
Chapter 2:
Linear Programming Basics

(Bertsimas & Tsitsiklis, Chapter 1)
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Example of a Linear Program

minimize 2x1 − x2 + 4x3

subject to x1 + x2 + x4 ≤ 2

3x2 − x3 = 5

x3 + x4 ≥ 3

x1 ≥ 0

x3 ≤ 0

Remarks.
I objective function is linear in vector of variables x = (x1, x2, x3, x4)

T

I constraints are linear inequalities and linear equations
I last two constraints are special

(non-negativity and non-positivity constraint, respectively)
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General Linear Program

minimize cT · x
subject to ai

T · x ≥ bi for i ∈ M1, (2.1)

ai
T · x = bi for i ∈ M2, (2.2)

ai
T · x ≤ bi for i ∈ M3, (2.3)

xj ≥ 0 for j ∈ N1, (2.4)
xj ≤ 0 for j ∈ N2, (2.5)

with c ∈ Rn, ai ∈ Rn and bi ∈ R for i ∈ M1 ∪̇M2 ∪̇M3 (finite index sets),
and N1,N2 ⊆ {1, . . . , n} given.

I x ∈ Rn satisfying constraints (2.1) – (2.5) is a feasible solution.
I feasible solution x∗ is optimal solution if

cT · x∗ ≤ cT · x for all feasible solutions x .

I linear program is unbounded if, for all k ∈ R, there is a feasible
solution x ∈ Rn with cT · x ≤ k .
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Special Forms of Linear Programs

I maximizing cT · x is equivalent to minimizing (−c)T · x .

I any linear program can be written in the form

minimize cT · x
subject to A · x ≥ b

for some A ∈ Rm×n and b ∈ Rm:
I rewrite ai

T · x = bi as: ai
T · x ≥ bi ∧ ai

T · x ≤ bi ,
I rewrite ai

T · x ≤ bi as: (−ai )T · x ≥ −bi .

I Linear program in standard form:

min cT · x
s.t. A · x = b

x ≥ 0

with A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.
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Example: Diet Problem
Given:

I n different foods, m different nutrients
I aij := amount of nutrient i in one unit of food j

I bi := requirement of nutrient i in some ideal diet
I cj := cost of one unit of food j

Task: find a cheapest ideal diet consisting of foods 1, . . . , n.

LP formulation: Let xj := number of units of food j in the diet:

min cT · x min cT · x
s.t. A · x = b or s.t. A · x ≥ b

x ≥ 0 x ≥ 0

with A = (aij) ∈ Rm×n, b = (bi ) ∈ Rm, c = (cj) ∈ Rn.
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Reduction to Standard Form
Any linear program can be brought into standard form:

I elimination of free (unbounded) variables xj :

replace xj with x+j , x−j ≥ 0: xj = x+j − x−j

I elimination of non-positive variables xj :

replace xj ≤ 0 with (−xj) ≥ 0.

I elimination of inequality constraint ai T · x ≤ bi :

introduce slack variable s ≥ 0 and rewrite: ai T · x + s = bi

I elimination of inequality constraint ai T · x ≥ bi :

introduce slack variable s ≥ 0 and rewrite: ai T · x − s = bi
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Example
The linear program

min 2 x1 + 4 x2

s.t. x1 + x2 ≥ 3

3 x1 + 2 x2 = 14

x1 ≥ 0

is equivalent to the standard form problem

min 2 x1 + 4 x+2 − 4 x−2

s.t. x1 + x+2 − x−2 − x3 = 3

3 x1 + 2 x+2 − 2 x−2 = 14

x1, x
+
2 , x−2 , x3 ≥ 0
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Affine Linear and Convex Functions

Lemma 2.1.
a An affine linear function f : Rn → R given by f (x) = cT · x + d with

c ∈ Rn, d ∈ R, is both convex and concave.
b If f1, . . . , fk : Rn → R are convex functions, then f : Rn → R defined

by f (x) := maxi=1,...,k fi (x) is also convex.
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Piecewise Linear Convex Objective Functions
Let c1, . . . , ck ∈ Rn and d1, . . . , dk ∈ R.

Consider piecewise linear convex function: x 7→ maxi=1,...,k ci
T · x + di :

min max
i=1,...,k

ci
T · x + di min z

s.t. A · x ≥ b ←→ s.t. z ≥ ci
T · x + di for all i

A · x ≥ b

Example: let c1, . . . , cn ≥ 0

min
n∑

i=1

ci · |xi | min
n∑

i=1

ci · zi

s.t. A · x ≥ b ↔ s.t. zi ≥ xi

zi ≥ −xi
A · x ≥ b
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Graphical Representation and Solution
2D example:

min −x1 − x2

s.t. x1 + 2 x2 ≤ 3

2 x1 + x2 ≤ 3

x1, x2 ≥ 0
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Graphical Representation and Solution (cont.)
3D example:

min −x1 − x2 − x3

s.t. x1 ≤ 1

x2 ≤ 1

x3 ≤ 1

x1, x2, x3 ≥ 0
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Graphical Representation and Solution (cont.)
another 2D example:

min c1 x1 + c2 x2

s.t. −x1 + x2 ≤ 1

x1, x2 ≥ 0
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I for c = (1, 1)T , the unique optimal solution is x = (0, 0)T

I for c = (1, 0)T , the optimal solutions are exactly the points

x = (0, x2)
T with 0 ≤ x2 ≤ 1

I for c = (0, 1)T , the optimal solutions are exactly the points

x = (x1, 0)T with x1 ≥ 0
I for c = (−1,−1)T , the problem is unbounded, optimal cost is −∞
I if we add the constraint x1 + x2 ≤ −1, the problem is infeasible

44



Properties of the Set of Optimal Solutions
In the last example, the following 5 cases occurred:

i there is a unique optimal solution

ii there exist infinitely many optimal solutions, but the set of optimal
solutions is bounded

iii there exist infinitely many optimal solutions and the set of optimal
solutions is unbounded

iv the problem is unbounded, i. e., the optimal cost is −∞ and no
feasible solution is optimal

v the problem is infeasible, i. e., the set of feasible solutions is empty

These are indeed all cases that can occur in general (see later).
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Visualizing LPs in Standard Form
Example:
Let A = (1, 1, 1) ∈ R1×3, b = (1) ∈ R1 and consider the set of feasible
solutions

P = {x ∈ R3 | A · x = b, x ≥ 0} .
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Visualizing LPs in Standard Form
More general:

I if A ∈ Rm×n with m ≤ n and the rows of A are linearly independent,
then

{x ∈ Rn | A · x = b}

is an (n −m)-dimensional affine subspace in Rn.
I set of feasible solutions lies in this affine subspace and is only

constrained by non-negativity constraints x ≥ 0.
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