Challenge Problems for Inductive Theorem Proversv1.0

Louise A. DennisJeremy Govand Carsten Sirmanfri
May 4, 2007

Abstract

Within the field of inductive theorem proving it is hard to assess claims fostiperiority of any given system
since there is naturally a tendency to report “successes” — difficulbaltenging problems automatically proved.
There is also a desire within the community to develop a store of shareddagmabout the challenges that face the
automation of proof by mathematical induction.

A group of researchers within the community agreed that they would atctorward a number of “Challenge
Problems”. These should present interesting challenges to the autorofiimuctive proof or illustrate important
features which an inductive prover should be able to handle.

This technical report represent the current state of this challentéeprcset.

Inductive Theorem proving is a small field. The main theorewovers within this field are Ngthm [2] (now re-
engineered as ACL2 [6]), INKA [1], th€lam series [4, 8] and RRL [5]. Twelf [7] also looks at the autoroatbf
inductive proof in the context of logical frameworks. Withihe field it is hard to assess claims for the superiority
of any given system since there is naturally a tendency tortéguccesses” — difficult or challenging problems
automatically proved. There is also a desire within the comity to develop a store of shared knowledge about the
challenges that face the automation of proof by mathematidaction.

TPTP (Thousands of Problems for Theorem Provers) [10] israrly of test problems for first-order ATP systems.
They provide the ATP community with a comprehensive libremynplete with unambiguous names and references.
All the problems are stated in a standardised formulaticiirstforder logic and are widely used to benchmark first-
order systems. They are also used as the test set for the Cé8gettion [9] which compares such systems. One
of the benefits of the TPTP library to the ATP community is thistence of a common set of problems by which
comparisons can be made.

It is not practical for inductive theorem provers to folloletpattern of the TPTP library. Various attempts have
been made to build a similar corpus of problems requiringiétiste reasoning. The most mature of these was based
on the Boyer-Moore [2] corpds This corpus was unpopular partly because there was riepetiithin the problem
set and partly because many problems depended on a fewytarfienction definitions. But the major objection was
that inductive theorem provers use a number of differeritlkggome of which are typed and some of which are not,
which made it difficult to agree on a standard format. The ds#her logics also raised translation issues and a fully
automated process for converting the theorems, even inhgi@ed typed language was never produced.

A group of researchers within the commusiggreed that instead of a large set of benchmarks in a statudacd
they would each put forward a number of “Challenge Problerisiese should present interesting challenges to the
automation of inductive proof or illustrate important feegts which an inductive prover should be able to handle. A set
of these problems would be collected which would remain ceffitly small that an individual could represent them
within their own theorem proving system as they saw fit.

This technical report represent the current state of thadl@hge problem set.

*University of Liverpool, Department of Computer Science,hrgcal Report, ULCS-007-004

T Department of Computer Science, The University of Liverpool

fUCL Interaction Centre (UCLIC), University College London

$Department of Theoretical Computer Science, IT Universit¢openhagen

1This has become known as the Dmac corpus after David McAlladtertranslated a fragment of the NQTHM corpus into a simpleglage.
2At the 2000 CADE Workshop on the Automation of Proof by Matheoatnduction.



Standard Notation

Logic
T True
i False
- negation
Y or
A and
— implication

Natural Numbers

s successor
+ addition
* multiplication
xY exponentiation
even true if number is even (defined without using mutual recursiith odd)
nJx nth root (inverse of exponentiation)
% quotient (result of dividing: by y rounded down to nearest natural)
x mod y the remainder of divided byy
< less than
< less than or equal to

Lists
(] empty list
s cons
length(l) length of list!
1 <> 1 append of lists]; andl,
x el list membership
hd(1) head of list
ti(1) tail of list
map(f,1) a function ,f, applied to all elements
take(n,l) the firstn elements ot
drop(n,1) a list with the firstn elements removed

The Challenges

1 IWCO001la: First Order Version of the Arithmetic/Geometric Mean

1.1 Summary

e Unusual Induction Scheme.

e Needs Lemmas and

e Presents challenges

extra functions.

to Rippling [3].

e Goal is not equational.

