Chapter 7: Maximum Flow Problems

(cp. Cook, Cunningham, Pulleyblank \& Schrijver, Chapter 3)

Maximum s-t-Flow Problem

Given: Digraph $D=(V, A)$, arc capacities $u \in \mathbb{R}_{\geq 0}^{A}$, nodes $s, t \in V$.

Definition 7.1.

A flow in D is a vector $x \in \mathbb{R}_{\geq 0}^{A}$. Moreover, a flow x in D
ii obeys arc capacities and is called feasible, if $x_{a} \leq u_{a}$ for each $a \in A$;
Wif has excess ex $x_{x}(v):=x\left(\delta^{-}(v)\right)-x\left(\delta^{+}(v)\right)$ at node $v \in V$;
囲 satisfies flow conservation at node $v \in V$ if $\mathrm{ex}_{x}(v)=0$;
[v is a circulation if it satisfies flow conservation at each node $v \in V$;
v is an s - t-flow of value $\mathrm{ex}_{x}(t)$ if it satisfies flow conservation at each node $v \in V \backslash\{s, t\}$ and if $\mathrm{ex}_{x}(t) \geq 0$.

The maximum s - t-flow problem asks for a feasible s - t-flow in D of maximum value.

Example

$s-t$-Flows and $s-t$-Cuts
For a subset of nodes $U \subseteq V$, the excess of U is defined as

$$
\mathrm{ex}_{x}(U):=x\left(\delta^{-}(U)\right)-x\left(\delta^{+}(U)\right)
$$

Lemma 7.2.

For a flow x and a subset of nodes U it holds that $\mathrm{ex}_{x}(U)=\sum_{v \in U} \mathrm{ex}_{x}(v)$. In particular, the value of an s-t-flow x is equal to

$$
\mathrm{ex}_{x}(t)=-\mathrm{ex}_{x}(s)=\mathrm{ex}_{x}(U) \text { for each } U \subseteq V \backslash\{s\} \text { with } t \in U
$$

For $U \subseteq V \backslash\{s\}$ with $t \in U$, the subset of $\operatorname{arcs} \delta^{-}(U)$ is called an s-t-cut.

Lemma 7.3.

Let $U \subseteq V \backslash\{s\}$ with $t \in U$. The value of a feasible s - t-flow x is at most the capacity $u\left(\delta^{-}(U)\right)$ of the s-t-cut $\delta^{-}(U)$. Equality holds if and only if $x_{a}=u_{a}$ for each $a \in \delta^{-}(U)$ and $x_{a}=0$ for each $a \in \delta^{+}(U)$.

Residual Graph and Residual Arcs

For $a=(v, w) \in A$, let $a^{-1}:=(w, v)$ be the corresponding backward arc and $A^{-1}:=\left\{a^{-1} \mid a \in A\right\}$.

- For a feasible flow x, the set of residual arcs is given by

$$
A_{x}:=\left\{a \in A \mid x_{a}<u_{a}\right\} \cup\left\{a^{-1} \in A^{-1} \mid x_{a}>0\right\} .
$$

- For $a \in A$, define the residual capacity $u_{x}(a)$ as

$$
u_{x}(a):=u(a)-x(a) \quad \text { if } a \in A_{x}, \quad \text { and } \quad u_{x}\left(a^{-1}\right):=x(a) \quad \text { if } a^{-1} \in A_{x} .
$$

- The digraph $D_{x}:=\left(V, A_{x}\right)$ is called the residual graph of x.

x-augmenting paths

Observation:

- If x is a feasible flow in (D, u) and y a feasible flow in $\left(D_{x}, u_{x}\right)$, then

$$
z(a):=x(a)+y(a)-y\left(a^{-1}\right) \quad \text { for } a \in A
$$

yields a feasible flow z in D (we write $z:=x+y$ for short).

Lemma 7.4.

If x is a feasible s - t-flow such that D_{x} does not contain an s - t-dipath, then x is a maximum s - t-flow.

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).

The maximum s - t-flow value equals the minimum capacity of an s - t-cut.

Corollary.

A feasible s - t-flow x is maximum if and only if D_{x} does not contain an s - t-dipath.

