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Chapter 3:
The Geometry of Linear Programming

(Bertsimas & Tsitsiklis, Chapter 2)
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Polyhedra and Polytopes

Definition 3.1.
Let A ∈ Rm×n and b ∈ Rm.

a set {x ∈ Rn | A · x ≥ b} is called polyhedron
b {x | A · x = b, x ≥ 0} is polyhedron in standard form representation

Definition 3.2.
a Set S ⊆ Rn is bounded if there is K ∈ R such that

‖x‖∞ ≤ K for all x ∈ S .

b A bounded polyhedron is called polytope.
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Hyperplanes and Halfspaces

Definition 3.3.
Let a ∈ Rn \ {0} and b ∈ R:

a set {x ∈ Rn | aT · x = b} is called hyperplane
b set {x ∈ Rn | aT · x ≥ b} is called halfspace

Remarks
I Hyperplanes and halfspaces are convex sets.
I A polyhedron is an intersection of finitely many halfspaces.
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Convex Combination and Convex Hull

Definition 3.4.
Let x1, . . . , xk ∈ Rn and λ1, . . . , λk ∈ R≥0 with λ1 + · · ·+ λk = 1.

a The vector
∑k

i=1 λi · x i is a convex combination of x1, . . . , xk .

b The convex hull of x1, . . . , xk is the set of all convex combinations.
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Convex Sets, Convex Combinations, and Convex Hulls

Theorem 3.5.
a The intersection of convex sets is convex.

b Every polyhedron is a convex set.

c A convex combination of a finite number of elements of a convex set
also belongs to that set.

d The convex hull of finitely many vectors is a convex set.

Corollary 3.6.

The convex hull of x1, . . . , xk ∈ Rn is the smallest (w.r.t. inclusion) convex
subset of Rn containing x1, . . . , xk .
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Extreme Points and Vertices of Polyhedra

Definition 3.7.
Let P ⊆ Rn be a polyhedron.

a x ∈ P is an extreme point of P if

x 6= λ · y + (1− λ) · z for all y , z ∈ P \ {x}, 0 ≤ λ ≤ 1,

i. e., x is not a convex combination of two other points in P .

b x ∈ P is a vertex of P if there is some c ∈ Rn such that

cT · x < cT · y for all y ∈ P \ {x},

i. e., x is the unique optimal solution to the LP min{cT · z | z ∈ P}.
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Active and Binding Constraints

In the following, let P ⊆ Rn be a polyhedron defined by

ai
T · x ≥ bi for i ∈ M1,

ai
T · x = bi for i ∈ M2,

with ai ∈ Rn and bi ∈ R, for all i .

Definition 3.8.
If x∗ ∈ Rn satisfies ai T · x∗ = bi for some i , then the corresponding
constraint is active (or binding) at x∗.
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Basic Facts from Linear Algebra

Theorem 3.9.
Let x∗ ∈ Rn and I = {i | ai T · x∗ = bi}. The following are equivalent:

i there are n vectors in {ai | i ∈ I} which are linearly independent;
ii the vectors in {ai | i ∈ I} span Rn;
iii x∗ is the unique solution to the system of equations ai T · x = bi , i ∈ I .
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Vertices, Extreme Points, and Basic Feasible Solutions

Definition 3.10.
a x∗ ∈ Rn is a basic solution of P if

I all equality constraints are active and
I there are n linearly independent constraints that are active.

b A basic solution satisfying all constraints is a basic feasible solution.

Theorem 3.11.
For x∗ ∈ P , the following are equivalent:

i x∗ is a vertex of P ;
ii x∗ is an extreme point of P ;
iii x∗ is a basic feasible solution of P .
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Number of Vertices

Corollary 3.12.
a A polyhedron has a finite number of vertices and basic solutions.

b For a polyhedron in Rn given by linear equations and m linear
inequalities, this number is at most

(m
n

)
.

Example:

P := {x ∈ Rn | 0 ≤ xi ≤ 1, i = 1, . . . , n} (n-dimensional unit cube)
I number of constraints: m = 2n
I number of vertices: 2n
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Adjacent Basic Solutions and Edges

Definition 3.13.
Let P ⊆ Rn be a polyhedron.

a Two distinct basic solutions are adjacent if there are n − 1 linearly
independent constraints that are active at both of them.

b If both solutions are feasible, the line segment that joins them is an
edge of P .
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Polyhedra in Standard Form
Let A ∈ Rm×n, b ∈ Rm, and P = {x ∈ Rn | A · x = b, x ≥ 0}.
Observation
One can assume without loss of generality that rank(A) = m.

Theorem 3.14.
x ∈ Rn is a basic solution of P if and only if A · x = b and there are indices
B(1), . . . ,B(m) ∈ {1, . . . , n} such that

I columns AB(1), . . . ,AB(m) of matrix A are linearly independent and
I xi = 0 for all i 6∈ {B(1), . . . ,B(m)}.

I xB(1), . . . , xB(m) are basic variables, the remaining variables non-basic.

I The vector of basic variables is denoted by xB := (xB(1), . . . , xB(m))
T .

I AB(1), . . . ,AB(m) are basic columns of A and form a basis of Rm.

