
COMP331/557

Chapter 6:
Optimal Trees and Paths

(Cook, Cunningham, Pulleyblank & Schrijver, Chapter 2)

164

Trees and Forests

Definition 6.1.
i An undirected graph having no circuit is called a forest.
ii A connected forest is called a tree.

Theorem 6.2.
Let G = (V ,E) be an undirected graph on n = |V | nodes. Then, the following
statements are equivalent:

i G is a tree.
ii G has n − 1 edges and no circuit.
iii G has n − 1 edges and is connected.
iv G is connected. If an arbitrary edge is removed, the resulting subgraph is

disconnected.
v G has no circuit. Adding an arbitrary edge to G creates a circuit.
vi G contains a unique path between any pair of nodes.

165

Kruskal’s Algorithm
Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V ,E), cost function c : E → R.

Task: find spanning tree T = (V ,F) of G with minimum cost
∑

e∈F c(e).

Kruskal’s Algorithm for MST
1 Sort the edges in E such that c(e1) ≤ c(e2) ≤ · · · ≤ c(em).
2 Set T := (V , ∅).
3 For i := 1 to m do:

If adding ei to T does not create a circuit, then add ei to T .

166

Example for Kruskal’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

15

12

18

167

Prim’s Algorithm
Notation: For a graph G = (V ,E) and A ⊆ V let

δ(A) := {e = {v ,w} ∈ E | v ∈ A and w ∈ V \ A} .

We call δ(A) the cut induced by A.

Prim’s Algorithm for MST
1 Set U := {r} for some node r ∈ V and F := ∅; set T := (U,F).
2 While U 6= V , determine a minimum cost edge e ∈ δ(U).
3 Set F := F ∪ {e} and U := U ∪ {w} with e = {v ,w}, w ∈ V \ U.

168

Example for Prim’s Algorithm

a

b

d

f

g

h

k

16

22

29

20

31

28 32

23

35 25

15

12

18

169

Correctness of the MST Algorithms

Lemma 6.3.
A graph G = (V ,E) is connected if and only if there is no set A ⊆ V , ∅ 6= A 6= V , with
δ(A) = ∅.

Notation: We say that B ⊆ E is extendible to an MST if B is contained in the edge-set
of some MST of G .

Theorem 6.4.
Let B ⊆ E be extendible to an MST and ∅ 6= A (V with B ∩ δ(A) = ∅.
If e is a min-cost edge in δ(A), then B ∪ {e} is extendible to an MST.

I Correctness of Prim’s Algorithm immediately follows.
I Kruskal: Whenever an edge e = {v ,w} is added, it is cheapest edge in cut induced

by subset of nodes currently reachable from v .

170

Efficiency of Prim’s Algorithm

Prim’s Algorithm for MST
1 Set U := {r} for some node r ∈ V and F := ∅; set T := (U,F).
2 While U 6= V , determine a minimum cost edge e ∈ δ(U).
3 Set F := F ∪ {e} and U := U ∪ {w} with e = {v ,w}, w ∈ V \ U.

I Straightforward implementation achieves running time O(nm) where, as usual,
n := |V | and m := |E |:
I the while-loop has n − 1 iterations;
I a min-cost edge e ∈ δ(U) can be found in O(m) time.

I Best known running time is O(m + n log n) (uses Fibonacci heaps).

171

Efficiency of Kruskal’s Algorithm

Kruskal’s Algorithm for MST
1 Sort the edges in E such that c(e1) ≤ c(e2) ≤ · · · ≤ c(em).
2 Set T := (V , ∅).
3 For i := 1 to m do:

If adding ei to T does not create a circuit, then add ei to T .

Theorem 6.5.
Kruskal’s Algorithm can be implemented to run in O(m logm) time.

172

Minimum Spanning Trees and Linear Programming
Notation:
I For S ⊆ V let γ(S) :=

{
e = {v ,w} ∈ E | v ,w ∈ S

}
.

I For a vector x ∈ RE and a subset B ⊆ E let x(B) :=
∑

e∈B xe .

Consider the following integer linear program:

min cT · x
s.t. x(γ(S)) ≤ |S | − 1 for all ∅ 6= S ⊂ V (6.1)

x(E) = |V | − 1 (6.2)
xe ∈ {0, 1} for all e ∈ E

Observations:
I Feasible solution x ∈ {0, 1}E is characteristic vector of subset F ⊆ E .
I F does not contain circuit due to (6.1) and n − 1 edges due to (6.2).
I Thus, F forms a spanning tree of G .
I Moreover, the edge set of an arbitrary spanning tree of G yields a feasible solution

x ∈ {0, 1}E .
173

Minimum Spanning Trees and Linear Programming (cont.)
Consider LP relaxation of the integer programming formulation:

min cT · x
s.t. x(γ(S)) ≤ |S | − 1 for all ∅ 6= S ⊂ V

x(E) = |V | − 1
xe ≥ 0 for all e ∈ E

Theorem 6.6.
Let x∗ ∈ {0, 1}E be the characteristic vector of an MST. Then x∗ is an optimal solution
to the LP above.

