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Administrative Details
Lectures:
I Mondays, 11:00 - 12:00
I Tuesdays, 10:00 - 11:00
I Thursdays, 12:00 -13:00

Tutorials:
I Flávia Alves (F.Alves@liverpool.ac.uk)
I starting from Friday 28 September

Assessment:
I 25 % continuous assessment
I 75 % final exam
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The webpage for this module

I https://cgi.csc.liv.ac.uk/~gairing/COMP557/
I lecture notes
I resources
I announcements
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Course Aims

I To provide a foundation for modelling various continuous and discrete optimisation
problems.

I To provide the tools and paradigms for the design and analysis of algorithms for
continuous and discrete optimisation problems. Apply these tools to real-world
problems.

I To review the links and interconnections between optimisation and computational
complexity theory.

I To provide an in-depth, systematic and critical understanding of selected significant
topics at the intersection of optimisation, algorithms and (to a lesser extent)
complexity theory, together with the related research issues.
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Learning Outcomes
Upon completion of the module you should have:
I A critical awareness of current problems and research issues in the field of

optimisation.
I The ability to formulate optimisation models for the purpose of modelling particular

applications.
I The ability to use appropriate algorithmic paradigms and techniques in context of a

particular optimisation model.
I The ability to read, understand and communicate research literature in the field of

optimisation.
I The ability to recognise potential research opportunities and research directions.
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Outline
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6 Applications of Linear Programming
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Chapter 1:
Introduction
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A Motivating (and Refreshing) Example
Small brewery produces ale and beer.
I Production limited by scarce resources: corn, hops, barley malt.
I Recipes for ale and beer require different proportions of resources.

Beverage Corn (lb) Hops (oz) Malt (lb) Profit (£)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Quantity 480 160 1190

I Devote all resources to ale: 34 barrels of ale =⇒ £442
I Devote all resources to beer: 32 barrels of beer =⇒ £736
I 7.5 barrels of ale, 29.5 barrels of beer =⇒ £776
I 12 barrels of ale, 28 barrels of beer =⇒ £800

Is this best possible?
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A Motivating (and Refreshing) Example

Beverage Corn (lb) Hops (oz) Malt (lb) Profit (£)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Quantity 480 160 1190
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Brewery Problem

Small brewery produces ale and beer.
! Production limited by scarce resources:  corn, hops, barley malt.
! Recipes for ale and beer require different proportions of resources.

How can brewer maximize profits?
! Devote all resources to ale:  34 barrels of ale !   $442
! Devote all resources to beer:  32 barrels of beer !   $736
! 7.5 barrels of ale, 29.5 barrels of beer !   $776
! 12 barrels of ale, 28 barrels of beer !   $800

Beverage Corn
(pounds)

Malt
(pounds)

Hops
(ounces)

Beer (barrel) 15 204

Ale (barrel) 5 354

Profit
($)

23

13

constraint 480 1190160
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Brewery Problem  

! 

max 13A + 23B

s. t. 5A + 15B " 480

4A + 4B " 160

35A + 20B " 1190

A , B # 0

Ale Beer

Corn

Hops

Malt

Profit

objective function

constraint

decision variable

! A refreshing example
! Standard form
! Fundamental questions
! Geometry
! Algebra
! Simplex algorithm

Linear Programming I
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Standard Form LP

"Standard form" LP.
! Input:  real numbers  aij, cj, bi.

! Output:  real numbers xj.

! n = # decision variables, m = # constraints.
! Maximize linear objective function subject to linear inequalities.

Linear.  No x2,  x y,  arccos(x),  etc.
Programming.  Planning (term predates computer programming).

! 

(P) max c j x j
j=1

n

"

s. t. aij x j
j=1

n

" = bi 1# i #m

x j $ 0 1# j # n

! 

(P) max c
T
x

s. t. Ax = b

x " 0

I Mathematical Formulation:

max 13A + 23B Profit

s.t. 5A + 15B ≤ 480 Corn

4A + 4B ≤ 160 Hops

35A + 20B ≤ 1190 Malt

A,B ≥ 0
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A Motivating (and Refreshing) Example

Ale

Beer
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Corn: 5A+ 15B ≤ 480

Hops: 4A+ 4B ≤ 160

Malt: 35A+ 20B ≤ 1190

Feasible region
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A Motivating (and Refreshing) Example

Ale

Beer
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(0, 0)

(0, 32)
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(26, 14)

(34, 0)

13A+ 23B = 1000

Profit

13A+ 23B = 700

13A+ 23B = 800

⇐ Optimum
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A Motivating (and Refreshing) Example

Ale

Beer
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Observation: Regardless of objective function coefficients, an optimal
solution occurs at an extreme point (vertex).
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Terminology and Notation
Numbers:
I R . . . set of real numbers
I R≥0 or R+ . . . set of non-negative real numbers
I Rn . . . n-dimensional real vector space

I Z, Z≥0, Zn . . . set of integers, non-negative integers, n-dimensional ...

