
COMP331/557

Chapter 6:
Optimal Trees and Paths

(Cook, Cunningham, Pulleyblank & Schrijver, Chapter 2)
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Trees and Forests

Definition 6.1.
i An undirected graph having no circuit is called a forest.
ii A connected forest is called a tree.

Theorem 6.2.
Let G = (V ,E ) be an undirected graph on n = |V | nodes. Then, the following
statements are equivalent:

i G is a tree.
ii G has n − 1 edges and no circuit.
iii G has n − 1 edges and is connected.
iv G is connected. If an arbitrary edge is removed, the resulting subgraph is

disconnected.
v G has no circuit. Adding an arbitrary edge to G creates a circuit.
vi G contains a unique path between any pair of nodes.
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Kruskal’s Algorithm
Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V ,E ), cost function c : E → R.

Task: find spanning tree T = (V ,F ) of G with minimum cost
∑

e∈F c(e).

Kruskal’s Algorithm for MST
1 Sort the edges in E such that c(e1) ≤ c(e2) ≤ · · · ≤ c(em).
2 Set T := (V , ∅).
3 For i := 1 to m do:

If adding ei to T does not create a circuit, then add ei to T .
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Example for Kruskal’s Algorithm
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Prim’s Algorithm
Notation: For a graph G = (V ,E ) and A ⊆ V let

δ(A) := {e = {v ,w} ∈ E | v ∈ A and w ∈ V \ A} .

We call δ(A) the cut induced by A.

Prim’s Algorithm for MST
1 Set U := {r} for some node r ∈ V and F := ∅; set T := (U,F ).
2 While U 6= V , determine a minimum cost edge e ∈ δ(U).
3 Set F := F ∪ {e} and U := U ∪ {w} with e = {v ,w}, w ∈ V \ U.
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Example for Prim’s Algorithm
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Correctness of the MST Algorithms

Lemma 6.3.
A graph G = (V ,E ) is connected if and only if there is no set A ⊆ V , ∅ 6= A 6= V , with
δ(A) = ∅.

Notation: We say that B ⊆ E is extendible to an MST if B is contained in the edge-set
of some MST of G .

Theorem 6.4.
Let B ⊆ E be extendible to an MST and ∅ 6= A ( V with B ∩ δ(A) = ∅.
If e is a min-cost edge in δ(A), then B ∪ {e} is extendible to an MST.

I Correctness of Prim’s Algorithm immediately follows.
I Kruskal: Whenever an edge e = {v ,w} is added, it is cheapest edge in cut induced

by subset of nodes currently reachable from v .
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Efficiency of Prim’s Algorithm

Prim’s Algorithm for MST
1 Set U := {r} for some node r ∈ V and F := ∅; set T := (U,F ).
2 While U 6= V , determine a minimum cost edge e ∈ δ(U).
3 Set F := F ∪ {e} and U := U ∪ {w} with e = {v ,w}, w ∈ V \ U.

I Straightforward implementation achieves running time O(nm) where, as usual,
n := |V | and m := |E |:
I the while-loop has n − 1 iterations;
I a min-cost edge e ∈ δ(U) can be found in O(m) time.

I Best known running time is O(m + n log n) (uses Fibonacci heaps).
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Efficiency of Kruskal’s Algorithm

Kruskal’s Algorithm for MST
1 Sort the edges in E such that c(e1) ≤ c(e2) ≤ · · · ≤ c(em).
2 Set T := (V , ∅).
3 For i := 1 to m do:

If adding ei to T does not create a circuit, then add ei to T .

Theorem 6.5.
Kruskal’s Algorithm can be implemented to run in O(m logm) time.
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Minimum Spanning Trees and Linear Programming
Notation:
I For S ⊆ V let γ(S) :=

{
e = {v ,w} ∈ E | v ,w ∈ S

}
.

I For a vector x ∈ RE and a subset B ⊆ E let x(B) :=
∑

e∈B xe .

Consider the following integer linear program:

min cT · x
s.t. x(γ(S)) ≤ |S | − 1 for all ∅ 6= S ⊂ V (6.1)

x(E ) = |V | − 1 (6.2)
xe ∈ {0, 1} for all e ∈ E

Observations:
I Feasible solution x ∈ {0, 1}E is characteristic vector of subset F ⊆ E .
I F does not contain circuit due to (6.1) and n − 1 edges due to (6.2).
I Thus, F forms a spanning tree of G .
I Moreover, the edge set of an arbitrary spanning tree of G yields a feasible solution

x ∈ {0, 1}E .
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Minimum Spanning Trees and Linear Programming (cont.)
Consider LP relaxation of the integer programming formulation:

min cT · x
s.t. x(γ(S)) ≤ |S | − 1 for all ∅ 6= S ⊂ V

x(E ) = |V | − 1
xe ≥ 0 for all e ∈ E

Theorem 6.6.
Let x∗ ∈ {0, 1}E be the characteristic vector of an MST. Then x∗ is an optimal solution
to the LP above.