Corollary 6.7.
The vertices of the polytope given by the set of feasible LP solutions are exactly the
characteristic vectors of spanning trees of G . The polytope is thus the convex hull of
the characteristic vectors of all spanning trees.

174

Shortest Path Problem
Given: digraph D = (V ,A), node r ∈ V , arc costs ca, a ∈ A.

Task: for each v ∈ V , find dipath from r to v of least cost (if one exists)

r

d

b c

a e

f g

7

8
5

9

−3

6

4

6 8

−9

11

3

7

175

Shortest Path Problem
Given: digraph D = (V ,A), node r ∈ V , arc costs ca, a ∈ A.

Task: for each v ∈ V , find dipath from r to v of least cost (if one exists)

r

d

b c

a e

f g

7

8
5

9

−3

6

4

6 8

−9

11

3

7

175

Shortest Path Problem
Given: digraph D = (V ,A), node r ∈ V , arc costs ca, a ∈ A.

Task: for each v ∈ V , find dipath from r to v of least cost (if one exists)

Remarks:
I Existence of r -v -dipath can be checked, e. g., by breadth-first search.
I Ensure existence of r -v -dipaths: add arcs (r , v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem:
If yv , v ∈ V , is the least cost of a dipath from r to v , then

yv + c(v ,w) ≥ yw for all (v ,w) ∈ A. (6.3)

Remarks:
I More generally, subpaths of shortest paths are shortest paths!
I If there is a shortest r -v -dipath for all v ∈ V , then there is a shortest path tree,

i. e., a directed spanning tree T rooted at r such that the unique r -v -dipath in T is
a least-cost r -v -dipath in D.

176

Feasible Potentials

Definition 6.8.
A vector y ∈ RV is a feasible potential if it satisfies (6.3).

Lemma 6.9.
If y is feasible potential with yr = 0 and P an r -v -dipath, then yv ≤ c(P).

Proof: Suppose that P is v0, a1, v1, . . . , ak , vk , where v0 = r and vk = v . Then,

c(P) =
k∑

i=1

cai ≥
k∑

i=1

(yvi − yvi−1) = yvk − yv0 = yv .

Corollary 6.10.
If y is a feasible potential with yr = 0 and P an r -v -dipath of cost yv , then P is a
least-cost r -v -dipath.

177

Ford’s Algorithm

Ford’s Algorithm
i Set yr := 0, p(r) := r , yv :=∞, and p(v) := null, for all v ∈ V \ {r}.
ii While there is an arc a = (v ,w) ∈ A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

r

d

b c

a e

f g

7

8
5

9

−3

6

4

6 8

−9

11

3

7

178

Ford’s Algorithm

Ford’s Algorithm
i Set yr := 0, p(r) := r , yv :=∞, and p(v) := null, for all v ∈ V \ {r}.
ii While there is an arc a = (v ,w) ∈ A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

Question: Does the algorithm always terminate?

Example:

r

a

d

b

2 1

−3

1

Observation:
The algorithm does not terminate because of the negative-cost dicircuit.

179

Validity of Ford’s Algorithm

Lemma 6.11.
If there is no negative-cost dicircuit, then at any stage of the algorithm:

a if yv 6=∞, then yv is the cost of some simple dipath from r to v ;
b if p(v) 6= null, then p defines a simple r -v -dipath of cost at most yv .

Theorem 6.12.
If there is no negative-cost dicircuit, then Ford’s Algorithm terminates after a finite
number of iterations. At termination, y is a feasible potential with yr = 0 and, for each
node v ∈ V , p defines a least-cost r -v -dipath.

180

Feasible Potentials and Negative-Cost Dicircuits

Theorem 6.13.
A digraph D = (V ,A) with arc costs c ∈ RA has a feasible potential if and only if there
is no negative-cost dicircuit.

Remarks:
I If there is a dipath but no least-cost dipath from r to v , it is because there are

arbitrarily cheap nonsimple r -v -dipaths.
I Finding a least-cost simple dipath from r to v is, however, difficult (see later).

Lemma 6.14.
If c is integer-valued, C := 2maxa∈A |ca|+ 1, and there is no negative-cost dicircuit,
then Ford’s Algorithm terminates after at most C n2 iterations.

Proof: Exercise.

