COMP331/557

Chapter 8:
Complexity Theory

(Cook, Cunningham, Pulleyblank & Schrijver, Chapter 9;
Korte & Vygen, Chapter 15
Garey & Johnson)

202

Efficient Algorithms: Historical Remark
Edmonds (1965):

I am claiming, as a mathematical result, the existence of a good algorithn

for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether
or not there exists an algorithm whose difficulty increases only algebraically

with the size of the graph.
The m~thapa+icgl aipnifcance of this naner reste lar~-

*—'"—
Edmonds (1967):

. - - g e e ey
We say an algorithm is good if there is a polynomial »

function f(n) which, for every positive-integer valued

n. is an upper bound on the “amount of work™ the t

algorithm does for any input of “size’ n. The concept
H - o ~T- ° ~nhis

~ o B _valative coy t
—

traveling saleman problem [cf. 4]. T conjecture that
there is no good algorithm for the traveling saleman
problem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical |
possibility, and (2) I do not know. ¢

A ~ <A AV~arithm ig known for findin~ = ~=v granh

RS-

|

|

Jack Edmonds (1934-)

Is There a Good Algorithm for the TSP?

7

*“I can’t find an efficient algorithm, I guess I'm just too dumb.”

Source: Garey & Johnson, Computers and Intractability, 1979.

204

Is There a Good Algorithm for the TSP?

T T w J

I can’t find an efficient algorithm, because no such algorithm is possible!”’

A ——

Source: Garey & Johnson, Computers and Intractability, 1979.
204

Is There a Good Algorithm for the TSP?

ML LL Lo 1

I can’t find an efficient algorithm, but neither can all these famous people.”

DR re—— —————

Source: Garey & Johnson, Computers and Intractability, 1979. 2
4

Decision Problems

Most of complexity theory is based on decision problems such as, e. g.:
(Undirected) Hamiltonian Circuit Problem

Given: undirected graph G = (V, E).

Task: decide whether G contains a Hamiltonian circuit.

Definition 8.1.

H A decision problem is a pair P = (X, Y). The elements of X are called instances of
P, the elements of Y C X are the yes-instances, those of X \ Y are no-instances.

H An algorithm for a decision problem (X, Y) decides for a given x € X whether
xeY.

Example. For Hamiltonian Circuit, X is the set of all (undirected) graphs and Y C X is
the subset of graphs containing a Hamiltonian circuit.

Further Examples of Decision Problems

(Integer) Linear Programming Problem (decision version)
Given: matrix A € Z™*" vector b € Z™.
Task: decide whether there is x € R"” (x € Z") with A-x > b.

Spanning Tree Problem

Given: graph G = (V, E), edge weights w : E — Z, positive integer k.

Task: decide whether there is a spanning subtree of weight at most k.

Steiner Tree Problem
Given: graph G = (V,E), terminals T C V, edge weights w : E — Z,
positive integer k.

Task: decide whether there is a subtree of G of weight at most k that
contains all terminals in T.

Complexity Classes P and NP

P

The class of all decision problems for which there is a deterministic polynomial time
algorithm is denoted by P.

Example: The Spanning Tree Problem is in P.

NP

A decision problem belongs to the complexity class NP if solutions can be verified in
polynomial time.

Examples: The Hamiltonian Circuit Problem and all problems listed on the previous
slides belong to NP.

207

Nondeterministic Turing Machines

Remarks.
» The complexity class P consists of all decision problems that can be solved by a
deterministic Turing machine in polynomial time.

» The complexity class NP consists of all decision problems that can be solved by a
non-deterministic Turing machine in polynomial time.

» Guess a solution and check in polynomial time.
» NP stands for Non-deterministic Polynomial.

Lemma 8.2.
P C NP. J

NP P

Proof: Deterministic Turing machines are a special case of non-deterministic Turing
machines. O

208

Polynomial Transformations/Reductions

Definition 8.3.

Let P1 = (X1, Y1) and P> = (X2, Y2) be decision problems. We say that P;
polynomially transforms to P if there exists a function f : X; — X, computable in
polynomial time such that for all x € X3

xeyY, <— f(X)GYg.

Remarks.

» A polynomial transformation is also called Karp reduction.
» Polynomial transformations are transitive.

Lemma 8.4.

Let P; and P» be decision problems. If P> € P and P; polynomially transforms to Ps,
then Py € P.

NP-Hardness and NP-Completeness

Definition 8.5.

Let P be an optimization or decision problem.
B P is NP-hard if all problems in NP polynomially transform to P.
@ P is NP-complete if in addition P € NP.

Satisfiability Problem (SAT)

Given: Boolean variables xi, ..., x, and a family of clauses where each
clause is a disjunction of Boolean variables or their negations.

Task: decide whether there is a truth assignment to xi, ..., x, such that
all clauses are satisfied.

Example: (x1 V =x2 V x3) A (x2 V =x3) A (—x1 V x2)

210

Cook's Theorem (1971)

Theorem 8.6.
The Satisfiability problem is NP-complete. J

Stephen Cook (1939-)

Proof idea: SAT is obviously in NP. One can show that any non-deterministic Turing
machine can be encoded as an instance of SAT. O

211

Proving NP-Completeness

Lemma 8.7.

