
Chapter 7:
Maximum Flow Problems

(cp. Cook, Cunningham, Pulleyblank & Schrijver, Chapter 3)
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Maximum s-t-Flow Problem
Given: Digraph D = (V ,A), arc capacities u ∈ RA

≥0, nodes s, t ∈ V .

Definition 7.1.
A flow in D is a vector x ∈ RA

≥0. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if xa ≤ ua for each a ∈ A;

ii has excess exx(v):= x(δ−(v))− x(δ+(v)) at node v ∈ V ;

iii satisfies flow conservation at node v ∈ V if exx(v) = 0;

iv is a circulation if it satisfies flow conservation at each node v ∈ V ;

v is an s-t-flow of value exx(t) if it satisfies flow conservation at each node
v ∈ V \ {s, t} and if exx(t) ≥ 0.

The maximum s-t-flow problem asks for a feasible s-t-flow in D of maximum value.
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s-t-Flows and s-t-Cuts
For a subset of nodes U ⊆ V , the excess of U is defined as

exx(U) := x(δ−(U))− x(δ+(U)) .

Lemma 7.2.
For a flow x and a subset of nodes U it holds that exx(U) =

∑
v∈U exx(v). In

particular, the value of an s-t-flow x is equal to

exx(t) = −exx(s) = exx(U) for each U ⊆ V \ {s} with t ∈ U.

For U ⊆ V \ {s} with t ∈ U, the subset of arcs δ−(U) is called an s-t-cut.

Lemma 7.3.
Let U ⊆ V \ {s} with t ∈ U. The value of a feasible s-t-flow x is at most the capacity
u(δ−(U)) of the s-t-cut δ−(U). Equality holds if and only if xa = ua for each
a ∈ δ−(U) and xa = 0 for each a ∈ δ+(U).
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Residual Graph and Residual Arcs
For a = (v ,w) ∈ A, let a−1 := (w , v) be the corresponding backward arc and
A−1 := {a−1 | a ∈ A}.
I For a feasible flow x , the set of residual arcs is given by

Ax := {a ∈ A | xa < ua} ∪ {a−1 ∈ A−1 | xa > 0} .

I For a ∈ A, define the residual capacity ux(a) as

ux(a) := u(a)− x(a) if a ∈ Ax , and ux(a
−1) := x(a) if a−1 ∈ Ax .

I The digraph Dx := (V ,Ax) is called the residual graph of x .
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x-augmenting paths
Observation:
I If x is a feasible flow in (D, u) and y a feasible flow in (Dx , ux), then

z(a) := x(a) + y(a)− y(a−1) for a ∈ A

yields a feasible flow z in D (we write z := x + y for short).

Lemma 7.4.
If x is a feasible s-t-flow such that Dx does not contain an s-t-dipath, then x is a
maximum s-t-flow.
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Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).
The maximum s-t-flow value equals the minimum capacity of an s-t-cut.

Corollary.
A feasible s-t-flow x is maximum if and only if Dx does not contain an s-t-dipath.

Ford-Fulkerson Algorithm
i set x := 0;
ii while there is an s-t-dipath P in Dx

iii set x := x + δ · χP with δ := min{ux(a) | a ∈ P};

Here, χP : A→ {0, 1,−1} is the characteristic vector of dipath P defined by

χP(a) =

1 if a ∈ P ,
−1 if a−1 ∈ P ,
0 otherwise,

for all a ∈ A.
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Ford-Fulkerson Example
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Termination of the Ford-Fulkerson Algorithm

Theorem 7.6.
a If all capacities are rational, then the algorithm terminates with a maximum

s-t-flow.
b If all capacities are integral, it finds an integral maximum s-t-flow.

When an arbitrary x-augmenting path is chosen in every iteration, the Ford-Fulkerson
Algorithm can behave badly:
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Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.
If all capacities are integral and the maximum flow value is K <∞, then the
Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is
O(m · K ) in this case.

Proof: In each iteration the flow value is increased by at least 1.

A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:
I In each iteration, choose shortest s-t-dipath in Dx (edge lengths=1)

Theorem 7.8.
The Edmonds-Karp Algorithm terminates after at most n ·m iterations; its running time
is O(n ·m2).

Remark: The Edmonds-Karp Algorithm can be implemented with running time
O(n2 ·m).
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Arc-Based LP Formulation
Straightforward LP formulation of the maximum s-t-flow problem:

max
∑

a∈δ+(s)

xa −
∑

a∈δ−(s)

xa

s.t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = 0 for all v ∈ V \ {s, t}

xa ≤ u(a) for all a ∈ A

xa ≥ 0 for all a ∈ A

Dual LP:

min
∑
a∈A

u(a) · za

s.t. yw − yv + z(v ,w) ≥ 0 for all (v ,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A
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Dual Solutions and s-t-Cuts

min
∑
a∈A

u(a) · za

s.t. yw − yv + z(v ,w) ≥ 0 for all (v ,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A

Observation: An s-t-cut δ+(U) (with U ⊆ V \ {t}, s ∈ U) yields feasible dual solution
(y , z) of value u(δ+(U)):
I let y be the characteristic vector χU of U

(i. e., yv = 1 for v ∈ U, yv = 0 for v ∈ V \ U)
I let z be the characteristic vector χδ

+(U) of δ+(U)
(i. e., za = 1 for a ∈ δ+(U), za = 0 for a ∈ A \ δ+(U))

Theorem 7.9.
There exists an s-t-cut δ+(U) (with U ⊆ V \ {t}, s ∈ U) such that the corresponding
dual solution (y , z) is an optimal dual solution.
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Application: Kőnig’s Theorem

Definition 7.10.
Consider an undirected graph G = (V ,E ).

i A matching in G is a subset of edges M ⊆ E with e ∩ e ′ = ∅ for all e, e ′ ∈ M with
e 6= e ′.

ii A vertex cover is a subset of nodes C ⊆ V with e ∩ C 6= ∅ for all e ∈ E .

Theorem 7.11.
In bipartite graphs, the maximum cardinality of a matching equals the minimum
cardinality of a vertex cover.

Observation: In a bipartite graph G = (P∪̇Q,E ), a maximum cardinality matching can
be found by a maximum flow computation.
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