Chapter 7: Maximum Flow Problems

(cp. Cook, Cunningham, Pulleyblank & Schrijver, Chapter 3)

Maximum *s*-*t*-Flow Problem

Given: Digraph D = (V, A), arc capacities $u \in \mathbb{R}^A_{>0}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}^{A}_{\geq 0}$. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if $x_a \leq u_a$ for each $a \in A$;

iii has excess
$$ex_x(v) := x(\delta^-(v)) - x(\delta^+(v))$$
 at node $v \in V$;

m satisfies flow conservation at node $v \in V$ if $ex_x(v) = 0$;

- is a circulation if it satisfies flow conservation at each node $v \in V$;
- is an *s*-*t*-flow of value $ex_x(t)$ if it satisfies flow conservation at each node $v \in V \setminus \{s, t\}$ and if $ex_x(t) \ge 0$.

The maximum *s*-*t*-flow problem asks for a feasible *s*-*t*-flow in *D* of maximum value.

Example

s-t-Flows and s-t-Cuts

For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$\operatorname{ex}_{x}(U) := x(\delta^{-}(U)) - x(\delta^{+}(U))$$
 .

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $e_x(U) = \sum_{v \in U} e_x(v)$. In particular, the value of an *s*-*t*-flow x is equal to

$$\operatorname{ex}_{x}(t) = -\operatorname{ex}_{x}(s) = \operatorname{ex}_{x}(U)$$
 for each $U \subseteq V \setminus \{s\}$ with $t \in U$.

For $U \subseteq V \setminus \{s\}$ with $t \in U$, the subset of arcs $\delta^{-}(U)$ is called an *s*-*t*-cut.

Lemma 7.3.

Let $U \subseteq V \setminus \{s\}$ with $t \in U$. The value of a feasible *s*-*t*-flow *x* is at most the capacity $u(\delta^{-}(U))$ of the *s*-*t*-cut $\delta^{-}(U)$. Equality holds if and only if $x_a = u_a$ for each $a \in \delta^{-}(U)$ and $x_a = 0$ for each $a \in \delta^{+}(U)$.

Residual Graph and Residual Arcs

For $a = (v, w) \in A$, let $a^{-1} := (w, v)$ be the corresponding backward arc and $A^{-1} := \{a^{-1} \mid a \in A\}.$

For a feasible flow x, the set of residual arcs is given by

$$A_x := \{a \in A \mid x_a < u_a\} \cup \{a^{-1} \in A^{-1} \mid x_a > 0\}$$

For $a \in A$, define the residual capacity $u_x(a)$ as

 $u_x(a) := u(a) - x(a)$ if $a \in A_x$, and $u_x(a^{-1}) := x(a)$ if $a^{-1} \in A_x$.

• The digraph $D_x := (V, A_x)$ is called the residual graph of x.

x-augmenting paths

Observation:

▶ If x is a feasible flow in (D, u) and y a feasible flow in (D_x, u_x) , then

$$z(a) := x(a) + y(a) - y(a^{-1})$$
 for $a \in A$

yields a feasible flow z in D (we write z := x + y for short).

Lemma 7.4.

If x is a feasible s-t-flow such that D_x does not contain an s-t-dipath, then x is a maximum s-t-flow.

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).

The maximum *s*-*t*-flow value equals the minimum capacity of an *s*-*t*-cut.

Corollary.

A feasible s-t-flow x is maximum if and only if D_x does not contain an s-t-dipath.

Ford-Fulkerson Algorithm

i set
$$x := 0$$
;
while there is an *s*-*t*-dipath *P* in D_x
set $x := x + \delta \cdot \chi^P$ with $\delta := \min\{u_x(a) \mid a \in P\}$

Here, $\chi^P: A \to \{0, 1, -1\}$ is the characteristic vector of dipath P defined by

$$\chi^{P}(a) = \begin{cases} 1 & \text{if } a \in P, \\ -1 & \text{if } a^{-1} \in P, \\ 0 & \text{otherwise,} \end{cases} \quad \text{for all } a \in A$$

Ford-Fulkerson Example

s

5

с

а

c

t

196

t

Termination of the Ford-Fulkerson Algorithm

Theorem 7.6.

- a If all capacities are rational, then the algorithm terminates with a maximum s-t-flow.
- **b** If all capacities are integral, it finds an integral maximum s-t-flow.

When an arbitrary x-augmenting path is chosen in every iteration, the Ford-Fulkerson Algorithm can behave badly:

Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.

If all capacities are integral and the maximum flow value is $K < \infty$, then the Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is $O(m \cdot K)$ in this case.

Proof: In each iteration the flow value is increased by at least 1.

A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:

▶ In each iteration, choose shortest *s*-*t*-dipath in D_x (edge lengths=1)

Theorem 7.8.

The Edmonds-Karp Algorithm terminates after at most $n \cdot m$ iterations; its running time is $O(n \cdot m^2)$.

Remark: The Edmonds-Karp Algorithm can be implemented with running time $O(n^2 \cdot m)$.

Arc-Based LP Formulation

Straightforward LP formulation of the maximum *s*-*t*-flow problem:

$$\begin{array}{ll} \max & \sum_{a \in \delta^+(s)} x_a - \sum_{a \in \delta^-(s)} x_a \\ \text{s.t.} & \sum_{a \in \delta^-(v)} x_a - \sum_{a \in \delta^+(v)} x_a = 0 & \text{for all } v \in V \setminus \{s, t\} \\ & x_a \leq u(a) & \text{for all } a \in A \\ & x_a \geq 0 & \text{for all } a \in A \end{array}$$

Dual LP:

$$\begin{array}{ll} \min & \sum_{a \in A} u(a) \cdot z_a \\ \text{s.t.} & y_w - y_v + z_{(v,w)} \ge 0 & \text{for all } (v,w) \in A \\ & y_s = 1, \quad y_t = 0 \\ & z_a \ge 0 & \text{for all } a \in A \end{array}$$

Dual Solutions and s-t-Cuts

$$\begin{array}{ll} \min & \sum_{a \in A} u(a) \cdot z_a \\ \text{s.t.} & y_w - y_v + z_{(v,w)} \ge 0 & \text{for all } (v,w) \in A \\ & y_s = 1, \quad y_t = 0 \\ & z_a \ge 0 & \text{for all } a \in A \end{array}$$

Observation: An s-t-cut $\delta^+(U)$ (with $U \subseteq V \setminus \{t\}$, $s \in U$) yields feasible dual solution (y, z) of value $u(\delta^+(U))$:

- Int y be the characteristic vector x^U of U (i. e., y_v = 1 for v ∈ U, y_v = 0 for v ∈ V \ U)
- let z be the characteristic vector χ^{δ+(U)} of δ⁺(U)
 (i. e., z_a = 1 for a ∈ δ⁺(U), z_a = 0 for a ∈ A \ δ⁺(U))

Theorem 7.9.

There exists an *s*-*t*-cut $\delta^+(U)$ (with $U \subseteq V \setminus \{t\}$, $s \in U$) such that the corresponding dual solution (y, z) is an optimal dual solution.

Application: Kőnig's Theorem

Definition 7.10.

Consider an undirected graph G = (V, E).

A matching in G is a subset of edges $M \subseteq E$ with $e \cap e' = \emptyset$ for all $e, e' \in M$ with $e \neq e'$.

ii A vertex cover is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Theorem 7.11.

In bipartite graphs, the maximum cardinality of a matching equals the minimum cardinality of a vertex cover.

Observation: In a bipartite graph $G = (P \cup Q, E)$, a maximum cardinality matching can be found by a maximum flow computation.