
Chapter 7:
Maximum Flow Problems

(cp. Cook, Cunningham, Pulleyblank & Schrijver, Chapter 3)

189

Maximum s-t-Flow Problem
Given: Digraph D = (V ,A), arc capacities u ∈ RA

≥0, nodes s, t ∈ V .

Definition 7.1.
A flow in D is a vector x ∈ RA

≥0. Moreover, a flow x in D

i obeys arc capacities and is called feasible, if xa ≤ ua for each a ∈ A;

ii has excess exx(v):= x(δ−(v))− x(δ+(v)) at node v ∈ V ;

iii satisfies flow conservation at node v ∈ V if exx(v) = 0;

iv is a circulation if it satisfies flow conservation at each node v ∈ V ;

v is an s-t-flow of value exx(t) if it satisfies flow conservation at each node
v ∈ V \ {s, t} and if exx(t) ≥ 0.

The maximum s-t-flow problem asks for a feasible s-t-flow in D of maximum value.

190

Example

a b

s t

c d

6

11

2

7

11

8
6

17

3

191

s-t-Flows and s-t-Cuts
For a subset of nodes U ⊆ V , the excess of U is defined as

exx(U) := x(δ−(U))− x(δ+(U)) .

Lemma 7.2.
For a flow x and a subset of nodes U it holds that exx(U) =

∑
v∈U exx(v). In

particular, the value of an s-t-flow x is equal to

exx(t) = −exx(s) = exx(U) for each U ⊆ V \ {s} with t ∈ U.

For U ⊆ V \ {s} with t ∈ U, the subset of arcs δ−(U) is called an s-t-cut.

Lemma 7.3.
Let U ⊆ V \ {s} with t ∈ U. The value of a feasible s-t-flow x is at most the capacity
u(δ−(U)) of the s-t-cut δ−(U). Equality holds if and only if xa = ua for each
a ∈ δ−(U) and xa = 0 for each a ∈ δ+(U).

192

Residual Graph and Residual Arcs
For a = (v ,w) ∈ A, let a−1 := (w , v) be the corresponding backward arc and
A−1 := {a−1 | a ∈ A}.
I For a feasible flow x , the set of residual arcs is given by

Ax := {a ∈ A | xa < ua} ∪ {a−1 ∈ A−1 | xa > 0} .

I For a ∈ A, define the residual capacity ux(a) as

ux(a) := u(a)− x(a) if a ∈ Ax , and ux(a
−1) := x(a) if a−1 ∈ Ax .

I The digraph Dx := (V ,Ax) is called the residual graph of x .

a b

s t

c d

6

11

2

7

11

8
6

17

3

a b

s t

c d

6

11

2

7

11

8
6

17

3

193

x-augmenting paths
Observation:
I If x is a feasible flow in (D, u) and y a feasible flow in (Dx , ux), then

z(a) := x(a) + y(a)− y(a−1) for a ∈ A

yields a feasible flow z in D (we write z := x + y for short).

Lemma 7.4.
If x is a feasible s-t-flow such that Dx does not contain an s-t-dipath, then x is a
maximum s-t-flow.

194

Max-Flow Min-Cut Theorem and Ford-Fulkerson Algorithm

Theorem 7.5 (Max-Flow Min-Cut Theorem).
The maximum s-t-flow value equals the minimum capacity of an s-t-cut.

Corollary.
A feasible s-t-flow x is maximum if and only if Dx does not contain an s-t-dipath.

Ford-Fulkerson Algorithm
i set x := 0;
ii while there is an s-t-dipath P in Dx

iii set x := x + δ · χP with δ := min{ux(a) | a ∈ P};

Here, χP : A→ {0, 1,−1} is the characteristic vector of dipath P defined by

χP(a) =

1 if a ∈ P ,
−1 if a−1 ∈ P ,
0 otherwise,

for all a ∈ A.

195

Ford-Fulkerson Example
a b

s t

c d

6

11

2

7

11

8
6

17

3

a b

s t

c d

a b

s t

c d

a b

s t

c d

a b

s t

c d

a b

s t

c d 196

Termination of the Ford-Fulkerson Algorithm

Theorem 7.6.
a If all capacities are rational, then the algorithm terminates with a maximum

s-t-flow.
b If all capacities are integral, it finds an integral maximum s-t-flow.

When an arbitrary x-augmenting path is chosen in every iteration, the Ford-Fulkerson
Algorithm can behave badly:

s

v

w

t

10k

10k

1

10k

10k

197

Running Time of the Ford-Fulkerson Algorithm

Theorem 7.7.
If all capacities are integral and the maximum flow value is K <∞, then the
Ford-Fulkerson Algorithm terminates after at most K iterations. Its running time is
O(m · K) in this case.

Proof: In each iteration the flow value is increased by at least 1.

A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:
I In each iteration, choose shortest s-t-dipath in Dx (edge lengths=1)

Theorem 7.8.
The Edmonds-Karp Algorithm terminates after at most n ·m iterations; its running time
is O(n ·m2).

Remark: The Edmonds-Karp Algorithm can be implemented with running time
O(n2 ·m).

198

Arc-Based LP Formulation
Straightforward LP formulation of the maximum s-t-flow problem:

max
∑

a∈δ+(s)

xa −
∑

a∈δ−(s)

xa

s.t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = 0 for all v ∈ V \ {s, t}

xa ≤ u(a) for all a ∈ A

xa ≥ 0 for all a ∈ A

Dual LP:

min
∑
a∈A

u(a) · za

s.t. yw − yv + z(v ,w) ≥ 0 for all (v ,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A

199

Dual Solutions and s-t-Cuts

min
∑
a∈A

u(a) · za

s.t. yw − yv + z(v ,w) ≥ 0 for all (v ,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A

Observation: An s-t-cut δ+(U) (with U ⊆ V \ {t}, s ∈ U) yields feasible dual solution
(y , z) of value u(δ+(U)):
I let y be the characteristic vector χU of U

(i. e., yv = 1 for v ∈ U, yv = 0 for v ∈ V \ U)
I let z be the characteristic vector χδ

+(U) of δ+(U)
(i. e., za = 1 for a ∈ δ+(U), za = 0 for a ∈ A \ δ+(U))

Theorem 7.9.
There exists an s-t-cut δ+(U) (with U ⊆ V \ {t}, s ∈ U) such that the corresponding
dual solution (y , z) is an optimal dual solution.

200

Application: Kőnig’s Theorem

Definition 7.10.
Consider an undirected graph G = (V ,E).

i A matching in G is a subset of edges M ⊆ E with e ∩ e ′ = ∅ for all e, e ′ ∈ M with
e 6= e ′.

ii A vertex cover is a subset of nodes C ⊆ V with e ∩ C 6= ∅ for all e ∈ E .

Theorem 7.11.
In bipartite graphs, the maximum cardinality of a matching equals the minimum
cardinality of a vertex cover.

Observation: In a bipartite graph G = (P∪̇Q,E), a maximum cardinality matching can
be found by a maximum flow computation.

201

	Linear Programming Basics
	The Geometry of Linear Programming
	The Simplex Method
	Duality
	Applications of Linear Programming
	Optimisation in Finance

	Spanning Trees and Shortest Paths
	Maximum Flow Problems