1.2 Definitions

sum (first order)

YL =0 (1)
>N = 0 (2)
YMHT = H+2YT ©)



prod (first order)

n’r = 1 4)
vy = 1 (5)
m*MH T = H+«II'T (6)
1.3 Theorem
Vn,a.n = length(a) — n™ «I"a < (X"a)" @)

1.4 Comments

The main challenge here is finding the appropriate inducreme. One possible schemes involves two base cases
(0 and 1) and two step caseB(n) — P(2.n)) and(P(s(n)) — P(n)). However the step cases require a number of
lemmas (including the introduction of a new functions). Tesv functions are called here oddlist, evenlist, sumlist,
timeslist, ctimeslist, explist and are for respectivelytigg a list of the odd numbered elements of a list, the even
numbered elements of a list, pairwise summation of all teenehts of two lists, pairwise multiplication of two list,
multiply every element of a list by a constant and raisinggeéement of a list by a given exponent.

oddlist
oddlist([]) = ] ®)
oddlist(H :: [|) = H =] 9
oddlist(Hy :: Hy : T) = Hy :: oddlist(T) (20)
evenlist:
evenlist([]) = || (11)
evenlist(H :: []) = | (12)
evenlist(Hy :: Ho 2 T)) = Hy :: evenlist(T) (13)
sumlist:
sumlist([],L) = L (14)
sumlist(L,[]) = L (15)
sumlist(Hy :: Ty, Hy : To) = (Hy + Ha2) :: sumlist(T1,T5) (16)
timeslist:
timeslist([],L) = L a7
timeslist(L,[]) = L (18)
timeslist(Hy :: Th, Ho :: To) = (Hy x Hy) :: timeslist(Ty,Tz) (19)
ctimeslist:
ctimeslist(M,[]) = ] (20)
ctimeslist(M,H ::T) = (M H) :: ctimeslist(M,T) (21)
explist:
explist([[, M) = ] (22)
explist(H = T,M) = (HM) :: explist(T, M) (23)



Lemmas used in a sample proof are:

(zy)?

(2y)>

" ctimeslist(z, 1)
2"

%"

zY%

({,m)
(t,m)

sumlist(l, ctimeslist(n,l))

II"explist

X" sumlist

Y"ctimeslist(m, 1)
rz < Y

—

oy
y(z2)

"1™

X" sumlist(oddlist(l), evenlist(l))
" prodlist(oddlist(l), evenlist(l))
(a7)?

amym

XM+ X"m

ctimeslist(s(n),1)

mX"]

z<y

zx”

Even with these lemmas the rewriting involved presentsra¢eballenges to rippling (e.g. sinks need to be proved
equal) and rippling has to take place in the induction hypsithfor the second step case.

1.5 Source

T. Walsh,The Arithmetic/Geometric Mean Theorgfdinburgh MRG Group Blue Book Note 828.

2 IWCO001b: Arithmetic/Geometric Mean

2.1 Summary
Higher Order.

Unusual Induction Scheme.

Extra lemmas required.

Challenges Rippling.

Goal is not equational.

2.2 Definitions

sum
YOF
g

prod
m°r
Y F

F(0) (24)
F(s(Y)+32YF (25)
F(0) (26)
F(s(Y)) IV F (27)



2.3 Theorem
Y"a
n

Vn,a. [I"a < ( " (28)

2.4 Comments

This is essentially the same theorem as IWCO001c but refotediknd using a different step case in a way that makes
the proof easier. Reformulation is attributed to Shankar.

There are at least two possible induction schemes that casdakfor this proof. One with the step caé&gn) —
P(2n)) and(P(n) — P(2n — 1)) and(¥m.(m < n) — P(m)) — P(n)) with a casesplit on odd and even numbers
in the step case. The discussion here is based upon a pragfthsifirst of these.

