
COMP331/557

Chapter 4:
The Simplex Method

(Bertsimas & Tsitsiklis, Chapter 3)
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Linear Program in Standard Form
Throughout this chapter, we consider the following standard form problem:

minimize cT · x
subject to A · x = b

x ≥ 0

with A ∈ Rm×n, rank(A) = m, b ∈ Rm, and c ∈ Rn.

Recall:
I Let B = (AB(1), . . . ,AB(m)) be a basis matrix of A. Then B corresponds to the

basic solution x = (xB , xN)T , where xB = B−1b and xN = 0.
I x = (xB , xN)T is a basic feasible solution if xB ≥ 0.
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Main Idea of the Simplex Method

Idea
Change basis by exchanging one basic column with one non-basic column.

More precisely:
I Start with a basis B defining a system with basic feasible solution.
I Then proceed in iterations. In each iteration:

I select a nonbasic column j such that bringing j into the basis decreases (or at
least does not increase) the value of the objective function. Stop, if no such
column exists.

I select a basic column ` such that exchanging columns j and ` maintain a basis
with associated basic feasible solution

I update the corresponding system

Iterations are called pivot steps.
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Full Tableau Implementation: An Example
A simple linear programming problem:

min −10 x1 − 12 x2 − 12 x3
s.t. x1 + 2 x2 + 2 x3 ≤ 20

2 x1 + x2 + 2 x3 ≤ 20
2 x1 + 2 x2 + x3 ≤ 20

x1, x2, x3 ≥ 0
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Set of Feasible Solutions

A = (0, 0, 0)T

B = (0, 0, 10)T

C = (0, 10, 0)T

D = (10, 0, 0)T

E = (4, 4, 4)T
x1

x2

x3

A

B

C

D

E
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Introducing Slack Variables

min −10 x1 − 12 x2 − 12 x3
s.t. x1 + 2 x2 + 2 x3 ≤ 20

2 x1 + x2 + 2 x3 ≤ 20
2 x1 + 2 x2 + x3 ≤ 20

x1, x2, x3 ≥ 0

LP in standard form

min −10 x1 − 12 x2 − 12 x3
s.t. x1 + 2 x2 + 2 x3 + x4 = 20

2 x1 + x2 + 2 x3 + x5 = 20
2 x1 + 2 x2 + x3 + x6 = 20

x1, . . . , x6 ≥ 0

Observation
The right hand side of the system is non-negative. Therefore the point
(0, 0, 0, 20, 20, 20)T is a basic feasible solution and we can start the simplex method
with basis B(1) = 4,B(2) = 5,B(3) = 6.
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Setting Up the Simplex Tableau
min −10 x1 −12 x2 −12 x3
s.t. x1 +2 x2 +2 x3 +x4 = 20

2 x1 +x2 +2 x3 +x5 = 20
2 x1 +2 x2 +x3 +x6 = 20

x1, . . . , x6 ≥ 0

with basic feasible solution: x1 = x2 = x3 = 0︸ ︷︷ ︸
non-basic variables

, x4 = 20, x5 = 20, x6 = 20︸ ︷︷ ︸
basic variables

.

x1 x2 x3 x4 x5 x6
0 −10 −12 −12 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = 20 2 1 2 0 1 0
x6 = 20 2 2 1 0 0 1

Remark: Initialisation not always that easy. See next week.
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Pivoting

x1 x2 x3 x4 x5 x6

x1 ≤ xB(i)

ui

0 −10 −12 −12 0 0 0
x4 = 20 1 2 2 1 0 0

⇒ x1 ≤ 20

x5 = 20 2 1 2 0 1 0

⇒ x1 ≤ 10

x6 = 20 2 2 1 0 0 1

⇒ x1 ≤ 10

I Determine pivot column
I Which non-basic variable can we increase to improve objective value?

I E. g., smallest subscript rule: c̄1 < 0 and x1 enters the basis.

