COMP331/COMP557: Optimisation

Martin Gairing
Computer Science Department
University of Liverpool

1st Semester 2018/19

Material adapted from a course by Martin Skutella at TU Berlin

My Background

```
FH Esslingen
    - 1995-2000: Diplom (Electrical Engineering)
```


Clemson University

- 2000-2001: MSc (Computer Science)

University of Paderborn

- 2002-2007: PhD + Postdoc

International Computer Science Institute Berkeley

- 2007- 2009: Postdoc

Liverpool University

- Since 2009: Lecturer/Senior Lecturer

Administrative Details

Lectures:

- Mondays, 11:00-12:00
- Tuesdays, 10:00-11:00
- Thursdays, 12:00-13:00

Tutorials:

- Flávia Alves (F.Alves@liverpool.ac.uk)
- starting from Friday 28 September

Assessment:

- 25 \% continuous assessment
- 75 \% final exam

The webpage for this module

- https://cgi.csc.liv.ac.uk/~gairing/COMP557/
- lecture notes
- resources
- announcements

Course Aims

- To provide a foundation for modelling various continuous and discrete optimisation problems.
- To provide the tools and paradigms for the design and analysis of algorithms for continuous and discrete optimisation problems. Apply these tools to real-world problems.
- To review the links and interconnections between optimisation and computational complexity theory.
- To provide an in-depth, systematic and critical understanding of selected significant topics at the intersection of optimisation, algorithms and (to a lesser extent) complexity theory, together with the related research issues.

Learning Outcomes

Upon completion of the module you should have:

- A critical awareness of current problems and research issues in the field of optimisation.
- The ability to formulate optimisation models for the purpose of modelling particular applications.
- The ability to use appropriate algorithmic paradigms and techniques in context of a particular optimisation model.
- The ability to read, understand and communicate research literature in the field of optimisation.
- The ability to recognise potential research opportunities and research directions.

Outline

(1) Introduction
(2) Linear Programming Basics
(3) The Geometry of Linear Programming
(4) The Simplex Method
(5) Duality
(6) Applications of Linear Programming

Chapter 1: Introduction

A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Devote all resources to ale: 34 barrels of ale
$\Longrightarrow £ 442$
- Devote all resources to beer: 32 barrels of beer
$\Longrightarrow £ 736$
- 7.5 barrels of ale, 29.5 barrels of beer
$\Longrightarrow £ 776$
- 12 barrels of ale, 28 barrels of beer
$\Longrightarrow £ 800$

Is this best possible?

A Motivating (and Refreshing) Example

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

- Mathematical Formulation:

$$
\begin{array}{rrll}
\max & 13 A & +23 B & \\
\text { s.t. } & 5 A+15 B & \leq 480 & \text { Corn } \\
& 4 A & +4 B & \leq 160 \\
& \text { Hops } \\
& 35 A+20 B & \leq 1190 & \text { Malt } \\
& & A, B & \geq 0
\end{array}
$$

A Motivating (and Refreshing) Example

A Motivating (and Refreshing) Example

A Motivating (and Refreshing) Example

Observation: Regardless of objective function coefficients, an optimal solution occurs at an extreme point (vertex).

Terminology and Notation

Numbers:

- \mathbb{R}...set of real numbers
- $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{+} \ldots$ set of non-negative real numbers
- $\mathbb{R}^{n} \ldots$-dimensional real vector space
$-\mathbb{Z}, \mathbb{Z}_{\geq 0}, \mathbb{Z}^{n} \ldots$ set of integers, non-negative integers, n-dimensional ...
Sets:
- $S=\left\{s_{1}, s_{2}, \cdots, s_{k}\right\} \ldots$ a set of k elements
- $S=\{x \mid P(x)\} \ldots$ set of elements x for which condition P is true
- Example: $\quad \mathbb{Z}_{\geq 0}=\{i \mid i \in \mathbb{Z}$ and $i \geq 0\}$
- $|S| \ldots$ size (number of elements) of a finite set S
- 2^{S}...set of all subsets of S
e.g.: $2^{\{a, b, c\}}=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$
- $\mu: S \mapsto T \ldots \mu$ is a mapping (or function) from set S to set T