Ford-Fulkerson Algorithm

ii set $x:=0$;
Iii while there is an s - t-dipath P in D_{x}
䧃 $\operatorname{set} x:=x+\delta \cdot \chi^{P}$ with $\delta:=\min \left\{u_{x}(a) \mid a \in P\right\}$;
Here, $\chi^{P}: A \rightarrow\{0,1,-1\}$ is the characteristic vector of dipath P defined by

$$
\chi^{P}(a)=\left\{\begin{array}{ll}
1 & \text { if } a \in P, \\
-1 & \text { if } a^{-1} \in P, \\
0 & \text { otherwise, }
\end{array} \quad \text { for all } a \in A .\right.
$$

Ford-Fulkerson Example

(a)
(b)
s
5
s
c
d
a
(b)
t
s
c
a
s)
(a)
(a)
b

Termination of the Ford-Fulkerson Algorithm

Theorem 7.6.

a If all capacities are rational, then the algorithm terminates with a maximum s-t-flow.
b If all capacities are integral, it finds an integral maximum s - t-flow.

When an arbitrary x-augmenting path is chosen in every iteration, the Ford-Fulkerson Algorithm can behave badly:

Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.

If all capacities are integral and the maximum flow value is $K<\infty$, then the Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is $O(m \cdot K)$ in this case.

Proof: In each iteration the flow value is increased by at least 1 .
A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:

- In each iteration, choose shortest s - t-dipath in D_{\times}(edge lengths=1)

Theorem 7.8.

The Edmonds-Karp Algorithm terminates after at most $n \cdot m$ iterations; its running time is $O\left(n \cdot m^{2}\right)$.

Remark: The Edmonds-Karp Algorithm can be implemented with running time $O\left(n^{2} \cdot m\right)$.

Arc-Based LP Formulation

Straightforward LP formulation of the maximum s-t-flow problem:

$$
\begin{array}{lll}
\max & \sum_{a \in \delta^{+}(s)} x_{a}-\sum_{a \in \delta^{-}(s)} x_{a} & \\
\text { s.t. } & \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=0 & \text { for all } v \in V \backslash\{s, t\} \\
& x_{a} \leq u(a) & \\
& x_{a} \geq 0 & \text { for all } a \in A \\
& \text { for all } a \in A
\end{array}
$$

Dual LP:

$$
\begin{array}{lll}
\min & \sum_{a \in A} u(a) \cdot z_{a} & \\
\text { s.t. } & y_{w}-y_{v}+z_{(v, w)} \geq 0 & \text { for all }(v, w) \in A \\
& y_{s}=1, \quad y_{t}=0 & \\
& z_{a} \geq 0 & \text { for all } a \in A
\end{array}
$$

Dual Solutions and s - t-Cuts

$$
\begin{array}{lll}
\min & \sum_{a \in A} u(a) \cdot z_{a} & \\
\text { s.t. } & y_{w}-y_{v}+z_{(v, w)} \geq 0 & \text { for all }(v, w) \in A \\
& y_{s}=1, \quad y_{t}=0 & \\
& z_{a} \geq 0 & \text { for all } a \in A
\end{array}
$$

Observation: An s-t-cut $\delta^{+}(U)$ (with $U \subseteq V \backslash\{t\}, s \in U$) yields feasible dual solution (y, z) of value $u\left(\delta^{+}(U)\right)$:

- let y be the characteristic vector χ^{U} of U
(i.e., $y_{v}=1$ for $v \in U, y_{v}=0$ for $v \in V \backslash U$)
- let z be the characteristic vector $\chi^{\delta^{+}(U)}$ of $\delta^{+}(U)$
(i. e., $z_{a}=1$ for $a \in \delta^{+}(U), z_{a}=0$ for $a \in A \backslash \delta^{+}(U)$)

Theorem 7.9.

There exists an s - t-cut $\delta^{+}(U)$ (with $U \subseteq V \backslash\{t\}, s \in U$) such that the corresponding dual solution (y, z) is an optimal dual solution.

Application: Kőnig's Theorem

Definition 7.10.

Consider an undirected graph $G=(V, E)$.
if A matching in G is a subset of edges $M \subseteq E$ with $e \cap e^{\prime}=\emptyset$ for all $e, e^{\prime} \in M$ with $e \neq e^{\prime}$.
团 A vertex cover is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Theorem 7.11.

In bipartite graphs, the maximum cardinality of a matching equals the minimum cardinality of a vertex cover.

Observation: In a bipartite graph $G=(P \cup \cup Q, E)$, a maximum cardinality matching can be found by a maximum flow computation.