I Find pivot row. How large can we make x1 and stay feasible?

I Rows 2 and 3 both attain the minimum.
I Choose i = 2 with B(i) = 5. =⇒ x5 leaves the basis.

I Perform basis change: Eliminate other entries in the pivot column.

I Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)T with cost -100.
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Geometric Interpretation in the Original Polyhedron

A = (0, 0, 0)T

B = (0, 0, 10)T

C = (0, 10, 0)T

D = (10, 0, 0)T

E = (4, 4, 4)T
x1

x2

x3

AA

B

C

D

E

D
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New View of our Optimisation Problem

x1 x2 x3 x4 x5 x6
100 0 −7 −2 0 5 0

x4 = 10 0 1.5 1 1 −0.5 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 0 0 1 −1 0 −1 1

Corresponding Transformed LP

min −100 −7 x2 −2 x3 +5 x5
s.t. +1.5 x2 +x3 +x4 −0.5 x5 = 10

x1 +0.5 x2 +x3 +0.5 x5 = 10
+x2 −x3 −x5 +x6 = 0

x1, . . . , x6 ≥ 0

with basic feasible solution: x2 = x3 = x5 = 0︸ ︷︷ ︸
non-basic variables

, x4 = 10, x1 = 10, x6 = 0︸ ︷︷ ︸
basic variables

.
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Equivalence
Property: Transformed problem is exactly the same as original one.

Original LP:

min −10 x1 −12 x2 −12 x3
s.t. x1 +2 x2 +2 x3 +x4 = 20

2 x1 +x2 +2 x3 +x5 = 20
2 x1 +2 x2 +x3 +x6 = 20

x1, . . . , x6 ≥ 0

Update rule: x1 7→ 10− 0.5 x2 − x3 − 0.5 x5

Transformed LP

min −100 −7 x2 −2 x3 +5 x5
s.t. +1.5 x2 +x3 +x4 −0.5 x5 = 10

x1 +0.5 x2 +x3 +0.5 x5 = 10
+x2 −x3 −x5 +x6 = 0

x1, . . . , x6 ≥ 0
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Next Iterations

x1 x2 x3 x4 x5 x6

xB(i)

ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 10 1 0.5 1 0 0.5 0

10

x6 = 0 0 1 −1 0 −1 1

−

I c̄2, c̄3 < 0 =⇒ two possible choices for pivot column.

I Choose x3 to enter the new basis.

I u3 < 0 =⇒ third row cannot be chosen as pivot row.

I Choose x4 to leave basis.

I New basic feasible solution (0, 0, 10, 0, 0, 10)T with cost -120,
corresponding to point B in the original polyhedron.
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Next Iterations

x1 x2 x3 x4 x5 x6
xB(i)

ui
100 0 −7 −2 0 5 0

x4 = 10 0 1.5 1 1 −0.5 0 10
x1 = 10 1 0.5 1 0 0.5 0 10
x6 = 0 0 1 −1 0 −1 1 −

I c̄2, c̄3 < 0 =⇒ two possible choices for pivot column.

I Choose x3 to enter the new basis.

I u3 < 0 =⇒ third row cannot be chosen as pivot row.
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Next Iterations

x1 x2 x3 x4 x5 x6

xB(i)

ui

120 0 −4 0 2 4 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 10 1 0.5 1 0 0.5 0

10

x6 = 0 0 1 −1 0 −1 1

−

I c̄2, c̄3 < 0 =⇒ two possible choices for pivot column.

I Choose x3 to enter the new basis.

I u3 < 0 =⇒ third row cannot be chosen as pivot row.

I Choose x4 to leave basis.