Terminology and Notation - Linear Algebra

- matrix of dimension $m \times n$:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{11} n \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
\mid & 1 & \mid \\
A_{1} & A_{2} & \ldots \\
\mid & A_{n} \\
\mid & & \\
\hline
\end{array}\right)=\left(\begin{array}{c}
-a_{1}^{T}- \\
\vdots \\
-a_{m}^{T}-
\end{array}\right)
$$

- and its transpose: $A^{T}=\left(\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{m 1} \\ a_{12} & 22 \\ \vdots & \vdots & & a_{m 2} \\ a_{11} & a_{2 n} & \ldots & \vdots \\ a_{m n}\end{array}\right)$
- Column vector $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$; row vector x^{T} (the transpose of x)
- Inner product of $x, y \in \mathbb{R}^{n}: \quad x^{\top} y=y^{\top} x=\sum_{i=1}^{n} x_{i} y_{i}$
- Matrix equation $A x=b$ is equivalent to $a_{i}^{T} x=b_{i}$ for all $i \in\{1, \ldots, m\}$ (b is an m-vector, b_{i} is its i 'th component)

Terminology and Notation - Linear Algebra

- $\operatorname{det}(A) \ldots$ determinant of a matrix
- e.g.: $\operatorname{det}\left(\begin{array}{cc}\left.\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right)=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}\end{array}\right.$
- $e_{i} \ldots$ unit vector (dimension from context)
- 1 in i 'th component, 0 else
- e.g. (dimension 3): $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$\downarrow I=\left(\begin{array}{ccc}1 & \mid & \mid \\ e_{1} & e_{2} & \ldots \\ \mid & e_{n} \\ \mid & \mid & \mid\end{array}\right) \ldots$ identity matrix (dimension from context, here n)
- 1 on main diagonal, 0 else
- e.g. (dimension 3): $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$-\operatorname{rank}(A)=$ size of the largest set of linearly independent columns $=$ size of the largest set of linearly independent rows
- $A^{-1} \ldots$ matrix inverse of square matrix A
- $A^{-1} A=A A^{-1}=1$
- A^{-1} exists if and only if $\operatorname{det}(A) \neq 0$

Optimization Problems

Generic optimization problem

Given: set X, function $f: X \rightarrow \mathbb{R}$
Task: find $x^{*} \in X$ maximizing (minimizing) $f\left(x^{*}\right)$, i. e.,

$$
f\left(x^{*}\right) \geq f(x) \quad\left(f\left(x^{*}\right) \leq f(x)\right) \quad \text { for all } x \in X
$$

- An x^{*} with these properties is called optimal solution (optimum).
- Here, X is the set of feasible solutions, f is the objective function.

Short form:

$$
\begin{aligned}
\text { maximize } & f(x) \\
\text { subject to } & x \in X
\end{aligned}
$$

or simply: $\quad \max \{f(x) \mid x \in X\}$.
Problem: Too general to say anything meaningful!

Convex Optimization Problems

Definition 1.1.

Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$.
a X is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ it holds that

$$
\lambda \cdot x+(1-\lambda) \cdot y \in X
$$

b f is convex if for all $x, y \in X$ and $0 \leq \lambda \leq 1$ with $\lambda \cdot x+(1-\lambda) \cdot y \in X$ it holds that

$$
\lambda \cdot f(x)+(1-\lambda) \cdot f(y) \geq f(\lambda \cdot x+(1-\lambda) \cdot y) .
$$

c If X and f are both convex, then $\min \{f(x) \mid x \in X\}$ is a convex optimization problem.

Note: $f: X \mapsto \mathbb{R}$ is called concave if $-f$ is convex.