Let P; and P, be decision problems. If P; is NP-complete, P> € NP, and P
polynomially transforms to P,, then P, is NP-complete.

Proof: As mentioned above, polynomial transformations are transitive.

Integer Linear Programming Problem (ILP)

Given: matrix A € Z™*" vector b € Z™.

Task: decide whether there is x € Z" with A-x > b.

Theorem 8.8.
ILP is NP-complete.

212

Transformations for Karp's 21 NP-Complete Problems

CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET
//COVER PACKING CHROMAT/IC NUMBER
FEEDBACK FEEDBACK DIRECTED SE EXACT
NODE SET ARC SET HAMILTON COVER
CIRCUIT COVERING \
3-DIMENSIONAL HITTING STEINER
. KNAPSACK
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT
SEQUENCING PARTITION
MAX CUT
FIGURE 1 - Complete Problems

Richard M. Karp (1972). Reducibility Among Combinatorial Problems

CLIQUE
COVER

96

d¥VI ‘W QEVHDI

213

P vs. NP

Theorem 8.9.
If a decision problem P is NP-complete and P € P, then P = NP. J

Proof: See definition of NP-completeness and Lemma 8.4.

There are two possible szenarios for the shape of the complexity world:

@ -
NP

scenario A scenario B

> |t is widely believed that P £ NP, i.e., scenario A holds.

» Deciding whether P = NP or P # NP is one of the seven millenium prize problems
established by the Clay Mathematics Institute in 2000.

214

http://www.claymath.org

ABoUT PROGRAMs [FIMENNIUMBROBIENS] FPEOPLE PUBLICATIONS — EVENTS EUCLID

Suppose that you are organizing housing
accommodations for a group of four hundred
university students. Space is limited and only one
hundred of the students will receive places inthe
dormitory. To complicate matters, the Dean has

Rules for the Millennium
Prizes

provided you with a list of pairs of incompatible
students, and requested that no pair from this list
appear in your final choice. This is an example of
what computer scientists call an NP-problem, since
itis easy to check if a given choice of one hundred students proposed by a coworker is satisfactory (i.e., no pair
taken from your coworker's list also appears on the list from the Dean's office), however the task of generating

Related Documents:

[4) Official Problem

Description
such alist from scratch seems to be so hard as to be completely impractical. Indeed, the total number of ways of

choosing one hundred students from the four hundred applicants is greater than the number of atoms in the [Minesweeper
known universe! Thus no future civilization could ever hope to build a supercomputer capable of solving the

problem by brute force; that is, by checking every possible combination of 100 students. However, this

apparent difficulty may only reflect the lack of ingenuity of your programmer. In fact, one of the outstanding Related Links:
problems in computer science is determining whether guestions exist whose answer can be quickly checked,

but which require an impossibly long time to solve by any direct procedure. Problems like the one listed above Lecture by Vijaya
certainly seem to be of this kind, but so far no one has managed to prove that any of them really are so hard as Ramachandran
they appear, i.e,, that there really is no feasible way to generate an answer with the help of a computer. Stephen

Cook and Leonid Levin formulated the P (i.e., easy to find) versus NP (i.e., easy to check) problem independently

in1971.

Image credit: on the left, Stephen Cook by Jifi Janitek (cropped). CCBY-SA 3.0

215

Complexity of Linear Programming

» As discussed in Chapter 4, so far no variant of the simplex method has been shown
to have a polynomial running time.

» Therefore, the complexity of Linear Programming remained unresolved for a long
time.

» Only in 1979, the Soviet mathematician Leonid Khachiyan proved that the
so-called ellipsoid method earlier developed for nonlinear optimization can be
modified in order to solve LPs in polynomial time.

» In November 1979, the New York Times featured Khachiyan and his algorithm in a
front-page story.

» Details can, e.g., be found in the book of Bertsimas & Tsitsiklis (Chapter 8) or in
the book Geometric Algorithms and Combinatorial Optimization by Grétschel,
Lovasz & Schrijver (Springer, 1988).

216

An Approach to Difficult Problems

Mathematicians disagree as to the
ultimate practical value of Leonid
Khachiyan’s new technique, but con-
cur that in any case it is an impor-
tant theoretical accomplishment.

Mr. Khachiyan's method is be
lieved to offer an lpp;mch for the
linear programming of computers to
solve plo«:lllad “‘tra pm:alu—
man"' problems. Such problems are
among the most intractable in
mathematics. They involve, for in-
stance, finding the shortest route by
which a salesman could visit a num-
ber of cities without his path touch-
ing the same city twice.

Each time a new city is added to
the route, the problem becomes very
much more complex. Very large
numbers of variables must be calcu-
lated from large numbers of equa-
tions using a system of linear pro-
gramming. At a certain point, the
compexity becomes so great that a

computer would require billions of
years to find a solution.

III !.hB m. um% "
problems, including efficient

puters the * lex
method" invented by George B

works well, but it offers no guaran-
tee that after a certain number of
computer steps it will always find an
answer. Mr. Khachiyan's lgmmech
offers a way of telling right the

New York Times, Nov. 27, 1979

217

	Linear Programming Basics
	The Geometry of Linear Programming
	The Simplex Method
	Duality
	Applications of Linear Programming
	Optimisation in Finance

	Spanning Trees and Shortest Paths
	Maximum Flow Problems
	NP-Completeness