I New basic feasible solution (0, 0, 10, 0, 0, 10)T with cost -120,
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Geometric Interpretation in the Original Polyhedron

A = (0, 0, 0)T

B = (0, 0, 10)T

C = (0, 10, 0)T

D = (10, 0, 0)T

E = (4, 4, 4)T
x1

x2

x3

A

B

C

D

E

D

B
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Next Iterations

x1 x2 x3 x4 x5 x6
xB(i)

ui
120 0 −4 0 2 4 0

x3 = 10 0 1.5 1 1 −0.5 0 20
3

x1 = 0 1 −1 0 −1 1 0 −
x6 = 10 0 2.5 0 1 −1.5 1 4

< 20
3

x2 enters the basis, x6 leaves it. We get

x1 x2 x3 x4 x5 x6
136 0 0 0 3.6 1.6 1.6

x3 = 4 0 0 1 0.4 0.4 −0.6
x1 = 4 1 0 0 −0.6 0.4 0.4
x2 = 4 0 1 0 0.4 −0.6 0.4

and the reduced costs are all non-negative.
Thus (4, 4, 4, 0, 0, 0) is an optimal solution with cost -136, corresponding to point
E = (4, 4, 4) in the original polyhedron. Why is this optimal?
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All Iterations from Geometric Point of View

A = (0, 0, 0)T

B = (0, 0, 10)T

C = (0, 10, 0)T

D = (10, 0, 0)T

E = (4, 4, 4)T
x1

x2

x3

AA

B

C

D

E
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All Iterations from Geometric Point of View
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D = (10, 0, 0)T

E = (4, 4, 4)T
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B
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D
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Cycling
Problem: If an LP is degenerate, the simplex method might end up in an infinite loop
(cycling).

Example:

x1 x2 x3 x4 x5 x6 x7
3 −3/4 20 −1/2 6 0 0 0

x5 = 0 1/4 −8 −1 9 1 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0
x7 = 1 0 0 1 0 0 0 1

Pivoting rules
I Column selection: let nonbasic variable with most negative reduced cost c̄j enter

the basis, i. e., steepest descent rule.
I Row selection: among basic variables that are eligible to exit the basis, select the

one with smallest subscript.
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Iteration 1
:

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui
3 −3/4 20 −1/2 6 0 0 0

x5 = 0 1/4 −8 −1 9 1 0 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x1 enters the basis x5 leaves.

Bases visited
(5, 6, 7)
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xB(i)

ui

3 −3/4 20 −1/2 6 0 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 1/2 −12 −1/2 3 0 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis x5 leaves.

Bases visited
(5, 6, 7)
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Iteration 1
:

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 1/2 −12 −1/2 3 0 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis x5 leaves.

Bases visited
(5, 6, 7)
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Iteration 1
:

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 1/2 −12 −1/2 3 0 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis x5 leaves.

Bases visited
(5, 6, 7)

91



Iteration 1
:

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 0 4 3/2 −15 −2 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis x5 leaves.

Bases visited
(5, 6, 7)
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Iteration 1
:

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 0 4 3/2 −15 −2 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis x5 leaves.

Bases visited
(5, 6, 7)

91



Iteration 1
:

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 0 4 3/2 −15 −2 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis x5 leaves.

Bases visited
(5, 6, 7)
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Iteration 1
:

x1 x2 x3 x4 x5 x6 x7

xB(i)

ui

3 0 −4 −7/2 33 3 0 0
x1 = 0 1 −32 −4 36 4 0 0

0

x6 = 0 0 4 3/2 −15 −2 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis x5 leaves.

Bases visited
(5, 6, 7)
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Iteration 2

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui
3 0 −4 −7/2 33 3 0 0

x1 = 0 1 −32 −4 36 4 0 0 −
x6 = 0 0 4 3/2 −15 −2 1 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x2 enters the basis x6 leaves.

Bases visited
(5, 6, 7) → (1, 6, 7)
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Iteration 3

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui
3 0 0 −2 18 1 1 0

x1 = 0 1 0 8 −84 −12 8 0 0
x2 = 0 0 1 3/8 −15/4 −1/2 1/4 0 0
x7 = 1 0 0 1 0 0 0 1 1

Basis change: x3 enters the basis x1 leaves.