Local and Global Optimality

Definition 1.2.
Let $X \subseteq \mathbb{R}^{n}$ and $f: X \mapsto \mathbb{R}$.
$x^{\prime} \in X$ is a local optimum of the optimization problem $\min \{f(x) \mid x \in X\}$ if there is an $\varepsilon>0$ such that

$$
f\left(x^{\prime}\right) \leq f(x) \quad \text { for all } x \in X \text { with }\left\|x^{\prime}-x\right\|_{2} \leq \varepsilon .
$$

Theorem 1.3.

For a convex optimization problem, every local optimum is a (global) optimum.

Optimization Problems Considered in this Course:

```
    maximize f(x)
subject to }x\in
```

- $X \subseteq \mathbb{R}^{n}$ polyhedron, f linear function
\longrightarrow linear optimization problem (in particular convex)
- $X \subseteq \mathbb{Z}^{n}$ integer points of a polyhedron, f linear function
\longrightarrow integer linear optimization problem
- X related to some combinatorial structure (e.g., graph)
\longrightarrow combinatorial optimization problem
- X finite (but usually huge)
\longrightarrow discrete optimization problem

Example: Shortest Path Problem

Given: directed graph $D=(V, A)$, weight function $w: A \rightarrow \mathbb{R}_{\geq 0}$, start node $s \in V$, destination node $t \in V$.

Task: find s - t-path of minimum weight.

That is, $X=\{P \subseteq A \mid P$ is s-t-path in $D\}$ and $f: X \rightarrow \mathbb{R}$ is given by

$$
f(P)=\sum_{a \in P} w(a)
$$

Remark.

Note that the finite set of feasible solutions X is only implicitly given by D. This holds for all interesting problems in combinatorial optimization!

Example: Minimum Spanning Tree (MST) Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X=\left\{E^{\prime} \subseteq E \mid E^{\prime}\right.$ connects all nodes in $\left.V\right\}$ and $f: X \rightarrow \mathbb{R}$ is given by

$$
f\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} w(e)
$$

Remarks

- Notice that there always exists an optimal solution without cycles.
- A connected graph without cycles is called a tree.
- A subgraph of G containing all nodes in V is called spanning.

Example: Minimum Cost Flow Problem

Given: directed graph $D=(V, A)$, with arc capacities $u: A \rightarrow \mathbb{R}_{\geq 0}$,
arc costs $c: A \rightarrow \mathbb{R}$, and node balances $b: V \rightarrow \mathbb{R}$.

Interpretation:

- nodes $v \in V$ with $b(v)>0(b(v)<0)$ have supply (demand) and are called sources (sinks)
- the capacity $u(a)$ of arc $a \in A$ limits the amount of flow that can be sent through arc a.

Task: find a flow x : $A \rightarrow \mathbb{R}_{\geq 0}$ obeying capacities and satisfying all supplies and demands, that is,

$$
\begin{aligned}
0 \leq x(a) \leq u(a) & \text { for all } a \in A, \\
\sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V,
\end{aligned}
$$

such that x has minimum cost $c(x):=\sum_{a \in A} c(a) \cdot x(a)$.

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{a \in A} c(a) \cdot x(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) & \text { for all } a \in A \\
& x(a) \geq 0 & \text { for all } a \in A \tag{1.4}
\end{array}
$$

- Objective function given by (1.1). Set of feasible solutions:

$$
X=\left\{x \in \mathbb{R}^{A} \mid x \text { satisfies }(1.2),(1.3), \text { and }(1.4)\right\}
$$

- Notice that (1.1) is a linear function of x and (1.2) - (1.4) are linear equations and linear inequalities, respectively. \longrightarrow linear program

Example (cont.): Adding Fixed Cost

Fixed costs $w: A \rightarrow \mathbb{R}_{\geq 0}$.
If arc $a \in A$ shall be used (i. e., $x(a)>0$), it must be bought at cost $w(a)$. Add variables $y(a) \in\{0,1\}$ with $y(a)=1$ if arc a is used, 0 otherwise.