I The matrix B := (AB(1), . . . ,AB(m)) ∈ Rm×m is called basis matrix.
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Example:
Consider the following LP:

min 2x1 +x4 +5x7

s.t. x1 +x2 +x3 +x4 = 4
x1 +x5 = 2

x3 +x6 = 3
3x2 +x3 +x7 = 6

xj ≥ 0 , ∀j

(A|b) =


1 1 1 1 | 4
1 1 | 2

1 1 | 3
3 1 1 | 6


A has full row rank m = 4.
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Example:
Basis 1:

1 1 1 1 | 4
1 1 | 2

1 1 | 3
3 1 1 | 6


Basis 2:

1 1 1 1 | 4
1 1 | 2

1 1 | 3
3 1 1 | 6


Basis 3:

1 1 1 1 | 4
1 1 | 2

1 1 | 3
3 1 1 | 6
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Example:

I Every basis B is invertible and can be transformed into the identity
matrix by elementary row operations and column permutations.
(Gaussian elemination)

I If we transform the whole expended matrix with these operations, we
obtain a solution of Ax = b by setting the basic variables to the
transformed right-hand-side. Such a solution is called basic solution
for basis B.

Basis 1:
1 1 1 1 | 4
1 1 | 2

1 1 | 3
3 1 1 | 6
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Example:
Basis 2:

1 1 1 1 | 4
1 1 | 2

1 1 | 3
3 1 1 | 6
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Example:
Basis 3:

1 1 1 1 | 4
1 1 | 2

1 1 | 3
3 1 1 | 6
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Example:

I If we permute the columns of A and x such that A = (AB ,AN) and
x = ( xBxN ), then the elementary transformations correspond to
multiplying the linear system

(AB ,AN)

(
xB
xN

)
= b

from the left with the inverse B−1 of the basis:

B−1(AB ,AN)

(
xB
xN

)
= B−1b

⇔ B−1ABxB + B−1ANxN = B−1b

⇔ xB + B−1ANxN = B−1b

I Setting xN = 0, we obtain xB = B−1b.
I So if B is a basis, we obtain the associated basic solution

x = (xB , xN)
T as xB = B−1b, xN = 0.
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Basic Columns and Basic Solutions

Observation 3.15.
Let x ∈ Rn be a basic solution, then:

I B · xB = b and thus xB = B−1 · b;
I x is a basic feasible solution if and only if xB = B−1 · b ≥ 0.

Example: m = 2

A1

A2

A3

A4
= −A1

b

I A1,A3 or A2,A3 form bases with corresp. basic feasible solutions.

I A1,A4 do not form a basis.

I A1,A2 and A2,A4 and A3,A4 form bases with infeasible basic solution.
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Bases and Basic Solutions

Corollary 3.16.
I Every basis AB(1), . . . ,AB(m) determines a unique basic solution.
I Thus, different basic solutions correspond to different bases.
I But: two different bases might yield the same basic solution.

Example: If b = 0, then x = 0 is the only basic solution.
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Adjacent Bases

Definition 3.17.
Two bases AB(1), . . . ,AB(m) and AB′(1), . . . ,AB′(m) are adjacent if they
share all but one column.

Observation 3.18.
a Two adjacent basic solutions can always be obtained from two

adjacent bases.
b If two adjacent bases lead to distinct basic solutions, then the latter

are adjacent.
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Degeneracy

Definition 3.19.
A basic solution x of a polyhedron P is degenerate if more than n
constraints are active at x .

Observation 3.20.
Let P = {x ∈ Rn | A · x = b, x ≥ 0} be a polyhedron in standard form
with A ∈ Rm×n and b ∈ Rm.

a A basic solution x ∈ P is degenerate if and only if more than n −m
components of x are zero.

b For a non-degenerate basic solution x ∈ P , there is a unique basis.
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Three Different Reasons for Degeneracy

i redundant variables
Example: x1 + x2 = 1

x3 = 0
x1, x2, x3 ≥ 0

←→ A =

(
1 1 0
0 0 1

)

ii redundant constraints
Example: x1 + 2 x2 ≤ 3

2 x1 + x2 ≤ 3
x1 + x2 ≤ 2

x1, x2 ≥ 0

iii geometric reasons
Example: Octahedron

Observation 3.21.
Perturbing the right hand side vector b may remove degeneracy.
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Existence of Extreme Points

Definition 3.22.
A polyhedron P ⊆ Rn contains a line if there is x ∈ P and a direction
d ∈ Rn \ {0} such that

x + λ · d ∈ P for all λ ∈ R.

Theorem 3.23.

Let P = {x ∈ Rn | A · x ≥ b} 6= ∅ with A ∈ Rm×n and b ∈ Rm. The
following are equivalent:

i There exists an extreme point x ∈ P .
ii P does not contain a line.
iii A contains n linearly independent rows.
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Existence of Extreme Points (cont.)

Corollary 3.24.

a A non-empty polytope contains an extreme point.

b A non-empty polyhedron in standard form contains an extreme point.

Proof of b:
A · x = b

x ≥ 0
←→

 A

−A
I

 · x ≥
 b

−b
0


Example:

P =


x1
x2
x3

 ∈ R3

∣∣∣∣∣ x1 + x2 ≥ 1
x1 + 2 x2 ≥ 0


contains a line since

1
1
0

+ λ ·

0
0
1

 ∈ P for all λ ∈ R.
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Optimality of Extreme Points

Theorem 3.25.

Let P ⊆ Rn a polyhedron and c ∈ Rn. If P has an extreme point and
min{cT · x | x ∈ P} is bounded, there is an extreme point that is optimal.

Corollary 3.26.
Every linear programming problem is either infeasible or unbounded or
there exists an optimal solution.

Proof: Every linear program is equivalent to an LP in standard form.
The claim thus follows from Corollary 3.24 and Theorem 3.25.
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