Martin Gairing
Handout: 16.11.2018
Flávia Alves

Tutorials
 Optimisation

2018

Exercise Sheet 8

Exercise 15:

Consider the following linear program:

$$
\begin{array}{rrl}
\min & -3 x_{1} & -5 x_{2}-x_{3} \\
\text { s.t. } & x_{1} & +3 x_{2}+2 x_{3} \leq 10 \\
& 2 x_{1}+3 x_{2}+2 x_{3} \leq 9 \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 6 \\
& x_{1}, x_{2}, \quad x_{3} \geq 0
\end{array}
$$

(a) Convert the problem into standard form and construct a basic feasible solution at which $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$.
(b) Carry out two pivots of the simplex method, starting at the basic feasible solution of part (a). Use Bland's rule to determine the pivot element.

Exercise 16:

Consider the following linear program:

$$
\begin{aligned}
& \min 10 x_{1}+20 x_{2}+12 x_{3}+2 x_{4} \\
& \text { s.t. } \quad 4 x_{2}+4 x_{3}+2 x_{4} \geq 1 \\
& x_{1}+x_{2}+5 x_{3}+x_{4}=-2 \\
& x_{1}+x_{2}+x_{3} \geq-5 \\
& 4 x_{1}+4 x_{2} \quad \geq-8 \\
& x_{1} \leq 0 \\
& x_{2} \leq 0 \\
& x_{4} \geq 0
\end{aligned}
$$

(a) Construct the dual (D) of this LP.
(b) Verify that $x^{*}=(0,-2,-3,15)$ is optimal, using complementary slackness.

