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Course Aims

>

| 2

To provide a foundation for modelling various continuous and discrete optimisation
problems.

To provide the tools and paradigms for the design and analysis of algorithms for
continuous and discrete optimisation problems. Apply these tools to real-world
problems.

To review the links and interconnections between optimisation and computational
complexity theory.

To provide an in-depth, systematic and critical understanding of selected significant
topics at the intersection of optimisation, algorithms and (to a lesser extent)
complexity theory, together with the related research issues.



Learning Outcomes

Upon completion of the module you should have:

>

>

A critical awareness of current problems and research issues in the field of
optimisation.

The ability to formulate optimisation models for the purpose of modelling particular
applications.

The ability to use appropriate algorithmic paradigms and techniques in context of a
particular optimisation model.

The ability to read, understand and communicate research literature in the field of
optimisation.

The ability to recognise potential research opportunities and research directions.
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Chapter 1:
Introduction



A Motivating (and Refreshing) Example

Small brewery produces ale and beer.

» Production limited by scarce resources: corn, hops, barley malt.

> Recipes for ale and beer require different proportions of resources.

Beverage ‘ Corn (Ib) ‘ Hops (0z) ‘ Malt (Ib) ‘ Profit (£)

Ale (barrel) 5 4 35
Beer (barrel) 15 4 20
Quantity 480 160 1190

» Devote all resources to ale: 34 barrels of ale

» Devote all resources to beer: 32 barrels of beer
» 7.5 barrels of ale, 29.5 barrels of beer

» 12 barrels of ale, 28 barrels of beer

Is this best possible?

= £442
— £736
— £776
= £800



A Motivating (and Refreshing) Example

Beverage | Corn (Ib) | Hops (oz) | Malt (Ib) | Profit (£)

Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Quantity 480 160 1190

» Mathematical Formulation:

max 13A + 23B Profit
st. BA + 15B <480 Corn
4A + 4B <160 Hops
35A + 20B <1190 Malt
AB >0
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A Motivating (and Refreshing) Example

Beer

35

Malt: 35A + 208 < 1190
30
25 Corn: bA+ 15B < 480
20
15

Feasible region
10

Hops: 4A+ 4B < 160
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A Motivating (and Refreshing) Example

Beer

& Optimum

13A 4 23B = 1000

Feasible region 13A + 23B = 800

13A+423B =700

T > Ale

5 10 15 20 25 30 35
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A Motivating (and Refreshing) Example

Beer

AN

0:12)

30
25 —
20
15

Feasible region
10

5 —

(0§0) 4,0)

0@ T T T T T T T > Ale
0

5 10 15 20 25 30 35

Observation: Regardless of objective function coefficients, an optimal
solution occurs at an extreme point (vertex).
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Terminology and Notation

Numbers:
> R ...set of real numbers
» R>gor R, ...set of non-negative real numbers

» R" ...n-dimensional real vector space

» 7, Z>o, Z" ...set of integers, non-negative integers, n-dimensional ...

Sets:
» S ={s1,5, - ,Sc} ...a set of k elements
» S ={x| P(x)} ...set of elements x for which condition P is true
» Example: Z>o={i|i€Zandi>0}
» |S| ...size (number of elements) of a finite set S

> 25 . set of all subsets of S

> eg.: 220 = {0, {a}, {b}. {c}. {a, b}, {a. c}, {b, c}, {a, b, c}}
» 1S T...pis a mapping (or function) from set S to set T
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Terminology and Notation — Linear Algebra

» matrix of dimension m x n:

ai1 ai2 ... ai T

a1 az> ... azy [ | a
A= . : = A A. A | = :

aml am2 .- amn I | —al —

ail a1 ... ami
. T a1z a2 ... am
» and its transpose: A" =

dip a2n --- @mn
X1

» Column vector x = ( ; ) ; row vector x T (the transpose of x)
Xn
> Inner product of x,y € R xTy =y Tx =" xy
> Matrix equation Ax = b
is equivalent to a/ x = b; for all i € {1,...,m}
(b is an m-vector, b; is its i"th component)
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Terminology and Notation — Linear Algebra

» det(A) ...determinant of a matrix
> eg.: det(gﬂ gg;) = a11+ax» — aip - a
» ¢ ...unit vector (dimension from context)

» 1in /'th component, 0 else
1 0 0

» e.g. (dimension 3): ¢ = (8) e = <1> e = (0)

0 1

] N o ,
> | = <e1 6‘2 e|n .. .identity matrix (dimension from context, here n)

» 1 on main diagonal, 0 else
100

> e.g. (dimension 3): | = (8 ! (1))
» rank(A) = size of the largest set of linearly independent columns
= size of the largest set of linearly independent rows
» A~l ... matrix inverse of square matrix A
> ATTA=AAL =
> A~ exists if and only if det(A) # 0
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Optimization Problems

Generic optimization problem

Given: set X, function f : X — R
Task: find x* € X maximizing (minimizing) f(x*), i.e.,

F(x*) > f(x) (F(x*) < f(x)) forall x € X.

» An x* with these properties is called optimal solution (optimum).

> Here, X is the set of feasible solutions, f is the objective function.

Short form: maximize f(x)
subject to x € X
or simply: max{f(x) [ x € X}.

Problem: Too general to say anything meaningful!
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Convex Optimization Problems

Definition 1.1.
Let X CR"and f: X — R.
B X is convex if for all x,y € X and 0 < XA < 1 it holds that

Ax+(1=XN)-yeX.

B f is convex if for all x,y € X and 0 < A < 1with A-x+ (1 —A)-y € X it holds
that
Af(X)+ (X=X -f(y)=>Ff(A-x+(1=X)-y) .

If X and f are both convex, then min{f(x) | x € X} is a convex optimization
problem.

