COMP331/COMP557: Optimisation

Martin Gairing Computer Science Department University of Liverpool

1st Semester 2018/19

Material adapted from a course by Martin Skutella at TU Berlin

My Background

FH Esslingen

▶ 1995-2000: Diplom (Electrical Engineering)

Clemson University

2000-2001: MSc (Computer Science)

University of Paderborn

2002-2007: PhD + Postdoc

International Computer Science Institute Berkeley

2007- 2009: Postdoc

Liverpool University

Since 2009: Lecturer/Senior Lecturer

Administrative Details

Lectures:

- Mondays, 11:00 12:00
- Tuesdays, 10:00 11:00
- ► Thursdays, 12:00 -13:00

Tutorials:

- Flávia Alves (F.Alves@liverpool.ac.uk)
- starting from Friday 28 September

Assessment:

- 25 % continuous assessment
- ▶ 75 % final exam

The webpage for this module

- https://cgi.csc.liv.ac.uk/~gairing/COMP557/
- lecture notes
- resources
- announcements

Course Aims

- To provide a foundation for modelling various continuous and discrete optimisation problems.
- To provide the tools and paradigms for the design and analysis of algorithms for continuous and discrete optimisation problems. Apply these tools to real-world problems.
- To review the links and interconnections between optimisation and computational complexity theory.
- To provide an in-depth, systematic and critical understanding of selected significant topics at the intersection of optimisation, algorithms and (to a lesser extent) complexity theory, together with the related research issues.

Learning Outcomes

Upon completion of the module you should have:

- A critical awareness of current problems and research issues in the field of optimisation.
- The ability to formulate optimisation models for the purpose of modelling particular applications.
- The ability to use appropriate algorithmic paradigms and techniques in context of a particular optimisation model.
- The ability to read, understand and communicate research literature in the field of optimisation.
- ► The ability to recognise potential research opportunities and research directions.

Outline

1 Introduction

- 2 Linear Programming Basics
- 3 The Geometry of Linear Programming
- 4 The Simplex Method

5 Duality

6 Applications of Linear Programming

Chapter 1: Introduction

Small brewery produces ale and beer.

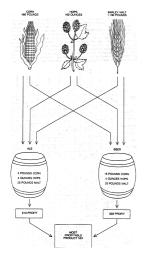
- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Quantity	480	160	1190	

Devote all resources to ale: 34 barrels of ale	\implies	£442
Devote all resources to beer: 32 barrels of beer	\implies	£736
7.5 barrels of ale, 29.5 barrels of beer	\implies	£776
12 barrels of ale, 28 barrels of beer	\implies	£800

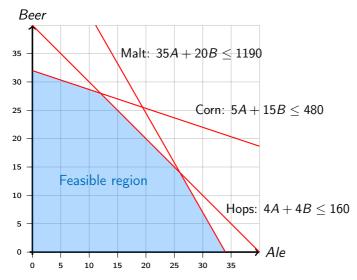
Is this best possible?

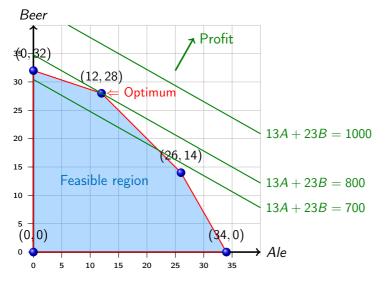
Beverage	Corn (lb)	Hops (oz)	Malt (lb)	Profit (£)	
Ale (barrel)	5	4	35	13	
Beer (barrel)	15	4	20	23	
Quantity	480	160	1190		

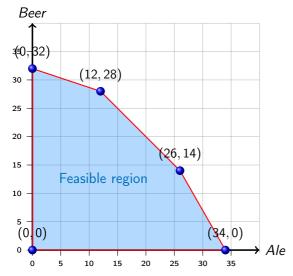


Mathematical Formulation:

max	13 A	+	23 B		Profit
s.t.	5 A	+	15 B	\leq 480	Corn
	4 A	+	4 B	\leq 160	Hops
	35 A	+	20 <i>B</i>	\leq 1190	Malt
			A, B	\geq 0	







Observation: Regardless of objective function coefficients, an optimal solution occurs at an extreme point (vertex).