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7)
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Iteration 4

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui
3 1/4 0 0 −3 −2 3 0

x3 = 0 1/8 0 1 −21/2 −3/2 1 0 −
x2 = 0 −3/64 1 0 3/16 1/16 −1/8 0 0
x7 = 1 −1/8 0 0 21/2 3/2 −1 1 2/21

Basis change: x4 enters the basis x2 leaves.

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7)
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Iteration 5

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui
3 −1/2 16 0 0 −1 1 0

x3 = 0 −5/2 56 1 0 2 −6 0 0
x4 = 0 −1/4 16/3 0 1 1/3 −2/3 0 0
x7 = 1 5/2 −56 0 0 −2 6 1 −

Basis change: x5 enters the basis x3 leaves.

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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Iteration 6

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui
3 −7/4 44 1/2 0 0 −2 0

x5 = 0 −5/4 28 1/2 0 1 −3 0 −
x4 = 0 1/6 −4 −1/6 1 0 1/3 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x6 enters the basis x4 leaves.

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)
→ (5, 4, 7)
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Back at the Beginning

x1 x2 x3 x4 x5 x6 x7
3 −3/4 20 −1/2 6 0 0 0

x5 = 0 1/4 −8 −1 9 1 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0
x7 = 1 0 0 1 0 0 0 1

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)
→ (5, 4, 7) → (5, 6, 7)

This is the same basis that we started with.

Conclusion
Continuing with the pivoting rules we agreed on at the beginning, the simplex method
will never terminate in this example.
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Anticycling – Bland’s Rule
We now discuss a pivoting rule that is guaranteed to avoid cycling:

Smallest subscript pivoting rule (Bland’s rule)
1 Choose the column Aj with c̄j < 0 and j minimal to enter the basis.

2 Among all basic variables xi that could exit the basis, select the one with smallest i .

Theorem (without proof)
The simplex algorithm with Bland’s rule does not cycle and thus terminates after a
finite number of iterations.
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Finding an Initial Basic Feasible Solution
So far we always assumed that the simplex algorithm starts with a basic feasible
solution. We now discuss how such a solution can be obtained.

I Introducing artificial variables

I The two-phase simplex method

I The big-M method
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Introducing Artificial Variables
Example:

min x1 + x2 + x3
s.t. x1 + 2 x2 + 3 x3 = 3

−x1 + 2 x2 + 6 x3 = 2
4 x2 + 9 x3 = 5

3 x3 + x4 = 1
x1, . . . , x4 ≥ 0

Auxiliary problem with artificial variables:

min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

−x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, . . . , x4, x5, . . . , x8 ≥ 0
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Auxiliary Problem
Auxiliary problem with artificial variables:

min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

−x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, . . . , x4, x5, . . . , x8 ≥ 0

Observation
x = (0, 0, 0, 0, 3, 2, 5, 1) is a basic feasible solution for this problem with basic variables
(x5, x6, x7, x8). We can form the initial tableau.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 1 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 1 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
−3 −1 −2 −3 0 0 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
−5 0 −4 −9 0 0 0 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
−10 0 −8 −18 0 0 0 0 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
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Initial Tableau

x1 x2 x3 x4 x5 x6 x7 x8
−11 0 −8 −21 −1 0 0 0 0

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

Now we can proceed as seen before...
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
−11 0 −8 −21 −1 0 0 0 0

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Basis change: x4 enters the basis, x8 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
−10 0 −8 −18 0 0 0 0 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x4 = 1 0 0 3 1 0 0 0 1