It needs several lemmas (some given below)

Yf o= Ef XN f(n + i)
" f = I"fI"Ni.f(n+ 1)
1

Yyz Y
Tty _ r.Y

z z z

@"=y) = (z=("Vv)
Even with these lemmas the rewriting involved presentsrateballenges to rippling (e.g. the “odd” step case
does not appear to make use of the annotations).

2.5 Source
A. Bundy, Shankar’s Arithmetic/Geometric Mean Pro&dinburgh MRG Group Blue Book Note 951.

3 IWCO001c: Arithmetic/Geometric Mean

3.1 Summary
e Higher Order.
e Unusual Induction Scheme.
e Extra lemmas required.
e Challenges Rippling.

e Goalis not equational.

sum
YYF = F(0) (29)
2 YE = F(s(Y))+xYF (30)
prod
°F = F(0) (31)
Y E = F(s(Y)«II'F (32)



3.2 Theorem
Vn,a.n™ x I"a < (X"a)" (33)

3.3 Comments

There are at least two possible induction schemes that casdukfor this proof. One with the step cagé¥n) —
P(2n)) and(P(s(n)) — P(n)) and¥m.(m < n) — P(m) — P(n) called variously course of values induction,
strong induction and other names. The discussion here ézlhgmon a proof using the first of these.

It needs several lemmas (given below)

(xzy)* = a7y°
(zy)z = y(z2)
m"Nexf(i) = o"I"f
f o= XUNLf(2i — 1) + f(20)
"f = T"N.f(2i — 1)+ f(26)
P = (V)
S+ = SUALf() + g(i)
St f(i) = aX"f

zz<zy — 2<y
(34)

Even with these lemmas the rewriting involved presentsragehallenges to rippling (e.g. sinks need to be proved
equal) and rippling has to take place in the induction hygsithfor the second step case.

3.4 Source
A. Bundy, An Analysis of the Arithmetic/Geometric Mean TheoEinburgh MRG Group Blue Book Note 524.

4 |WCO002: Even Length Append

4.1 Summary

e Needs induction scheme on two variable.

e Needs a lemma.

4.2 Theorem
Vi, y.even(length(X <>Y)) = even(length(Y <> X)) (35)

4.3 Comments

Its the (non-mutually recursive) definition of even thatuiegs a non-straigtforward induction scheme.
A lemma is also required (along the lines of)

length(X <> Y1 = (Y2 1Y) = s(s(length(Y <> X)))



4.4 Source

Andrew Ireland

5 IWCO003: Case Analysis

5.1 Summary
e Requires Case Analysis

¢ Not an equality theorem

5.2 Theorem:
Voe,2. X eY - X e (Y <> 2) (36)

5.3 Comments

This is here becausgClamis no good at case splits. I'm not sure if this is a problemipaldr to A\Clamor a more
general problem.

5.4 Source

Andrew Ireland

6 IWCO00O4a: Rotate Length
6.1 Summary

e Requires a Generalisation.

e Needs lemmas.

6.2 Definitions

rotate

rotate(0,2) = Z 37)
rotate(s(N),[]) = || (38)
rotate(s(N),Y :: Z) = rotate(X,Z <> (Y 1 ]])) (39)

Allowed Lemmas
(X<>Y)<>Z = X<>({Y<>2) (40)
(X<>{:u]))<>Z = X<>(Y:2) (42)

6.3 Theorem
V. rotate(length(X), X) = X (42)



6.4 Comments

A generalisation step is required. One of these would beattsform the theorem into IWC004b.