This leads to the following mixed-integer linear program (MIP):

$$
\begin{array}{rlr}
\text { minimize } & \sum_{a \in A} c(a) \cdot x(a)+\sum_{a \in A} w(a) \cdot y(a) & \\
\text { subject to } & \sum_{a \in \delta^{+}(v)} x(a)-\sum_{a \in \delta^{-}(v)} x(a)=b(v) & \text { for all } v \in V \\
& x(a) \leq u(a) \cdot y(a) & \text { for all } a \in A \\
& x(a) \geq 0 & \text { for all } a \in A \\
& y(a) \in\{0,1\} & \text { for all } a \in A
\end{array}
$$

MIP: Linear program where some variables may only take integer values.

Example: Maximum Weighted Matching Problem

Given: undirected graph $G=(V, E)$, weight function $w: E \rightarrow \mathbb{R}$.
Task: find matching $M \subseteq E$ with maximum total weight.
($M \subseteq E$ is a matching if every node is incident to at most one edge in M.)
Formulation as an integer linear program (IP):
Variables: $x_{e} \in\{0,1\}$ for $e \in E$ with $x_{e}=1$ if and only if $e \in M$.

$$
\begin{array}{rll}
\operatorname{maximize} & \sum_{e \in E} w(e) \cdot x_{e} & \\
\text { subject to } & \sum_{e \in \delta(v)} x_{e} \leq 1 & \text { for all } v \in V \\
& x_{e} \in\{0,1\} & \text { for all } e \in E
\end{array}
$$

IP: Linear program where all variables may only take integer values.

Example: Traveling Salesperson Problem (TSP)

Given: complete graph K_{n} on n nodes, weight function $w: E\left(K_{n}\right) \rightarrow \mathbb{R}$.
Task: find a Hamiltonian circuit with minimum total weight.
(A Hamiltonian circuit visits every node exactly once.)
Application: Drilling holes in printed circuit boards.

Formulation as an integer linear program? (maybe later!)

Example: Weighted Vertex Cover Problem

Given: undirected graph $G=(V, E)$, weight function $w: V \rightarrow \mathbb{R}_{\geq 0}$.
Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Formulation as an integer linear program (IP):
Variables: $x_{v} \in\{0,1\}$ for $v \in V$ with $x_{v}=1$ if and only if $v \in U$.

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{v \in V} w(v) \cdot x_{v} & \\
\text { subject to } & x_{v}+x_{v^{\prime}} \geq 1 & \text { for all } e=\left\{v, v^{\prime}\right\} \in E \\
& x_{v} \in\{0,1\} & \text { for all } v \in V
\end{array}
$$

Markowitz' Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R, for each security $i \in[n]$:

- expected return μ_{i}, variance σ_{i}

For each pair of securities i, j :

- covariance $\rho_{i j}$,

Task: Find a portfolio x_{1}, \ldots, x_{n} that minimises "risk" (aka variance) and has expected return $\geq R$.

Formulation as a quadratic programme (QP):

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{i, j} \rho_{i j} \sigma_{i} \sigma_{j} x_{i} x_{j} & \\
\text { subject to } & \sum_{i} x_{i}=1 \\
& \sum_{i} \mu_{i} x_{i} \geq R & \\
& x_{i} \geq 0, & \text { for all } i .
\end{array}
$$

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Does there exist an efficient algorithm with "small" worst-case running time?
- How to formulate the problem as a (mixed integer) linear program?
- Is there a useful special structure of the problem?

Literature on Linear Optimization (not complete)

- D. Bertsimas, J. N. Tsitsiklis, Introduction to Linear Optimization, Athena, 1997.
- V. Chvatal, Linear Programming, Freeman, 1983.
- G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1998 (1963).
- M. Grötschel, L. Lovàsz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer, 1988.
- J. Matousek, B. Gärtner, Using and Understanding Linear Programming, Springer, 2006.
- M. Padberg, Linear Optimization and Extensions, Springer, 1995.
- A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.
- R. J. Vanderbei, Linear Programming, Springer, 2001.

Literature on Combinatorial Optimization (not complete)

- R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, 1993.
- W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, Combinatorial Optimization, Wiley, 1998.
- L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962.
- M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979.
- B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer, 2002.
- C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover Publications, reprint 1998.
- A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.