Basis change: x3 enters the basis, x4 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
−4 0 −8 0 6 0 0 0 7

x5 = 2 1 2 0 −1 1 0 0 −1
x6 = 0 −1 2 0 −2 0 1 0 −2
x7 = 2 0 4 0 −3 0 0 1 −3
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x2 enters the basis, x6 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
−4 −4 0 0 −2 0 4 0 −1

x5 = 2 2 0 0 1 1 −1 0 1
x2 = 0 −1/2 1 0 −1 0 1/2 0 −1
x7 = 2 2 0 0 1 0 −2 1 1
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x1 enters the basis, x5 exits.
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Minimizing the Auxiliary Problem

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 2 2 0 1

x1 = 1 1 0 0 1/2 1/2 −1/2 0 1/2
x2 = 1/2 0 1 0 −3/4 1/4 1/4 0 −3/4
x7 = 0 0 0 0 0 −1 −1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0

⇒ Also feasible for the original problem - but not (yet) basic.
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Obtaining a Basis for the Original Problem

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 2 2 0 1

x1 = 1 1 0 0 1/2 1/2 −1/2 0 1/2
x2 = 1/2 0 1 0 −3/4 1/4 1/4 0 −3/4
x7 = 0 0 0 0 0 −1 −1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Observation
Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.
→ We can remove the third row.
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Obtaining a Basis for the Original Problem

x1 x2 x3 x4
0 1 1 1 0

x1 = 1 1 0 0 1/2
x2 = 1/2 0 1 0 −3/4
x3 = 1/3 0 0 1 1/3

We finally obtain a basic feasible solution for the original problem.

Computing the reduced costs for this basis:
I Put original objective function in row 0.
I Compute reduced costs by eliminating the nonzero entries for the basic variables.

The simplex method (phase II) can now start with its typical iterations.

109



Obtaining a Basis for the Original Problem

x1 x2 x3 x4
−11/6 0 0 0 −1/12

x1 = 1 1 0 0 1/2
x2 = 1/2 0 1 0 −3/4
x3 = 1/3 0 0 1 1/3

We finally obtain a basic feasible solution for the original problem.

Computing the reduced costs for this basis:
I Put original objective function in row 0.
I Compute reduced costs by eliminating the nonzero entries for the basic variables.

The simplex method (phase II) can now start with its typical iterations.
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Omitting Artificial Variables

Auxiliary problem

min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

−x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, . . . , x8 ≥ 0

Artificial variable x8 could have been omitted by setting x4 to 1 in the initial basis. This
is possible as x4 does only appear in one constraint.

Generally, this can be done, e. g., with all slack variables that have nonnegative right
hand sides.
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Phase I of the Simplex Method
Given: LP in standard form: min{cT · x | A · x = b, x ≥ 0}

1 Transform problem such that b ≥ 0 (multiply constraints by −1).
2 Introduce artificial variables y1, . . . , ym and solve auxiliary problem

min
m∑

i=1

yi s.t. A · x + Im · y = b, x , y ≥ 0 .

3 If optimal cost is positive, then STOP (original LP is infeasible).

4 If no artificial variable is in final basis, eliminate artificial variables and columns and
STOP (feasible basis for original LP has been found).

5 If `th basic variable is artificial, find j ∈ {1, . . . , n} with `th entry in B−1 · Aj

nonzero. Use this entry as pivot element and replace `th basic variable with xj .

6 If no such j ∈ {1, . . . , n} exists, eliminate `th row (constraint).
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The Two-phase Simplex Method

Two-phase simplex method
1 Given an LP in standard from, first run phase I.

2 If phase I yields a basic feasible solution for the original LP, enter “phase II” (see
above).

Possible outcomes of the two-phase simplex method
i Problem is infeasible (detected in phase I).

ii Problem is feasible but rows of A are linearly dependent (detected and corrected at
the end of phase I by eliminating redundant constraints.)

iii Optimal cost is −∞ (detected in phase II).

iv Problem has optimal basic feasible solution (found in phase II).

Remark: (ii) is not an outcome but only an intermediate result leading to outcome (iii)
or (iv).
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Big-M Method
Alternative idea: Combine the two phases into one by introducing sufficiently large
penalty costs for artificial variables.

