COMP331/557

Chapter 3:

The Geometry of Linear Programming
(Bertsimas \& Tsitsiklis, Chapter 2)

Polyhedra and Polytopes

Definition 3.1.

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
a set $\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ is called polyhedron
b $\{x \mid A \cdot x=b, x \geq 0\}$ is polyhedron in standard form representation

Definition 3.2.

a Set $S \subseteq \mathbb{R}^{n}$ is bounded if there is $K \in \mathbb{R}$ such that

$$
\|x\|_{\infty} \leq K \quad \text { for all } x \in S .
$$

b A bounded polyhedron is called polytope.

Hyperplanes and Halfspaces

Definition 3.3.

Let $a \in \mathbb{R}^{n} \backslash\{0\}$ and $b \in \mathbb{R}$:
a set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x=b\right\}$ is called hyperplane
b set $\left\{x \in \mathbb{R}^{n} \mid a^{T} \cdot x \geq b\right\}$ is called halfspace

Remarks

- Hyperplanes and halfspaces are convex sets.
- A polyhedron is an intersection of finitely many halfspaces.

Convex Combination and Convex Hull

Definition 3.4.
Let $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}_{\geq 0}$ with $\lambda_{1}+\cdots+\lambda_{k}=1$.
a The vector $\sum_{i=1}^{k} \lambda_{i} \cdot x^{i}$ is a convex combination of x^{1}, \ldots, x^{k}.
b The convex hull of x^{1}, \ldots, x^{k} is the set of all convex combinations.

Convex Sets, Convex Combinations, and Convex Hulls

Theorem 3.5.
a The intersection of convex sets is convex.
b Every polyhedron is a convex set.
c A convex combination of a finite number of elements of a convex set also belongs to that set.
d The convex hull of finitely many vectors is a convex set.

Corollary 3.6.

The convex hull of $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ is the smallest (w.r.t. inclusion) convex subset of \mathbb{R}^{n} containing x^{1}, \ldots, x^{k}.

Extreme Points and Vertices of Polyhedra

Definition 3.7.

Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron.
a $x \in P$ is an extreme point of P if

$$
x \neq \lambda \cdot y+(1-\lambda) \cdot z \quad \text { for all } y, z \in P \backslash\{x\}, 0 \leq \lambda \leq 1,
$$

i. e., x is not a convex combination of two other points in P.
b $x \in P$ is a vertex of P if there is some $c \in \mathbb{R}^{n}$ such that

$$
c^{T} \cdot x<c^{T} \cdot y \quad \text { for all } y \in P \backslash\{x\},
$$

i. e., x is the unique optimal solution to the $\operatorname{LP} \min \left\{c^{T} \cdot z \mid z \in P\right\}$.

Active and Binding Constraints

In the following, let $P \subseteq \mathbb{R}^{n}$ be a polyhedron defined by

$$
\begin{array}{ll}
a_{i}^{T} \cdot x \geq b_{i} & \text { for } i \in M_{1} \\
a_{i}^{T} \cdot x=b_{i} & \text { for } i \in M_{2}
\end{array}
$$

with $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$, for all i.

Definition 3.8.

If $x^{*} \in \mathbb{R}^{n}$ satisfies $a_{i}{ }^{T} \cdot x^{*}=b_{i}$ for some i, then the corresponding constraint is active (or binding) at x^{*}.

Basic Facts from Linear Algebra

Theorem 3.9.
Let $x^{*} \in \mathbb{R}^{n}$ and $I=\left\{i \mid a_{i}^{\top} \cdot x^{*}=b_{i}\right\}$. The following are equivalent:
ii there are n vectors in $\left\{a_{i} \mid i \in I\right\}$ which are linearly independent;
iif the vectors in $\left\{a_{i} \mid i \in I\right\}$ span \mathbb{R}^{n};
囲 x^{*} is the unique solution to the system of equations $a_{i}{ }^{\top} \cdot x=b_{i}, i \in I$.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 3.10.

a $x^{*} \in \mathbb{R}^{n}$ is a basic solution of P if

- all equality constraints are active and
- there are n linearly independent constraints that are active.
b A basic solution satisfying all constraints is a basic feasible solution.