181

Feasible Potentials and Linear Programming
As a consequence of Ford’s Algorithm we get:

Theorem 6.15.
Let D = (V ,A) be a digraph, r , s ∈ V , and c ∈ RA. If, for every v ∈ V , there exists a
least-cost dipath from r to v , then

min{c(P) | P an r -s-dipath} = max{ys − yr | y a feasible potential} .

Formulate the right-hand side as a linear program and consider the dual:

max ys − yr

s.t. yw − yv ≤ c(v ,w)

for all (v ,w) ∈ A

min cT · x

s.t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = bv ∀v ∈ V

xa ≥ 0 for all a ∈ A

with bs = 1, br = −1, and bv = 0 for all v 6∈ {r , s}.

Notice: The dual is the LP relaxation of an ILP formulation of the shortest r -s-dipath
problem (xa=̂ number of times a shortest r -s-dipath uses arc a).

182

Bases of Shortest Path LP
Consider again the dual LP:

min cT · x

s.t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = bv for all v ∈ V

xa ≥ 0 for all a ∈ A

The underlying matrix Q is the incidence matrix of D.

Lemma 6.16.
Let D = (V ,A) be a connected digraph and Q its incidence matrix. A subset of
columns of Q indexed by a subset of arcs F ⊆ A forms a basis of the linear subspace of
Rn spanned by the columns of Q if and only if F is the arc-set of a spanning tree of D.

Proof: Exercise.

183

Refinement of Ford’s Algorithm

Ford’s Algorithm
i Set yr := 0, p(r) := r , yv :=∞, and p(v) := null, for all v ∈ V \ {r}.
ii While there is an arc a = (v ,w) ∈ A with yw > yv + c(v ,w), set

yw := yv + c(v ,w) and p(w) := v .

I # iterations crucially depends on order in which arcs are chosen.
I Suppose that arcs are chosen in order S = f1, f2, f3, . . . , f`.
I Dipath P is embedded in S if P ’s arc sequence is a subsequence of S.

Lemma 6.17.
If an r -v -dipath P is embedded in S, then yv ≤ c(P) after Ford’s Algorithm has gone
through the sequence S.

Goal: Find short sequence S such that, for all v ∈ V , a least-cost r -v -dipath is
embedded in S.

184

Ford-Bellman Algorithm
Basic idea:
I Every simple dipath is embedded in S1,S2, . . . ,Sn−1 where, for all i , Si is an

ordering of A.
I This yields a shortest path algorithm with running time O(nm).

Ford-Bellman Algorithm
i initialize y , p (see Ford’s Algorithm);
ii for i = 1 to n − 1 do
iii for all a = (v ,w) ∈ A do
iv if yw > yv + c(v ,w), then set yw := yv + c(v ,w) and p(w) := v ;

Theorem 6.18.
The algorithm runs in O(nm) time. If, at termination, y is a feasible potential, then p
yields a least-cost r -v -dipath for each v ∈ V . Otherwise, the given digraph contains a
negative-cost dicircuit.

185

Acyclic Digraphs and Topological Orderings

Definition 6.19.
Consider a digraph D = (V ,A).

a An ordering v1, v2, . . . , vn of V so that i < j for each (vi , vj) ∈ A is called a
topological ordering.

b If D has a topological ordering, then D is called acyclic.

Observations:
I Digraph D is acyclic if and only if it does not contain a dicircuit.
I Let D be acyclic and S an ordering of A such that (vi , vj) precedes (vk , v`) if

i < k . Then every dipath of D is embedded in S.

Theorem 6.20.
The shortest path problem on acyclic digraphs can be solved in time O(m).

186

Dijkstra’s Algorithm
Consider the special case of nonnegative costs, i. e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y , p (see Ford’s Algorithm); set S := V ;
ii while S 6= ∅ do
iii choose v ∈ S with yv minimum and delete v from S ;
iv for each w ∈ V with (v ,w) ∈ A do
v if yw > yv + c(v ,w), then set yw := yv + c(v ,w) and p(w) := v ;

Example:

r

a

b

p

q

2

4

1

3

2

2 4

3

r

a p

b q

2 ∞

0

2

4

3

6

187

Correctness of Dijkstra’s Algorithm

Lemma 6.21.
For each w ∈ V , let y ′w be the value of yw when w is removed from S .
If u is deleted from S before v , then y ′u ≤ y ′v .

Theorem 6.22.
If c ≥ 0, then Dijkstra’s Algorithm solves the shortest paths problem correctly in time
O(n2). A heap-based implementation yields running time O(m log n).

Remark: The for-loop in Dijkstra’s Algorithm (step iv) can be modified such that only
arcs (v ,w) with w ∈ S are considered.

188

	Linear Programming Basics
	The Geometry of Linear Programming
	The Simplex Method
	Duality
	Applications of Linear Programming
	Optimisation in Finance

	Spanning Trees and Shortest Paths