This way, the LP

min
∑n

i=1 ci xi
s.t. A · x = b

x ≥ 0

becomes:

min
∑n

i=1 ci xi + M ·∑m
j=1 yj

s.t. A · x + Im · y = b
x , y ≥ 0

Remark: If M is sufficiently large and the original program has a feasible solution, all
artificial variables will be driven to zero by the simplex method.
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How to Choose M?

Observation
Initially, M only occurs in the zeroth row. As the zeroth row never becomes pivot row,
this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced cost coefficients.

Order on cost coefficients
aM + b < c M + d :⇐⇒ (a < c) ∨ (a = c ∧ b < d)

In particular, −aM + b < 0 < aM + b for any positive a and arbitrary b, and we can
decide whether a cost coefficient is negative or not.

→ There is no need to give M a fixed numerical value.
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Example
Example:

min x1 + x2 + x3
s.t. x1 + 2 x2 + 3 x3 = 3

−x1 + 2 x2 + 6 x3 = 2
4 x2 + 9 x3 = 5

3 x3 + x4 = 1
x1, . . . , x4 ≥ 0
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Introducing Artificial Variables and M

Auxiliary problem:

min x1 +x2 +x3 +M x5 +M x6 +M x7
s.t. x1 +2 x2 +3 x3 x5 = 3

−x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 = 1
x1, . . . , x4, x5, x6, x7 ≥ 0

Note that this time the unnecessary artificial variable x8 has been omitted.

We start off with (x5, x6, x7, x4) = (3, 2, 5, 1).
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
0 1 1 1 0 M M M
3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
0 1 1 1 0 M M M
3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
−3M −M + 1 −2M + 1 −3M + 1 0 0 M M
3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
−5M 1 −4M + 1 −9M + 1 0 0 0 M
3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
−10M 1 −8M + 1 −18M + 1 0 0 0 0

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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Forming the Initial Tableau

x1 x2 x3 x4 x5 x6 x7
−10M 1 −8M + 1 −18M + 1 0 0 0 0

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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First Iteration

x1 x2 x3 x4 x5 x6 x7
−10M 1 −8M + 1 −18M + 1 0 0 0 0

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Reduced costs for x2 and x3 are negative.

Basis change: x3 enters the basis, x4 leaves.
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Second Iteration

x1 x2 x3 x4 x5 x6 x7
−4M − 1/3 1 −8M + 1 0 6M − 1/3 0 0 0

2 1 2 0 −1 1 0 0
0 −1 2 0 −2 0 1 0
2 0 4 0 −3 0 0 1

1/3 0 0 1 1/3 0 0 0

Basis change: x2 enters the basis, x6 leaves.
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Third Iteration

x1 x2 x3 x4 x5 x6 x7
−4M − 1/3 −4M + 3/2 0 0 −2M + 2/3 0 4M − 1/2 0

2 2 0 0 1 1 −1 0
0 −1/2 1 0 −1 0 1/2 0
2 2 0 0 1 0 −2 1

1/3 0 0 1 1/3 0 0 0

Basis change: x1 enters the basis, x5 leaves.

120



Fourth Iteration

x1 x2 x3 x4 x5 x6 x7
−11/6 0 0 0 −1/12 2M − 3/4 2M + 1/4 0
21 1 0 0 1/2 1/2 −1/2 0
1/2 0 1 0 −3/4 1/4 1/4 0
0 0 0 0 0 −1 −1 1

1/3 0 0 1 1/3 0 0 0

Note that all artificial variables have already been driven to 0.

Basis change: x4 enters the basis, x3 leaves.
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Fifth Iteration

x1 x2 x3 x4 x5 x6 x7
−7/4 0 0 1/4 0 2M − 3/4 2M + 1/4 0
1/2 1 0 −3/2 0 1/2 −1/2 0
5/4 0 1 9/4 0 1/4 1/4 0
0 0 0 0 0 −1 −1 1
1 0 0 3 1 0 0 0

We now have an optimal solution of the auxiliary problem, as all costs are nonnegative
(M presumed large enough).

