COMP331/557

Chapter 3: The Geometry of Linear Programming

(Bertsimas & Tsitsiklis, Chapter 2)

Polyhedra and Polytopes

Definition 3.1.

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

a set $\{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ is called polyhedron

b $\{x \mid A \cdot x = b, x \ge 0\}$ is polyhedron in standard form representation

Definition 3.2. a Set S ⊆ ℝⁿ is bounded if there is K ∈ ℝ such that ||x||_∞ ≤ K for all x ∈ S. b A bounded polyhedron is called polytope.

Hyperplanes and Halfspaces

```
Definition 3.3.
Let a \in \mathbb{R}^n \setminus \{0\} and b \in \mathbb{R}:
a set \{x \in \mathbb{R}^n \mid a^T \cdot x = b\} is called hyperplane
b set \{x \in \mathbb{R}^n \mid a^T \cdot x \ge b\} is called halfspace
```

Remarks

- Hyperplanes and halfspaces are convex sets.
- ► A polyhedron is an intersection of finitely many halfspaces.

Convex Combination and Convex Hull

Definition 3.4.

Let $x^1, \ldots, x^k \in \mathbb{R}^n$ and $\lambda_1, \ldots, \lambda_k \in \mathbb{R}_{\geq 0}$ with $\lambda_1 + \cdots + \lambda_k = 1$. The vector $\sum_{i=1}^k \lambda_i \cdot x^i$ is a convex combination of x^1, \ldots, x^k .

b The convex hull of x^1, \ldots, x^k is the set of all convex combinations.

Convex Sets, Convex Combinations, and Convex Hulls

Theorem 3.5.

- a The intersection of convex sets is convex.
- **b** Every polyhedron is a convex set.
- **c** A convex combination of a finite number of elements of a convex set also belongs to that set.
- d The convex hull of finitely many vectors is a convex set.

Corollary 3.6.

The convex hull of $x^1, \ldots, x^k \in \mathbb{R}^n$ is the smallest (w.r.t. inclusion) convex subset of \mathbb{R}^n containing x^1, \ldots, x^k .

Extreme Points and Vertices of Polyhedra

Definition 3.7. Let $P \subseteq \mathbb{R}^n$ be a polyhedron. a $x \in P$ is an extreme point of P if $x \neq \lambda \cdot y + (1 - \lambda) \cdot z$ for all $y, z \in P \setminus \{x\}, 0 \le \lambda \le 1$, i.e., x is not a convex combination of two other points in P. **b** $x \in P$ is a vertex of P if there is some $c \in \mathbb{R}^n$ such that $c^T \cdot x < c^T \cdot y$ for all $y \in P \setminus \{x\}$,

i. e., x is the unique optimal solution to the LP min $\{c^T \cdot z \mid z \in P\}$.

Active and Binding Constraints

In the following, let $P \subseteq \mathbb{R}^n$ be a polyhedron defined by $a_i^T \cdot x \ge b_i$ for $i \in M_1$, $a_i^T \cdot x = b_i$ for $i \in M_2$, with $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$, for all i.

Definition 3.8.

If $x^* \in \mathbb{R}^n$ satisfies $a_i^T \cdot x^* = b_i$ for some *i*, then the corresponding constraint is active (or binding) at x^* .

Basic Facts from Linear Algebra

Theorem 3.9.

Let $x^* \in \mathbb{R}^n$ and $I = \{i \mid a_i^T \cdot x^* = b_i\}$. The following are equivalent:

- i there are *n* vectors in $\{a_i \mid i \in I\}$ which are linearly independent;
- iii the vectors in $\{a_i \mid i \in I\}$ span \mathbb{R}^n ;

 x^* is the unique solution to the system of equations $a_i^T \cdot x = b_i$, $i \in I$.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 3.10.

- **a** $x^* \in \mathbb{R}^n$ is a basic solution of *P* if
 - all equality constraints are active and
 - there are n linearly independent constraints that are active.
- **b** A basic solution satisfying all constraints is a basic feasible solution.