Terminology and Notation

Numbers:

- ▶ \mathbb{R} ... set of real numbers
- $\blacktriangleright\ \mathbb{R}_{\geq 0}$ or \mathbb{R}_+ . . . set of non-negative real numbers
- \triangleright \mathbb{R}^n ... n-dimensional real vector space
- ▶ \mathbb{Z} , $\mathbb{Z}_{\geq 0}$, \mathbb{Z}^n ... set of integers, non-negative integers, n-dimensional ...

Sets:

- $S = \{s_1, s_2, \cdots, s_k\} \dots$ a set of k elements
- S = {x | P(x)} ... set of elements x for which condition P is true
 Example: Z_{>0} = {i | i ∈ Z and i ≥ 0}
- $|S| \dots$ size (number of elements) of a finite set S
- ▶ 2^{S} ... set of all subsets of S
 - e.g.: $2^{\{a,b,c\}} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$
- ▶ μ : $S \mapsto T \dots \mu$ is a mapping (or function) from set S to set T

Terminology and Notation – Linear Algebra

matrix of dimension $m \times n$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} | & | & | \\ A_1 & A_2 & \dots & A_n \\ | & | & | \end{pmatrix} = \begin{pmatrix} -a_1^T & - \\ \vdots \\ -a_m^T & - \end{pmatrix}$$

$$and its transpose: A^T = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

$$Column vector x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}; row vector x^T (the transpose of x)$$

• Inner product of $x, y \in \mathbb{R}^n$: $x^T y = y^T x = \sum_{i=1}^n x_i y_i$

• Matrix equation Ax = bis equivalent to $a_i^T x = b_i$ for all $i \in \{1, ..., m\}$ (*b* is an m-vector, b_i is its *i*'th component)

Terminology and Notation – Linear Algebra

Optimization Problems

Generic optimization problem

Given: set X, function $f : X \to \mathbb{R}$ Task: find $x^* \in X$ maximizing (minimizing) $f(x^*)$, i.e.,

 $f(x^*) \ge f(x)$ $(f(x^*) \le f(x))$ for all $x \in X$.

An x* with these properties is called optimal solution (optimum).
Here, X is the set of feasible solutions, f is the objective function.

Short form:

maximize f(x)subject to $x \in X$

or simply: $\max\{f(x) \mid x \in X\}.$

Problem: Too general to say anything meaningful!

Convex Optimization Problems

Definition 1.1.

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$.

a X is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ it holds that

$$\lambda \cdot x + (1 - \lambda) \cdot y \in X$$
 .

b f is convex if for all $x, y \in X$ and $0 \le \lambda \le 1$ with $\lambda \cdot x + (1 - \lambda) \cdot y \in X$ it holds that

$$\lambda \cdot f(x) + (1 - \lambda) \cdot f(y) \ge f(\lambda \cdot x + (1 - \lambda) \cdot y)$$

c If X and f are both convex, then $\min\{f(x) \mid x \in X\}$ is a convex optimization problem.

Note: $f : X \mapsto \mathbb{R}$ is called concave if -f is convex.

Local and Global Optimality

Definition 1.2.

Let $X \subseteq \mathbb{R}^n$ and $f : X \mapsto \mathbb{R}$. $x' \in X$ is a local optimum of the optimization problem min $\{f(x) \mid x \in X\}$ if there is an $\varepsilon > 0$ such that

$$f(x') \leq f(x)$$
 for all $x \in X$ with $||x' - x||_2 \leq \varepsilon$.

Theorem 1.3.

For a convex optimization problem, every local optimum is a (global) optimum.