Corollary 6.7.
The vertices of the polytope given by the set of feasible LP solutions are exactly the
characteristic vectors of spanning trees of G . The polytope is thus the convex hull of
the characteristic vectors of all spanning trees.
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Shortest Path Problem
Given: digraph D = (V ,A), node r ∈ V , arc costs ca, a ∈ A.

Task: for each v ∈ V , find dipath from r to v of least cost (if one exists)
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Shortest Path Problem
Given: digraph D = (V ,A), node r ∈ V , arc costs ca, a ∈ A.

Task: for each v ∈ V , find dipath from r to v of least cost (if one exists)

r

d

b c

a e

f g

7

8
5

9

−3

6

4

6 8

−9

11

3

7

175



Shortest Path Problem
Given: digraph D = (V ,A), node r ∈ V , arc costs ca, a ∈ A.

Task: for each v ∈ V , find dipath from r to v of least cost (if one exists)

Remarks:
I Existence of r -v -dipath can be checked, e. g., by breadth-first search.
I Ensure existence of r -v -dipaths: add arcs (r , v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:
If yv , v ∈ V , is the least cost of a dipath from r to v , then

yv + c(v ,w) ≥ yw for all (v ,w) ∈ A. (6.3)

Remarks:
I More generally, subpaths of shortest paths are shortest paths!
I If there is a shortest r -v -dipath for all v ∈ V , then there is a shortest path tree,

i. e., a directed spanning tree T rooted at r such that the unique r -v -dipath in T is
a least-cost r -v -dipath in D.
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Feasible Potentials

Definition 6.8.
A vector y ∈ RV is a feasible potential if it satisfies (6.3).

Lemma 6.9.
If y is feasible potential with yr = 0 and P an r -v -dipath, then yv ≤ c(P).

Proof: Suppose that P is v0, a1, v1, . . . , ak , vk , where v0 = r and vk = v . Then,

c(P) =
k∑

i=1

cai ≥
k∑

i=1

(yvi − yvi−1) = yvk − yv0 = yv .

Corollary 6.10.
If y is a feasible potential with yr = 0 and P an r -v -dipath of cost yv , then P is a
least-cost r -v -dipath.
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Ford’s Algorithm

Ford’s Algorithm
i Set yr := 0, p(r) := r , yv :=∞, and p(v) := null, for all v ∈ V \ {r}.
ii While there is an arc a = (v ,w) ∈ A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

r

d

b c

a e

f g

7

8
5

9

−3

6

4

6 8

−9

11

3

7

178



Ford’s Algorithm

Ford’s Algorithm
i Set yr := 0, p(r) := r , yv :=∞, and p(v) := null, for all v ∈ V \ {r}.
ii While there is an arc a = (v ,w) ∈ A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

Question: Does the algorithm always terminate?

Example:
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Observation:
The algorithm does not terminate because of the negative-cost dicircuit.
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Validity of Ford’s Algorithm

Lemma 6.11.
If there is no negative-cost dicircuit, then at any stage of the algorithm:

a if yv 6=∞, then yv is the cost of some simple dipath from r to v ;
b if p(v) 6= null, then p defines a simple r -v -dipath of cost at most yv .

Theorem 6.12.
If there is no negative-cost dicircuit, then Ford’s Algorithm terminates after a finite
number of iterations. At termination, y is a feasible potential with yr = 0 and, for each
node v ∈ V , p defines a least-cost r -v -dipath.
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Feasible Potentials and Negative-Cost Dicircuits

Theorem 6.13.
A digraph D = (V ,A) with arc costs c ∈ RA has a feasible potential if and only if there
is no negative-cost dicircuit.

Remarks:
I If there is a dipath but no least-cost dipath from r to v , it is because there are

arbitrarily cheap nonsimple r -v -dipaths.
I Finding a least-cost simple dipath from r to v is, however, difficult (see later).

Lemma 6.14.
If c is integer-valued, C := 2maxa∈A |ca|+ 1, and there is no negative-cost dicircuit,
then Ford’s Algorithm terminates after at most C n2 iterations.