Theorem 3.11.

- For $x^* \in P$, the following are equivalent:
 - i x^* is a vertex of P;
 - x^* is an extreme point of *P*;
 - $\mathbf{m} x^*$ is a basic feasible solution of P.

Number of Vertices

Corollary 3.12.

a A polyhedron has a finite number of vertices and basic solutions.

b For a polyhedron in \mathbb{R}^n given by linear equations and *m* linear inequalities, this number is at most $\binom{m}{n}$.

Example:

- $P:=\{x\in \mathbb{R}^n\mid 0\leq x_i\leq 1,\ i=1,\ldots,n\}$ (n-dimensional unit cube)
 - number of constraints: m = 2n
 - number of vertices: 2ⁿ

Adjacent Basic Solutions and Edges

Definition 3.13.

- Let $P \subseteq \mathbb{R}^n$ be a polyhedron.
 - a Two distinct basic solutions are adjacent if there are n-1 linearly independent constraints that are active at both of them.
 - **b** If both solutions are feasible, the line segment that joins them is an edge of *P*.

Polyhedra in Standard Form

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$.

Observation

One can assume without loss of generality that rank(A) = m.

Theorem 3.14.

 $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that

► columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent and

•
$$x_i = 0$$
 for all $i \notin \{B(1), \ldots, B(m)\}$.

- ▶ $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- The vector of basic variables is denoted by $x_B := (x_{B(1)}, \dots, x_{B(m)})^T$.
- $A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^m .
- ▶ The matrix $B := (A_{B(1)}, ..., A_{B(m)}) \in \mathbb{R}^{m \times m}$ is called basis matrix.

Consider the following LP:

$$(A|b) = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & | & 4 \\ 1 & & 1 & & | & 2 \\ & 1 & & 1 & | & 3 \\ & 3 & 1 & & & 1 & | & 6 \end{pmatrix}$$

A has full row rank m = 4.

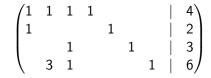
Basis 1: $\begin{pmatrix}
1 & 1 & 1 & 1 & & & & | & 4 \\
1 & & & 1 & & & | & 2 \\
& 1 & & 1 & & | & 3 \\
& 3 & 1 & & & 1 & | & 6
\end{pmatrix}$ Basis 2: $\begin{pmatrix}
1 & 1 & 1 & 1 & & & | & 4 \\
1 & & & 1 & & & | & 2 \\
& 1 & & 1 & & | & 3 \\
& 3 & 1 & & & 1 & | & 6
\end{pmatrix}$

Basis 3:

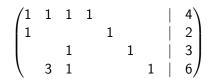
 $\begin{pmatrix} 1 & 1 & 1 & 1 & & & | & 4 \\ 1 & & & 1 & & | & 2 \\ & 1 & & 1 & & | & 3 \\ & 3 & 1 & & & 1 & | & 6 \end{pmatrix}$

- Every basis B is invertible and can be transformed into the identity matrix by elementary row operations and column permutations. (Gaussian elemination)
- ► If we transform the whole expended matrix with these operations, we obtain a solution of Ax = b by setting the basic variables to the transformed right-hand-side. Such a solution is called basic solution for basis B.

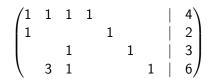
Basis 1:



Basis 2:



Basis 3:



If we permute the columns of A and x such that A = (A_B, A_N) and x = (^{xB}_N), then the elementary transformations correspond to multiplying the linear system

$$(A_B, A_N) \begin{pmatrix} x_B \\ x_N \end{pmatrix} = b$$

from the left with the inverse B^{-1} of the basis:

$$B^{-1}(A_B, A_N) \begin{pmatrix} x_B \\ x_N \end{pmatrix} = B^{-1}b$$

$$\Leftrightarrow \qquad B^{-1}A_Bx_B + B^{-1}A_Nx_N = B^{-1}b$$

$$\Leftrightarrow \qquad x_B + B^{-1}A_Nx_N = B^{-1}b$$

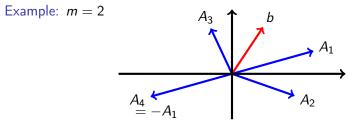
- Setting $x_N = 0$, we obtain $x_B = B^{-1}b$.
- So if B is a basis, we obtain the associated basic solution $x = (x_B, x_N)^T$ as $x_B = B^{-1}b$, $x_N = 0$.