Note: f : X — R is called concave if —f is convex.
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Local and Global Optimality

Definition 1.2.
Let X CR"and f: X — R.

x" € X is a local optimum of the optimization problem min{f(x) | x € X} if there is an
€ > 0 such that

f(x') < f(x) for all x € X with ||x' — x]|]2 < e.

Theorem 1.3.

For a convex optimization problem, every local optimum is a (global) optimum.
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Optimization Problems Considered in this Course:

maximize f(x)

subject to x € X

> X C RR" polyhedron, f linear function
— linear optimization problem (in particular convex)

> X C 7" integer points of a polyhedron, f linear function
— integer linear optimization problem

» X related to some combinatorial structure (e.g., graph)
— combinatorial optimization problem

» X finite (but usually huge)
— discrete optimization problem
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Example: Shortest Path Problem

H Given: directed graph D = (V, A),
\ weight function w : A — R>q,

start node s ¢ V

/ \ / \ destination node t € V.

\ / \ / Task: find s-t-path of minimum weight.

Thatis, X ={P C A| P is s-t-path in D} and f : X — R is given by

Remark.

Note that the finite set of feasible solutions X is only implicitly given by D.
This holds for all interesting problems in combinatorial optimization!
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Example: Minimum Spanning Tree (MST) Problem
a Given: undirected graph G = (V, E), weight

\ function w : E — R>o.

Task: find connected subgraph of G containing

/ \ / all nodes in V' with minimum total weight.

That is, X = {E’ C E | E’ connects all nodes in V} and f : X — R is given by

Remarks
» Notice that there always exists an optimal solution without cycles.
> A connected graph without cycles is called a tree.
» A subgraph of G containing all nodes in V is called spanning.
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Example: Minimum Cost Flow Problem

Given: directed graph D = (V/, A), with arc capacities u : A — R>q,
arc costs ¢ : A — R, and node balances b : V — R.

Interpretation:

» nodes v € V with b(v) > 0 (b(v) < 0) have supply (demand) and are called
sources (sinks)

» the capacity u(a) of arc a € A limits the amount of flow that can be sent through
arc a.

Task: find a flow x : A — R>q obeying capacities and satisfying all supplies and
demands, that is,

< x(a) < u(a) forall a € A,

Z Z (a) = b(v) forallveVv,
€6~

acét(v)

such that x has minimum cost c(x) := ), 4 c(a) - x(a).
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Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize Z c(a) - x(a)

acA

subject to Z x(a) — Z x(a) = b(v) forall v eV,

acdt(v) acé—(v)
x(a) < u(a) for all a € A,
x(a) >0 for all a € A.

» Objective function given by (1.1). Set of feasible solutions:

X = {x € R? | x satisfies (1.2), (1.3), and (1.4)} .

(1.1)

(1.2)

(1.3)
(1.4)

» Notice that (1.1) is a linear function of x and (1.2) — (1.4) are linear equations and

linear inequalities, respectively. — linear program



Example (cont.): Adding Fixed Cost
Fixed costs w : A — R>g.
If arc a € A shall be used (i.e., x(a) > 0), it must be bought at cost w(a).

Add variables y(a) € {0,1} with y(a) =1 if arc a is used, 0 otherwise.
This leads to the following mixed-integer linear program (MIP):

minimize Z c(a) - x(a) + Z w(a) - y(a)

acA acA
subject to Z x(a) — Z x(a) = b(v) forall v eV,
acdt(v) acé—(v)
x(a) <u(a)-y(a) for all a € A,
x(a)>0 for all a € A.
y(a) € {0,1} for all a € A.

MIP: Linear program where some variables may only take integer values.
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Example: Maximum Weighted Matching Problem

Given: undirected graph G = (V, E), weight function w : E — R.

Task: find matching M C E with maximum total weight.

(M C E is a matching if every node is incident to at most one edge in M.)

Formulation as an integer linear program (IP):

Variables: x. € {0,1} for e € E with x. = 1 if and only if e € M.

maximize Z w(e) - xe

ecE

subject to Z Xe <1 forall ve Vv,
ecd(v)
xe € {0,1} for all e € E.

IP: Linear program where all variables may only take integer values.
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Example: Traveling Salesperson Problem (TSP)

Given: complete graph K, on n nodes, weight function w : E(K,) — R.
Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)

Application: Drilling holes in printed circuit boards.
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Formulation as an integer linear program? (maybe later!)
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Example: Weighted Vertex Cover Problem

Given: undirected graph G = (V, E), weight function w : V — R>o.

Task: find U C V of minimum total weight such that every edge e € E has at least one
endpoint in U.

Formulation as an integer linear program (IP):
Variables: x, € {0,1} for v € V with x, =1 if and only if v € U.

minimize Z w(v) - xy

veV
subject to  x, + x, > 1 for all e = {v,V'} € E,
x, € {0,1} forallve V.
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Markowitz' Portfolio Optimisation Problem

Given: n different securities (stocks, bonds, etc.) with random returns, target return R,
for each security i € [n]:

» expected return p;, variance o;
For each pair of securities i, j:
» covariance pjj,

Task: Find a portfolio x1, ..., x, that minimises “risk” (aka variance) and has expected
return > R.

Formulation as a quadratic programme (QP):
minimize Zp,-ja,-ajx,'xj-

i

subject to Zx,- =1

1
ZM:’X/ >R
i
x; > 0, for all i.
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Typical Questions

For a given optimization problem:

>

>

How to find an optimal solution?

How to find a feasible solution?

Does there exist an optimal/feasible solution?

How to prove that a computed solution is optimal?

How difficult is the problem?

Does there exist an efficient algorithm with “small” worst-case running time?
How to formulate the problem as a (mixed integer) linear program?

Is there a useful special structure of the problem?
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