Theorem 3.11.
For $x^{*} \in P$, the following are equivalent:
ii x^{*} is a vertex of P;
IiI x^{*} is an extreme point of P;
囲 x^{*} is a basic feasible solution of P.

Number of Vertices

Corollary 3.12.

a A polyhedron has a finite number of vertices and basic solutions.
b For a polyhedron in \mathbb{R}^{n} given by linear equations and m linear inequalities, this number is at most $\binom{m}{n}$.

Example:
$P:=\left\{x \in \mathbb{R}^{n} \mid 0 \leq x_{i} \leq 1, i=1, \ldots, n\right\}$ (n-dimensional unit cube)

- number of constraints: $m=2 n$
- number of vertices: 2^{n}

Adjacent Basic Solutions and Edges

Definition 3.13.

Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron.
a Two distinct basic solutions are adjacent if there are $n-1$ linearly independent constraints that are active at both of them.
b If both solutions are feasible, the line segment that joins them is an edge of P.

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$.
Observation
One can assume without loss of generality that $\operatorname{rank}(A)=m$.
Theorem 3.14.
$x \in \mathbb{R}^{n}$ is a basic solution of P if and only if $A \cdot x=b$ and there are indices $B(1), \ldots, B(m) \in\{1, \ldots, n\}$ such that

- columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and
- $x_{i}=0$ for all $i \notin\{B(1), \ldots, B(m)\}$.
- $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- The vector of basic variables is denoted by $x_{B}:=\left(x_{B(1)}, \ldots, x_{B(m)}\right)^{T}$.
- $A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^{m}.
- The matrix $B:=\left(A_{B(1)}, \ldots, A_{B(m)}\right) \in \mathbb{R}^{m \times m}$ is called basis matrix.

Example:

Consider the following LP:

$$
\begin{aligned}
& \min 2 x_{1} \quad+x_{4} \quad+5 x_{7}
\end{aligned}
$$

$$
\begin{aligned}
& (A \mid b)=\left(\begin{array}{lllllll|l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & \mid l \\
2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
\end{aligned}
$$

A has full row rank $m=4$.

Example:

Basis 1:
Basis 2:

$$
\left(\begin{array}{lllllll:l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & 2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right) \quad\left(\begin{array}{lllllll|l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & 2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
$$

Basis 3:

$$
\left(\begin{array}{lllllll|l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & 2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
$$

Example:

- Every basis B is invertible and can be transformed into the identity matrix by elementary row operations and column permutations. (Gaussian elemination)
- If we transform the whole expended matrix with these operations, we obtain a solution of $A x=b$ by setting the basic variables to the transformed right-hand-side. Such a solution is called basic solution for basis B.

Basis 1:

$$
\left(\begin{array}{lllllll:l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & 2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
$$

Example:

Basis 2:

$$
\left(\begin{array}{lllllll:l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & 2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
$$

Example:

Basis 3:

$$
\left(\begin{array}{lllllll|l}
1 & 1 & 1 & 1 & & & & 4 \\
1 & & & & 1 & & & 2 \\
& & 1 & & & 1 & & 3 \\
& 3 & 1 & & & & 1 & 6
\end{array}\right)
$$

Example:

- If we permute the columns of A and x such that $A=\left(A_{B}, A_{N}\right)$ and $x=\binom{x_{B}}{x_{N}}$, then the elementary transformations correspond to multiplying the linear system

$$
\left(A_{B}, A_{N}\right)\binom{x_{B}}{x_{N}}=b
$$

from the left with the inverse B^{-1} of the basis:

$$
\begin{aligned}
& B^{-1}\left(A_{B}, A_{N}\right)\binom{x_{B}}{x_{N}} & =B^{-1} b \\
\Leftrightarrow & B^{-1} A_{B} x_{B}+B^{-1} A_{N} x_{N} & =B^{-1} b \\
\Leftrightarrow & x_{B}+B^{-1} A_{N} x_{N} & =B^{-1} b
\end{aligned}
$$

- Setting $x_{N}=0$, we obtain $x_{B}=B^{-1} b$.
- So if B is a basis, we obtain the associated basic solution

$$
x=\left(x_{B}, x_{N}\right)^{T} \text { as } x_{B}=B^{-1} b, x_{N}=0 .
$$

Basic Columns and Basic Solutions

Observation 3.15.