6.5 Source

Andrew Ireland

7 IWCO004b: Rotate Length

7.1 Summary

e Lemmas Required

7.2 Definitions

rotate
rotate(0,72) = Z (43)
rotate(s(N),[]) = [ (44)
rotate(s(N),Y = Z) = rotate(X,Z <> (Y ::[])) (45)
7.3 Theorem
Va,y. rotate(length(X), X <>Y) =Y <> X (46)
7.4 Comments
Needs lemmas:
(X<>Y)<>Z = X<>({Y<>2) 47)
X<>:u]])<>Z = X<>(Y:2) (48)
7.5 Source
Andrew Ireland
8 IWCO005a: Binomial Theorems
8.1 Summary
e Non Trivial Lemmas needed
8.2 Definitions
choose
choose(X,0) = s(0) (49)
choose(0,s(Y)) = 0 (50)
choose(s(X),s(Y)) = choose(X,s(Y)) + choose(X,Y) (51)



sum

Qo F = F(0)
sV)<X -2 F = o
~(s(Y) < X) - F = F(s(Y)) + S%F

8.3 Theorem
Vo, n. s(x)" = B§ (Xi.choose(n, i) * 2*)

8.4 Comments

Requires several non-trivial lemmas. A simple first ordesia has been proved by SPIKE.

Possible lemmas include:

choose(n, k) = choose(n n—k)
En At. f() () = f+2rng
YrhXitxg(i) = txXog
—s(m) <n =X, f = [f(n)+Z5Ni.f(s(i))

8.5 \Variants
choose(n, i) can be replaced withy—"—

(tlx(n—i)!)
8.6 Source
T. Walsh,The Binomial TheoremMRG Group BBNote 903.
9 IWCO005b: Binomial Theorem (Variation)

9.1 Summary

e Non Trivial Lemmas needed.

9.2 Definitions

choose
choose(X,0) = s(0)
choose(0,s(Y)) = 0
choose(s(X),s(Y)) = choose(X,s(Y))+ choose(X,Y)
sum
YO F = F(0)
sV)<X -2 F = o
~(s(V) < X) - S F = F(s(Y))+ 3% F

(52)
(53)
(54)

(59)

(56)
(87)
(58)

(59)
(60)
(61)



9.3 Theorem:

Va,y,n.(x +y)" = i (Ni.choose(n, i) x '  y" ")

9.4 Comments
9.5 \Variants

choose(n, i) can be replaced wit

9.6 Source

10 IWCO006: Two Definitions of Even are Equivalent

10.1 Summary

e Mutual Recursion

10.2 Definitions

evenm

oddm

evenr

10.3 Theorem

10.4 Source
Alan Bundy

evenm(0) = T
evenm(s(N)) = oddm(N)
oddm(0) = L
oddm(s(N)) = evenm(N)
evenr(0) = T
evenr(s(0)) = L
evenr(s(s(N))) = evenr(N)

Vn.evenm(n) = evenr(n)

11 IWCO007: All numbers are odd or even

11.1 Summary
e Mutual Recursion

e Not Equality

10

(62)

(63)
(64)

(65)
(66)

(67)
(68)
(69)

(70)



11.2 Definitions

evenm
evenm(0) = T
evenm(s(N)) = oddm(N)
oddm
oddm(0) = 1
oddm(s(N)) = evenm(N)

11.3 Theorem

Vn.evenm(n) V oddm(n)

11.4 Source
Alan Bundy

12 IWCO008a: Chinese Remainder Theorem
12.1 Summary

e Needs many lemmas (some of whose proofs are also challgnging

e An Existential Witness has to be Provided

12.2 Definitions

allcongruent

allcongruent(X,[]) = T

allcongruent(X,Y :Ys, Z : Zs) = allcongruent(X,Y s, Zs) AN(X modY) = (ZmodY)

allpositive true if all members of the list are greater than 0.
allprime2
allprime2([]]) = T
allprime2(Y : Z) = prime2list(Y, Z) A allprime2(Z)
prime2 is true iff its arguments are relatively prime

prime2list

prime2list(X,[]]) = T
prime2list(X,Y :: Z) prime2(X,Y) A prime2list(X, Z)

productsl product of list.