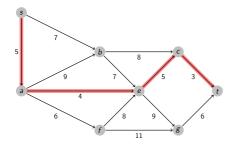
Optimization Problems Considered in this Course:

 $\begin{array}{ll} \text{maximize} & f(x) \\ \text{subject to} & x \in X \end{array}$

- X ⊆ ℝⁿ polyhedron, f linear function
 → linear optimization problem (in particular convex)
- $X \subseteq \mathbb{Z}^n$ integer points of a polyhedron, f linear function \longrightarrow integer linear optimization problem
- ➤ X related to some combinatorial structure (e.g., graph) → combinatorial optimization problem
- X finite (but usually huge)

 → discrete optimization problem

Example: Shortest Path Problem



Given: directed graph D = (V, A), weight function $w : A \to \mathbb{R}_{\geq 0}$, start node $s \in V$, destination node $t \in V$.

Task: find *s*-*t*-path of minimum weight.

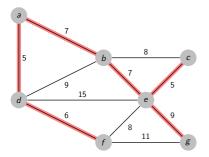
That is, $X = \{P \subseteq A \mid P \text{ is } s\text{-}t\text{-path in } D\}$ and $f : X \to \mathbb{R}$ is given by

$$f(P) = \sum_{a \in P} w(a)$$
.

Remark.

Note that the finite set of feasible solutions X is only implicitly given by D. This holds for all interesting problems in combinatorial optimization!

Example: Minimum Spanning Tree (MST) Problem



Given: undirected graph G = (V, E), weight function $w : E \to \mathbb{R}_{\geq 0}$.

Task: find connected subgraph of G containing all nodes in V with minimum total weight.

That is, $X = \{E' \subseteq E \mid E' \text{ connects all nodes in } V\}$ and $f : X \to \mathbb{R}$ is given by

$$f(E') = \sum_{e \in E'} w(e)$$
.

Remarks

- Notice that there always exists an optimal solution without cycles.
- A connected graph without cycles is called a tree.
- A subgraph of G containing all nodes in V is called spanning.

Example: Minimum Cost Flow Problem

Given: directed graph D = (V, A), with arc capacities $u : A \to \mathbb{R}_{\geq 0}$, arc costs $c : A \to \mathbb{R}$, and node balances $b : V \to \mathbb{R}$.

Interpretation:

- ▶ nodes v ∈ V with b(v) > 0 (b(v) < 0) have supply (demand) and are called sources (sinks)</p>
- ► the capacity u(a) of arc a ∈ A limits the amount of flow that can be sent through arc a.

Task: find a *flow* $x : A \to \mathbb{R}_{\geq 0}$ obeying capacities and satisfying all supplies and demands, that is,

$$0 \le x(a) \le u(a) \qquad \qquad \text{for all } a \in A,$$

$$\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \qquad \qquad \text{for all } v \in V,$$

such that x has minimum cost $c(x) := \sum_{a \in A} c(a) \cdot x(a)$.

Example: Minimum Cost Flow Problem (cont.)

Formulation as a linear program (LP):

minimize
$$\sum_{a \in A} c(a) \cdot x(a)$$
 (1.1)

subject to
$$\sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) \qquad \text{for all } v \in V, \qquad (1.2)$$
$$x(a) \le u(a) \qquad \qquad \text{for all } a \in A, \qquad (1.3)$$
$$x(a) \ge 0 \qquad \qquad \text{for all } a \in A. \qquad (1.4)$$

▶ Objective function given by (1.1). Set of feasible solutions:

$$X = \{x \in \mathbb{R}^A \mid x \text{ satisfies (1.2), (1.3), and (1.4)}\}$$

Notice that (1.1) is a linear function of x and (1.2) – (1.4) are linear equations and linear inequalities, respectively. → linear program

Example (cont.): Adding Fixed Cost

Fixed costs $w : A \to \mathbb{R}_{\geq 0}$.

If arc $a \in A$ shall be used (i.e., x(a) > 0), it must be bought at cost w(a).

Add variables $y(a) \in \{0, 1\}$ with y(a) = 1 if arc a is used, 0 otherwise.