Proof: Exercise.
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Feasible Potentials and Linear Programming
As a consequence of Ford’s Algorithm we get:

Theorem 6.15.
Let D = (V ,A) be a digraph, r , s ∈ V , and c ∈ RA. If, for every v ∈ V , there exists a
least-cost dipath from r to v , then

min{c(P) | P an r -s-dipath} = max{ys − yr | y a feasible potential} .

Formulate the right-hand side as a linear program and consider the dual:

max ys − yr

s.t. yw − yv ≤ c(v ,w)

for all (v ,w) ∈ A

min cT · x

s.t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = bv ∀v ∈ V

xa ≥ 0 for all a ∈ A

with bs = 1, br = −1, and bv = 0 for all v 6∈ {r , s}.

Notice: The dual is the LP relaxation of an ILP formulation of the shortest r -s-dipath
problem (xa=̂ number of times a shortest r -s-dipath uses arc a).

182



Bases of Shortest Path LP
Consider again the dual LP:

min cT · x

s.t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = bv for all v ∈ V

xa ≥ 0 for all a ∈ A

The underlying matrix Q is the incidence matrix of D.

Lemma 6.16.
Let D = (V ,A) be a connected digraph and Q its incidence matrix. A subset of
columns of Q indexed by a subset of arcs F ⊆ A forms a basis of the linear subspace of
Rn spanned by the columns of Q if and only if F is the arc-set of a spanning tree of D.

Proof: Exercise.
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Refinement of Ford’s Algorithm

Ford’s Algorithm
i Set yr := 0, p(r) := r , yv :=∞, and p(v) := null, for all v ∈ V \ {r}.
ii While there is an arc a = (v ,w) ∈ A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

I # iterations crucially depends on order in which arcs are chosen.
I Suppose that arcs are chosen in order S = f1, f2, f3, . . . , f`.
I Dipath P is embedded in S if P ’s arc sequence is a subsequence of S.

Lemma 6.17.
If an r -v -dipath P is embedded in S, then yv ≤ c(P) after Ford’s Algorithm has gone
through the sequence S.

Goal: Find short sequence S such that, for all v ∈ V , a least-cost r -v -dipath is
embedded in S.
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Ford-Bellman Algorithm
Basic idea:
I Every simple dipath is embedded in S1,S2, . . . ,Sn−1 where, for all i , Si is an

ordering of A.
I This yields a shortest path algorithm with running time O(nm).

Ford-Bellman Algorithm
i initialize y , p (see Ford’s Algorithm);
ii for i = 1 to n − 1 do
iii for all a = (v ,w) ∈ A do
iv if yw > yv + c(v ,w), then set yw := yv + c(v ,w) and p(w) := v ;

Theorem 6.18.
The algorithm runs in O(nm) time. If, at termination, y is a feasible potential, then p
yields a least-cost r -v -dipath for each v ∈ V . Otherwise, the given digraph contains a
negative-cost dicircuit.
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Acyclic Digraphs and Topological Orderings

Definition 6.19.
Consider a digraph D = (V ,A).

a An ordering v1, v2, . . . , vn of V so that i < j for each (vi , vj) ∈ A is called a
topological ordering.

b If D has a topological ordering, then D is called acyclic.

Observations:
I Digraph D is acyclic if and only if it does not contain a dicircuit.
I Let D be acyclic and S an ordering of A such that (vi , vj) precedes (vk , v`) if

i < k . Then every dipath of D is embedded in S.

Theorem 6.20.
The shortest path problem on acyclic digraphs can be solved in time O(m).
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Dijkstra’s Algorithm
Consider the special case of nonnegative costs, i. e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y , p (see Ford’s Algorithm); set S := V ;
ii while S 6= ∅ do
iii choose v ∈ S with yv minimum and delete v from S ;
iv for each w ∈ V with (v ,w) ∈ A do
v if yw > yv + c(v ,w), then set yw := yv + c(v ,w) and p(w) := v ;

Example:
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Correctness of Dijkstra’s Algorithm

Lemma 6.21.
For each w ∈ V , let y ′w be the value of yw when w is removed from S .
If u is deleted from S before v , then y ′u ≤ y ′v .

Theorem 6.22.
If c ≥ 0, then Dijkstra’s Algorithm solves the shortest paths problem correctly in time
O(n2). A heap-based implementation yields running time O(m log n).

Remark: The for-loop in Dijkstra’s Algorithm (step iv) can be modified such that only
arcs (v ,w) with w ∈ S are considered.
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