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Efficient Algorithms: Historical Remark
Edmonds (1965):

Edmonds (1967):

Jack Edmonds (1934–)
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Is There a Good Algorithm for the TSP?

Source: Garey & Johnson, Computers and Intractability, 1979.
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Decision Problems
Most of complexity theory is based on decision problems such as, e. g.:

(Undirected) Hamiltonian Circuit Problem
Given: undirected graph G = (V ,E ).

Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.
i A decision problem is a pair P = (X ,Y ). The elements of X are called instances of
P, the elements of Y ⊆ X are the yes-instances, those of X \ Y are no-instances.

ii An algorithm for a decision problem (X ,Y ) decides for a given x ∈ X whether
x ∈ Y .

Example. For Hamiltonian Circuit, X is the set of all (undirected) graphs and Y ⊂ X is
the subset of graphs containing a Hamiltonian circuit.
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Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)

Given: matrix A ∈ Zm×n, vector b ∈ Zm.

Task: decide whether there is x ∈ Rn (x ∈ Zn) with A · x ≥ b.

Spanning Tree Problem
Given: graph G = (V ,E ), edge weights w : E → Z, positive integer k .

Task: decide whether there is a spanning subtree of weight at most k .

Steiner Tree Problem
Given: graph G = (V ,E ), terminals T ⊆ V , edge weights w : E → Z,

positive integer k .

Task: decide whether there is a subtree of G of weight at most k that
contains all terminals in T .
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Complexity Classes P and NP

P
The class of all decision problems for which there is a deterministic polynomial time
algorithm is denoted by P .

Example: The Spanning Tree Problem is in P .

NP
A decision problem belongs to the complexity class NP if solutions can be verified in
polynomial time.

Examples: The Hamiltonian Circuit Problem and all problems listed on the previous
slides belong to NP .
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Nondeterministic Turing Machines
Remarks.
I The complexity class P consists of all decision problems that can be solved by a

deterministic Turing machine in polynomial time.
I The complexity class NP consists of all decision problems that can be solved by a

non-deterministic Turing machine in polynomial time.
I Guess a solution and check in polynomial time.

I NP stands for Non-deterministic Polynomial.

Lemma 8.2.
P ⊆ NP .

NP P

Proof: Deterministic Turing machines are a special case of non-deterministic Turing
machines.
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Polynomial Transformations/Reductions

Definition 8.3.
Let P1 = (X1,Y1) and P2 = (X2,Y2) be decision problems. We say that P1
polynomially transforms to P2 if there exists a function f : X1 → X2 computable in
polynomial time such that for all x ∈ X1

x ∈ Y1 ⇐⇒ f (x) ∈ Y2 .

Remarks.
I A polynomial transformation is also called Karp reduction.
I Polynomial transformations are transitive.

Lemma 8.4.
Let P1 and P2 be decision problems. If P2 ∈ P and P1 polynomially transforms to P2,
then P1 ∈ P .
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NP-Hardness and NP-Completeness

Definition 8.5.
Let P be an optimization or decision problem.

i P is NP-hard if all problems in NP polynomially transform to P.
ii P is NP-complete if in addition P ∈ NP .

Satisfiability Problem (SAT)
Given: Boolean variables x1, . . . , xn and a family of clauses where each

clause is a disjunction of Boolean variables or their negations.

Task: decide whether there is a truth assignment to x1, . . . , xn such that
all clauses are satisfied.

Example: (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)
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Cook’s Theorem (1971)

Theorem 8.6.
The Satisfiability problem is NP-complete.

Stephen Cook (1939–)

Proof idea: SAT is obviously in NP . One can show that any non-deterministic Turing
machine can be encoded as an instance of SAT.
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Proving NP-Completeness

Lemma 8.7.
Let P1 and P2 be decision problems. If P1 is NP-complete, P2 ∈ NP , and P1
polynomially transforms to P2, then P2 is NP-complete.

Proof: As mentioned above, polynomial transformations are transitive.

Integer Linear Programming Problem (ILP)

Given: matrix A ∈ Zm×n, vector b ∈ Zm.

Task: decide whether there is x ∈ Zn with A · x ≥ b.

Theorem 8.8.
ILP is NP-complete.
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Transformations for Karp’s 21 NP-Complete Problems

Richard M. Karp (1972). Reducibility Among Combinatorial Problems
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P vs. NP

Theorem 8.9.
If a decision problem P is NP-complete and P ∈ P , then P = NP .

Proof: See definition of NP-completeness and Lemma 8.4.

There are two possible szenarios for the shape of the complexity world:

NP

PNP-c

scenario A

P = NP = NP-c

scenario B

I It is widely believed that P 6= NP , i. e., scenario A holds.

I Deciding whether P = NP or P 6= NP is one of the seven millenium prize problems
established by the Clay Mathematics Institute in 2000.
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Complexity of Linear Programming

I As discussed in Chapter 4, so far no variant of the simplex method has been shown
to have a polynomial running time.

I Therefore, the complexity of Linear Programming remained unresolved for a long
time.

I Only in 1979, the Soviet mathematician Leonid Khachiyan proved that the
so-called ellipsoid method earlier developed for nonlinear optimization can be
modified in order to solve LPs in polynomial time.

I In November 1979, the New York Times featured Khachiyan and his algorithm in a
front-page story.

I Details can, e. g., be found in the book of Bertsimas & Tsitsiklis (Chapter 8) or in
the book Geometric Algorithms and Combinatorial Optimization by Grötschel,
Lovász & Schrijver (Springer, 1988).
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