This leads to the following mixed-integer linear program (MIP):

$$\begin{array}{ll} \text{minimize} & \sum_{a \in A} c(a) \cdot x(a) + \sum_{a \in A} w(a) \cdot y(a) \\ \text{subject to} & \sum_{a \in \delta^+(v)} x(a) - \sum_{a \in \delta^-(v)} x(a) = b(v) & \text{for all } v \in V, \\ & x(a) \leq u(a) \cdot y(a) & \text{for all } a \in A, \\ & x(a) \geq 0 & \text{for all } a \in A. \\ & y(a) \in \{0, 1\} & \text{for all } a \in A. \end{array}$$

MIP: Linear program where some variables may only take integer values.

Example: Maximum Weighted Matching Problem

Given: undirected graph G = (V, E), weight function $w : E \to \mathbb{R}$.

Task: find matching $M \subseteq E$ with maximum total weight.

 $(M \subseteq E \text{ is a matching if every node is incident to at most one edge in } M.)$

Formulation as an integer linear program (IP):

Variables: $x_e \in \{0,1\}$ for $e \in E$ with $x_e = 1$ if and only if $e \in M$.

IP: Linear program where all variables may only take integer values.

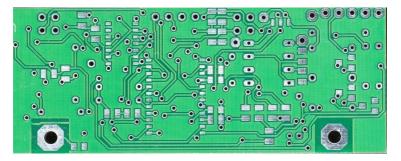
Example: Traveling Salesperson Problem (TSP)

Given: complete graph K_n on n nodes, weight function $w : E(K_n) \to \mathbb{R}$.

Task: find a Hamiltonian circuit with minimum total weight.

(A Hamiltonian circuit visits every node exactly once.)

Application: Drilling holes in printed circuit boards.



Formulation as an integer linear program? (maybe later!)

Example: Weighted Vertex Cover Problem

Given: undirected graph G = (V, E), weight function $w : V \to \mathbb{R}_{\geq 0}$.

Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Formulation as an integer linear program (IP):

Variables: $x_v \in \{0,1\}$ for $v \in V$ with $x_v = 1$ if and only if $v \in U$.

$$\begin{array}{ll} \text{minimize} & \sum_{v \in V} w(v) \cdot x_v \\ \text{subject to} & x_v + x_{v'} \ge 1 \\ & x_v \in \{0, 1\} \end{array} & \quad \text{for all } e = \{v, v'\} \in E, \\ & \text{for all } v \in V. \end{array}$$

Markowitz' Portfolio Optimisation Problem

Given: *n* different securities (stocks, bonds, etc.) with random returns, target return *R*, for each security $i \in [n]$:

• expected return μ_i , variance σ_i

For each pair of securities i, j:

• covariance ρ_{ij} ,

Task: Find a portfolio x_1, \ldots, x_n that minimises "risk" (aka variance) and has expected return $\geq R$.

Formulation as a quadratic programme (QP):

$$\begin{array}{ll} \text{minimize} & \sum_{i,j} \rho_{ij}\sigma_i\sigma_j x_i x_j \\ \text{subject to} & \sum_i x_i = 1 \\ & \sum_i \mu_i x_i \geq R \\ & x_i \geq 0, \end{array}$$
 for all i .

Typical Questions

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Does there exist an efficient algorithm with "small" worst-case running time?
- How to formulate the problem as a (mixed integer) linear program?
- Is there a useful special structure of the problem?

Literature on Linear Optimization (not complete)

- D. Bertsimas, J. N. Tsitsiklis, Introduction to Linear Optimization, Athena, 1997.
- ▶ V. Chvatal, *Linear Programming*, Freeman, 1983.
- G. B. Dantzig, *Linear Programming and Extensions*, Princeton University Press, 1998 (1963).
- M. Grötschel, L. Lovàsz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer, 1988.
- J. Matousek, B. Gärtner, Using and Understanding Linear Programming, Springer, 2006.
- M. Padberg, *Linear Optimization and Extensions*, Springer, 1995.
- A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.
- R. J. Vanderbei, *Linear Programming*, Springer, 2001.

Literature on Combinatorial Optimization (not complete)

- R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, 1993.
- W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, *Combinatorial Optimization*, Wiley, 1998.
- L. R. Ford, D. R. Fulkerson, *Flows in Networks*, Princeton University Press, 1962.
- M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979.
- B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer, 2002.
- C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover Publications, reprint 1998.
- A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.