Basic Columns and Basic Solutions

Observation 3.15.

Let $x \in \mathbb{R}^n$ be a basic solution, then:

- $B \cdot x_B = b$ and thus $x_B = B^{-1} \cdot b$;
- ▶ x is a basic feasible solution if and only if $x_B = B^{-1} \cdot b \ge 0$.



- A_1, A_3 or A_2, A_3 form bases with corresp. basic feasible solutions.
- A_1, A_4 do not form a basis.
- A_1, A_2 and A_2, A_4 and A_3, A_4 form bases with infeasible basic solution.

Bases and Basic Solutions

Corollary 3.16.

- Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- > Thus, different basic solutions correspond to different bases.
- But: two different bases might yield the same basic solution.

Example: If b = 0, then x = 0 is the only basic solution.

Adjacent Bases

Definition 3.17.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B'(1)}, \ldots, A_{B'(m)}$ are adjacent if they share all but one column.

Observation 3.18.

- a Two adjacent basic solutions can always be obtained from two adjacent bases.
- **b** If two adjacent bases lead to distinct basic solutions, then the latter are adjacent.

Degeneracy

Definition 3.19.

A basic solution x of a polyhedron P is degenerate if more than n constraints are active at x.

Observation 3.20.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$ be a polyhedron in standard form with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

- A basic solution $x \in P$ is degenerate if and only if more than n m components of x are zero.
- **b** For a non-degenerate basic solution $x \in P$, there is a unique basis.

Three Different Reasons for Degeneracy

i redundant variables Example: $x_1 + x_2 = 1$ $x_3 = 0 \iff A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ii redundant constraints Example: $x_1 + 2x_2 \le 3$ $2x_1 + x_2 \le 3$

$$\begin{array}{rcrcrcr}
x_1 &+& x_2 &\leq 3 \\
x_1 &+& x_2 &\leq 2 \\
& & x_1, x_2 &\geq 0
\end{array}$$

geometric reasons Example: Octahedron

Observation 3.21.

Perturbing the right hand side vector b may remove degeneracy.

Existence of Extreme Points

Definition 3.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

 $x + \lambda \cdot d \in P$ for all $\lambda \in \mathbb{R}$.

Theorem 3.23.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\} \neq \emptyset$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

- **i** There exists an extreme point $x \in P$.
- **II** *P* does not contain a line.
- \blacksquare A contains *n* linearly independent rows.

Existence of Extreme Points (cont.)

Corollary 3.24.

a A non-empty polytope contains an extreme point.

b A non-empty polyhedron in standard form contains an extreme point.

Proof of b:

$$\begin{array}{ccc} A \cdot x &= b \\ x &\geq 0 \end{array} \qquad \longleftrightarrow \qquad \begin{pmatrix} A \\ -A \\ I \end{pmatrix} \cdot x \geq \begin{pmatrix} b \\ -b \\ 0 \\ 0 \end{array}$$

Example:

$$P = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{array}{c} x_1 + x_2 \ge 1 \\ x_1 + 2x_2 \ge 0 \end{array} \right\}$$

e since $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in P$ for all $\lambda \in \mathbb{R}$

contains a line since

Optimality of Extreme Points

Theorem 3.25.

Let $P \subseteq \mathbb{R}^n$ a polyhedron and $c \in \mathbb{R}^n$. If P has an extreme point and $\min\{c^T \cdot x \mid x \in P\}$ is bounded, there is an extreme point that is optimal.

Corollary 3.26.

Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Proof: Every linear program is equivalent to an LP in standard form. The claim thus follows from Corollary 3.24 and Theorem 3.25.