Sets:
I S = {s1, s2, · · · , sk} . . . a set of k elements
I S = {x | P(x)} . . . set of elements x for which condition P is true

I Example: Z≥0 = {i | i ∈ Z and i ≥ 0}
I |S | . . . size (number of elements) of a finite set S
I 2S . . . set of all subsets of S

I e.g.: 2{a,b,c} = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
I µ : S 7→ T . . .µ is a mapping (or function) from set S to set T
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Terminology and Notation – Linear Algebra

I matrix of dimension m × n:

A =

( a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

am1 am2 ... amn

)
=

(
| | |
A1 A2 ... An

| | |

)
=

— aT1 —
...

— aTm —


I and its transpose: AT =

( a11 a21 ... am1
a12 a22 ... am2
...

...
...

a1n a2n ... amn

)

I Column vector x =

( x1
...
xn

)
; row vector xT (the transpose of x)

I Inner product of x , y ∈ Rn: xT y = yT x =
∑n

i=1 xiyi
I Matrix equation Ax = b

is equivalent to aTi x = bi for all i ∈ {1, . . . ,m}
(b is an m-vector, bi is its i ’th component)
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Terminology and Notation – Linear Algebra

I det(A) . . . determinant of a matrix
I e.g.: det ( a11 a21

a12 a22 ) = a11 · a22 − a12 · a21
I ei . . . unit vector (dimension from context)

I 1 in i ’th component, 0 else
I e.g. (dimension 3): e1 =

(
1
0
0

)
e2 =

(
0
1
0

)
e3 =

(
0
0
1

)
I I =

(
| | |
e1 e2 ... en
| | |

)
. . . identity matrix (dimension from context, here n)

I 1 on main diagonal, 0 else
I e.g. (dimension 3): I =

(
1 0 0
0 1 0
0 0 1

)
I rank(A) = size of the largest set of linearly independent columns

= size of the largest set of linearly independent rows
I A−1 . . . matrix inverse of square matrix A

I A−1A = AA−1 = I
I A−1 exists if and only if det(A) 6= 0
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Optimization Problems

Generic optimization problem
Given: set X , function f : X → R
Task: find x∗ ∈ X maximizing (minimizing) f (x∗), i. e.,

f (x∗) ≥ f (x) (f (x∗) ≤ f (x)) for all x ∈ X .

I An x∗ with these properties is called optimal solution (optimum).
I Here, X is the set of feasible solutions, f is the objective function.

Short form: maximize f (x)

subject to x ∈ X

or simply: max{f (x) | x ∈ X}.

Problem: Too general to say anything meaningful!
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Convex Optimization Problems

Definition 1.1.
Let X ⊆ Rn and f : X → R.

a X is convex if for all x , y ∈ X and 0 ≤ λ ≤ 1 it holds that

λ · x + (1− λ) · y ∈ X .

b f is convex if for all x , y ∈ X and 0 ≤ λ ≤ 1 with λ · x + (1− λ) · y ∈ X it holds
that

λ · f (x) + (1− λ) · f (y) ≥ f (λ · x + (1− λ) · y) .

c If X and f are both convex, then min{f (x) | x ∈ X} is a convex optimization
problem.

Note: f : X 7→ R is called concave if −f is convex.
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Local and Global Optimality

Definition 1.2.
Let X ⊆ Rn and f : X 7→ R.
x ′ ∈ X is a local optimum of the optimization problem min{f (x) | x ∈ X} if there is an
ε > 0 such that

f (x ′) ≤ f (x) for all x ∈ X with ‖x ′ − x‖2 ≤ ε.

Theorem 1.3.
For a convex optimization problem, every local optimum is a (global) optimum.
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Optimization Problems Considered in this Course:

maximize f (x)

subject to x ∈ X

I X ⊆ Rn polyhedron, f linear function
−→ linear optimization problem (in particular convex)

I X ⊆ Zn integer points of a polyhedron, f linear function
−→ integer linear optimization problem

I X related to some combinatorial structure (e. g., graph)
−→ combinatorial optimization problem

I X finite (but usually huge)
−→ discrete optimization problem
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Example: Shortest Path Problem
s

t

b c

a e

f g
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6

Given: directed graph D = (V ,A),
weight function w : A→ R≥0,
start node s ∈ V ,
destination node t ∈ V .

Task: find s-t-path of minimum weight.

That is, X = {P ⊆ A | P is s-t-path in D} and f : X → R is given by

f (P) =
∑
a∈P

w(a) .

Remark.
Note that the finite set of feasible solutions X is only implicitly given by D.
This holds for all interesting problems in combinatorial optimization!
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Example: Minimum Spanning Tree (MST) Problem
a
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Given: undirected graph G = (V ,E ), weight
function w : E → R≥0.

Task: find connected subgraph of G containing
all nodes in V with minimum total weight.

That is, X = {E ′ ⊆ E | E ′ connects all nodes in V } and f : X → R is given by

f (E ′) =
∑
e∈E ′

w(e) .