By elimiating the third row as in the previous example, we get a basic feasible and also
optimal solution to the original problem.

122



Computational Efficiency of the Simplex Method

Observation
The computational efficiency of the simplex method is determined by

i the computational effort of each iteration;
ii the number of iterations.

Question: How many iterations are needed in the worst case?

Idea for negative answer (lower bound)
Describe
I a polyhedron with an exponential number of vertices;
I a path that visits all vertices and always moves from a vertex to an adjacent one

that has lower costs.
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Computational Efficiency of the Simplex Method

Unit cube
Consider the unit cube in Rn, defined by the constraints

0 ≤ xi ≤ 1, i = 1, . . . , n

The unit cube has
I 2n vertices;
I a spanning path, i. e., a path traveling the edges of the cube visiting each vertex

exactly once.

x1

x2

x1

x2

x3
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Computational Efficiency of the Simplex Method (cont.)

Klee-Minty cube
Consider a perturbation of the unit cube in Rn, defined by the constraints

0 ≤ x1 ≤ 1,
εxi−1 ≤ xi ≤ 1− εxi−1, i = 2, . . . , n

for some ε ∈ (0, 1/2).

x1

x2

x1

x2

x3
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Computational Efficiency of the Simplex Method (cont.)

Klee-Minty cube

0 ≤ x1 ≤ 1,
εxi−1 ≤ xi ≤ 1− εxi−1, i = 2, . . . , n, ε ∈ (0, 1/2)

Theorem 4.1.
Consider the linear programming problem of minimizing −xn subject to the constraints
above. Then,

a the feasible set has 2n vertices;
b the vertices can be ordered so that each one is adjacent to and has lower cost than

the previous one;
c there exists a pivoting rule under which the simplex method requires 2n − 1

changes of basis before it terminates.
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Diameter of Polyhedra

Definition 4.2.
I The distance d(x , y) between two vertices x , y is the minimum number of edges

required to reach y starting from x .

I The diameter D(P) of polyhedron P is the maximum d(x , y) over all pairs of
vertices (x , y).

I ∆(n,m) is the maximum D(P) over all polytopes in Rn that are represented in
terms of m inequality constraints.

I ∆u(n,m) is the maximum D(P) over all polyhedra in Rn that are represented in
terms of m inequality constraints.

∆(2,8) =
⌊8

2

⌋
= 4 ∆(2,8) =

⌊8
2

⌋
= 4

∆(2,m) =
⌊m

2

⌋∆u(2,8) = 8 − 2 = 6 ∆u(2,8) = 8 − 2 = 6

∆u(2,m) = m − 2
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Hirsch Conjecture
Observation: The diameter of the feasible set in a linear programming problem is a
lower bound on the number of steps required by the simplex method, no matter which
pivoting rule is being used.

Polynomial Hirsch Conjecture

∆(n,m) ≤ poly(m, n)

Remarks
I Known lower bounds: ∆u(n,m) ≥ m − n +

⌊
n
5

⌋

I Known upper bounds:

∆(n,m) ≤ ∆u(n,m) < m1+log2 n = (2n)log2 m

I The Strong Hirsch Conjecture

∆(n,m) ≤ m − n

was disproven in 2010 by Paco Santos for n = 43, m = 86.
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Average Case Behavior of the Simplex Method

I Despite the exponential lower bounds on the worst case behavior of the simplex
method (Klee-Minty cubes etc.), the simplex method usually behaves well in
practice.

I The number of iterations is “typically” O(m).

I There have been several attempts to explain this phenomenon from a more
theoretical point of view.

I These results say that “on average” the number of iterations is O(·) (usually
polynomial).

I One main difficulty is to come up with a meaningful and, at the same time,
manageable definition of the term “on average”.
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