Let $x \in \mathbb{R}^{n}$ be a basic solution, then:

- $B \cdot x_{B}=b$ and thus $x_{B}=B^{-1} \cdot b$;
- x is a basic feasible solution if and only if $x_{B}=B^{-1} \cdot b \geq 0$.

Example: $m=2$

- A_{1}, A_{3} or A_{2}, A_{3} form bases with corresp. basic feasible solutions.
- A_{1}, A_{4} do not form a basis.
- A_{1}, A_{2} and A_{2}, A_{4} and A_{3}, A_{4} form bases with infeasible basic solution.

Bases and Basic Solutions

Corollary 3.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- Thus, different basic solutions correspond to different bases.
- But: two different bases might yield the same basic solution.

Example: If $b=0$, then $x=0$ is the only basic solution.

Adjacent Bases

Definition 3.17.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B^{\prime}(1)}, \ldots, A_{B^{\prime}(m)}$ are adjacent if they share all but one column.

Observation 3.18.

a Two adjacent basic solutions can always be obtained from two adjacent bases.
b If two adjacent bases lead to distinct basic solutions, then the latter are adjacent.

Degeneracy

Definition 3.19.

A basic solution x of a polyhedron P is degenerate if more than n constraints are active at x.

Observation 3.20.

Let $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b, x \geq 0\right\}$ be a polyhedron in standard form with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
a A basic solution $x \in P$ is degenerate if and only if more than $n-m$ components of x are zero.
b For a non-degenerate basic solution $x \in P$, there is a unique basis.

Three Different Reasons for Degeneracy

ii redundant variables
Example: $x_{1}+x_{2}=1$

$$
\begin{array}{r}
x_{3}=0 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

$$
\longleftrightarrow \quad A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

III redundant constraints Example:

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 3 \\
2 x_{1}+x_{2} & \leq 3 \\
x_{1}+x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

困 geometric reasons
Example: Octahedron

Observation 3.21.
Perturbing the right hand side vector b may remove degeneracy.

Existence of Extreme Points

Definition 3.22.

A polyhedron $P \subseteq \mathbb{R}^{n}$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
x+\lambda \cdot d \in P \quad \text { for all } \lambda \in \mathbb{R}
$$

Theorem 3.23.
Let $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
ii There exists an extreme point $x \in P$.
\#it P does not contain a line.
田 A contains n linearly independent rows.

Existence of Extreme Points (cont.)

Corollary 3.24 .

a A non-empty polytope contains an extreme point.
b A non-empty polyhedron in standard form contains an extreme point.
Proof of b :

$$
\begin{aligned}
A \cdot x & =b \\
x & \geq 0
\end{aligned} \quad \longleftrightarrow \quad\left(\begin{array}{c}
A \\
-A \\
1
\end{array}\right) \cdot x \geq\left(\begin{array}{c}
b \\
-b \\
0
\end{array}\right)
$$

Example:

$$
P=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\, \begin{array}{lll}
x_{1}+ & x_{2} \geq 1 \\
x_{1}+2 x_{2} \geq 0
\end{array}\right.\right\}
$$

contains a line since $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\lambda \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \in P \quad$ for all $\lambda \in \mathbb{R}$.

Optimality of Extreme Points

Theorem 3.25.
Let $P \subseteq \mathbb{R}^{n}$ a polyhedron and $c \in \mathbb{R}^{n}$. If P has an extreme point and $\min \left\{c^{\top} \cdot x \mid x \in P\right\}$ is bounded, there is an extreme point that is optimal.

Corollary 3.26.

Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Proof: Every linear program is equivalent to an LP in standard form. The claim thus follows from Corollary 3.24 and Theorem 3.25.