11

(71)
(72)

(73)
(74)

(75)

(76)
(77)

(78)
(79)

(80)
(81)



12.3 Theorem

Viy,lp.3z.allpositive(ly) A allprime2(ly) —  allcongruent(zx,la, 1) (82)
Viy, lo, z, y.allpositive(ly) A allprime2(ly)A
allcongruent(z,la, l1) A allcongruent(y,lz,l1) — (z —y) mod products(l) =0 (83)

12.4 Comment

Actually two proofs, existance and uniqueness. Proved ih BfRZzhang and Hua and there is a good deal of comment
of the proof in their CADE-11 paper on the subject. They plevby hand the existential withess needed for the
existance part of the proof.

12.5 Source

Proving the Chinese Remainder Theorem by the Cover Settiodud. Zhang and X. Hua, CADE-11, D. Kapur (ed),
1992. Springer-Verlag.

13 IWCO008b: Chinese Remainder Theorem (Higher Order)
13.1 Summary

¢ Needs many lemmas (some of whose proofs are also challgnging
¢ An Existential Witness has to be Provided.

e Higher Order.

13.2 Definitions

all

all(X,0,P) = P(0) (84)
s(Y)< X —all(X,s(Y),P) = T (85)
~(s(Y) < X) — all(X,s(Y),P) = P(s(Y))Aall(X,Y,P) (86)

prod
(X,0,F) = F(0) (87)
s(Y)< X - II(X,s(Y),F) = s(0) (88)
=(s(Y) < X) = II(X,s(Y), F) F(s(Y))*=II(X,Y, F) (89)

quot
quot(X,0) = 0 (90)
(X <Y)A=(Y =0) - quot(X,)Y) = 0 (91)
(X <Y)A=(Y =0) = quot(X,Y) = s(quot(X —Y,Y)) (92)

rprime X andY are relatively prime.

12



13.3 Theorem

V.fag7’nﬁfUJlaLLZyUlaUQ-

Jz.all(0,n, Ai.(0 < f(i)))

ANO<uir<n A0<uy<n (93)
Aur #up A rprime(f(u1), f(u2))

— all(0,n, Mi.x = (g(i) mod f (7))

Vf,g,n,uy,us, vy, 02, T1, To.

all(0,n, Xi.(0 < f(2)))

ANDO<u1 <n AO0O<uy<n

Auy # ug A rprime(f(uy), f(uz))

A all(0,n, Mi.zq = (g(i) mod f(7))) A all(0,n, Ni.xa = (g(i) mod f(i)))
— (21 mod I1(0, n, f)) = (x2 mod II(0, n, g))

(94)

13.4 Comment
Actually two proofs, existance and uniqueness First Oréesion proved in RRL by Zhang and Hua (See IWC008a).

14 IWCO009: “Pete’s Nasty Theorem”
141 Summary

e Problems for Rippling (Hole-less Wave Front)

14.2 Definitions

split_list
split list([|, W) = W (95)
length(W) = 6 — splitlist(A = X, W) = W = splitlist(A:: X,][]) (96)
—(length(W) = 6) — split_list(A - X, W) = splitlist(X,W <> [A]) 97)
new_split
new_split([, W, D) = W (98)
(D =6) — new_split(A :: X,W,D) = W ::new.split(A:: X,][],length(]])) (99)
—(D = 6) — new-split(A : X,W,D) = new.-split(X,W <> [A],s(D)) (100)
14.3 Theorem
YV, w.new_split(z, w, (length(w))) = split_list(x,w) (101)

14.4 Comment

This poses a problem for rippling since it is hard to annotagedefinitions of wave rules (although a number of
solutions have been proferred I'm not aware that any have imeglemented).