Remarks
I Notice that there always exists an optimal solution without cycles.
I A connected graph without cycles is called a tree.
I A subgraph of G containing all nodes in V is called spanning.
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Example: Minimum Cost Flow Problem
Given: directed graph D = (V ,A), with arc capacities u : A→ R≥0,

arc costs c : A→ R, and node balances b : V → R.

Interpretation:
I nodes v ∈ V with b(v) > 0 (b(v) < 0) have supply (demand) and are called

sources (sinks)
I the capacity u(a) of arc a ∈ A limits the amount of flow that can be sent through

arc a.

Task: find a flow x : A→ R≥0 obeying capacities and satisfying all supplies and
demands, that is,

0 ≤ x(a) ≤ u(a) for all a ∈ A,∑
a∈δ+(v)

x(a)−
∑

a∈δ−(v)

x(a) = b(v) for all v ∈ V ,

such that x has minimum cost c(x) :=
∑

a∈A c(a) · x(a).
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Example: Minimum Cost Flow Problem (cont.)
Formulation as a linear program (LP):

minimize
∑
a∈A

c(a) · x(a) (1.1)

subject to
∑

a∈δ+(v)

x(a)−
∑

a∈δ−(v)

x(a) = b(v) for all v ∈ V , (1.2)

x(a) ≤ u(a) for all a ∈ A, (1.3)
x(a) ≥ 0 for all a ∈ A. (1.4)

I Objective function given by (1.1). Set of feasible solutions:

X = {x ∈ RA | x satisfies (1.2), (1.3), and (1.4)} .

I Notice that (1.1) is a linear function of x and (1.2) – (1.4) are linear equations and
linear inequalities, respectively. −→ linear program
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Example (cont.): Adding Fixed Cost
Fixed costs w : A→ R≥0.

If arc a ∈ A shall be used (i. e., x(a) > 0), it must be bought at cost w(a).

Add variables y(a) ∈ {0, 1} with y(a) = 1 if arc a is used, 0 otherwise.

This leads to the following mixed-integer linear program (MIP):

minimize
∑
a∈A

c(a) · x(a) +
∑
a∈A

w(a) · y(a)

subject to
∑

a∈δ+(v)

x(a)−
∑

a∈δ−(v)

x(a) = b(v) for all v ∈ V ,

x(a) ≤ u(a) · y(a) for all a ∈ A,
x(a) ≥ 0 for all a ∈ A.
y(a) ∈ {0, 1} for all a ∈ A.

MIP: Linear program where some variables may only take integer values.
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Example: Maximum Weighted Matching Problem
Given: undirected graph G = (V ,E ), weight function w : E → R.

Task: find matching M ⊆ E with maximum total weight.

(M ⊆ E is a matching if every node is incident to at most one edge in M.)

Formulation as an integer linear program (IP):

Variables: xe ∈ {0, 1} for e ∈ E with xe = 1 if and only if e ∈ M.

maximize
∑
e∈E

w(e) · xe

subject to
∑

e∈δ(v)

xe ≤ 1 for all v ∈ V ,

xe ∈ {0, 1} for all e ∈ E .

IP: Linear program where all variables may only take integer values.
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Example: Traveling Salesperson Problem (TSP)
Given: complete graph Kn on n nodes, weight function w : E (Kn)→ R.

Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)

Application: Drilling holes in printed circuit boards.

Formulation as an integer linear program? (maybe later!)
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Example: Weighted Vertex Cover Problem
Given: undirected graph G = (V ,E ), weight function w : V → R≥0.

Task: find U ⊆ V of minimum total weight such that every edge e ∈ E has at least one
endpoint in U.

Formulation as an integer linear program (IP):

Variables: xv ∈ {0, 1} for v ∈ V with xv = 1 if and only if v ∈ U.

minimize
∑
v∈V

w(v) · xv

subject to xv + xv ′ ≥ 1 for all e = {v , v ′} ∈ E ,
xv ∈ {0, 1} for all v ∈ V .
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Markowitz’ Portfolio Optimisation Problem
Given: n different securities (stocks, bonds, etc.) with random returns, target return R ,
for each security i ∈ [n]:
I expected return µi , variance σi

For each pair of securities i , j :
I covariance ρij ,

Task: Find a portfolio x1, . . . , xn that minimises “risk” (aka variance) and has expected
return ≥ R .

Formulation as a quadratic programme (QP):

minimize
∑
i ,j

ρijσiσjxixj

subject to
∑
i

xi = 1∑
i

µixi ≥ R

xi ≥ 0, for all i .
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Typical Questions
For a given optimization problem:

I How to find an optimal solution?

I How to find a feasible solution?

I Does there exist an optimal/feasible solution?

I How to prove that a computed solution is optimal?

I How difficult is the problem?

I Does there exist an efficient algorithm with “small” worst-case running time?

I How to formulate the problem as a (mixed integer) linear program?

I Is there a useful special structure of the problem?
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