheet 8

Exercise 15:

Consider the following linear program:

\min	$-3x_{1}$	_	$5x_2$	—	x_3		
s.t.	x_1	+	$3x_2$	+	$2x_3$	\leq	10
	$2x_1$	+	$3x_2$	+	$2x_3$	\leq	9
	$2x_1$	+	$2x_2$	+	x_3	\leq	6
			$x_1,$	$x_2,$	x_3	\geq	0

- (a) Convert the problem into standard form and construct a basic feasible solution at which $(x_1, x_2, x_3) = (0, 0, 0).$
- (b) Carry out **two pivots** of the simplex method, starting at the basic feasible solution of part (a). Use Bland's rule to determine the pivot element.

Exercise 16:

Consider the following linear program:

- (a) Construct the dual (D) of this LP.
- (b) Verify that $x^* = (0, -2, -3, 15)$ is optimal, using complementary slackness.