13



14.5 Source

Problem attributed to P. Madden.
A. Bundy,How to Prove Pete’s Nasty TheoreEdinburgh MRG Group BBNote 725
A. Bundy, The Advantages of Binary Sinl&adinburgh MRG Group BBNote 1311

15 [IWCO010: Quicksort
15.1 Summary

e Destructor Style Induction Scheme

e Additional Lemmas

15.2 Definitions

grtlist
grtlist(X,[]) = |
H<X —grtlist(X,H :T) = grtlist(X,T)
-(H < X)—grtlist(X,H : T) = H :: grtlist(X,T)
leglist
leglist(X,[]) = ]
H<X —leqlist(X,H =:T) = H :leqlist(X,T)
-(H < X) —leqlist(X,H =T) = leqlist(X,T)
occC
occ(X,[]) = 0
X=H—occ(X,H:T) = s(oce(X,T))
X#H—>o0ce(X,H:T) = oce(X,T)
gsort
gsort([)) = 1l
gsort(H :: T) = gqsort(leqlist(H,T)) <> H :: gsort(grtlist(H,T))
sorted
sorted([]) = T
sorted(X = []) = T
(T#[) A (—~(H < hd(T))) — sorted(H = T) = L
(T#[)AN(H <hd(T)) — sorted(H ::T) = sorted(T)

15.3 Theorem
Vi.sorted(gsort(l))

Vi.oce(x, gsort(l)) = oce(x, 1)

14

(102)
(103)
(104)

(105)
(106)
(107)

(108)
(109)
(110)

(111)
(112)

(113)
(114)
(115)
(116)

(117)

(118)



15.4 Comments

Proved in RRL (using split, instead gftlist andleqlist, which takes< and> as arguments), Walther describes an
approach in Mathematical Induction in the Handbook of Autted Reasoning and Bronsard, Reddy and Hasker look
at the problem in Induction Using Term Orders in JAR 16.

A destructor style induction is needed.

Possible Lemmas:

sorted(L) A sorted(M) —  sorted(L <> M) (119)
occ(X,L <> M) = oce(X,L)+ oce(X, M) (120)

X <Y — oce(X,leqlist(Y,L)) = oce(X,L) (121)
(X <Y) — oce(leglist(Y,L) = 0 (122)
X <Y — oce(X, grtlist(Y,L)) = 0 (123)
(X <Y) — oce(grtlist(Y,L)) = oce(X,L) (124)

15.5 Source

F. Bronsard, U. Reddy, R. Hasker, Induction using Term Grdé&rof Automated Reasoning Vol,18os 1-2, 3-37,
1996.

C. Walther,Mathematical Inductionin D. Gabbay, C. Hogger and J. Robinson (eds), Handbook giclio Artificial
Intelligence and Logic Programming, v2. 127-228, OUP, 1994

H. Zhang, D. Kapur, M. KrishnamoorthyA Mechnaizable Induction Principle for Equational Speeifions. In E.
Lusk and R. Overbeek (eds). Proc 9th International Conterem Automated Induction, 152-181, Springer-Verlag,
1988.

16 IWCO011: Verifying Abstractions in Model Checking (Safety Lemma for
Removing the head of a list)

16.1 Summary
e Generalisation(?).
e Challenges for Rippling.

e Goal is not equational.

16.2 Definitions

aelem enumerated type containing elemefis, e2, n. }. This is intended to be an abstraction of the natural numbers
ana € is equal to 2, 5 or some other natural.

ae Converts naturals to aelems.

ae(2) = e (125)
ae(5) = e (126)
(N=2)V (N =5)) »ae(N) = n. (127)

15



order enumerated type containing elemefitd], 11, eal, e1eal, eaeql, error}. This abstracts lists of aelems to the
information about whether there are an occurences ahde, in the list and in which order they comerror
indicates that there is more than 1 occurence of either e, in the list.

combine Represents the effect of inserting aelems in orders.

combine(ne, X) = X (128)
combine(ey,el]) = el (129)
combine(ey,eal) = ejeql (130)
combine(esg,el]) = eal (131)
combine(ea,e1l) = eseql (132)
(X =¢]]) V(X = esl)) — combine(e1, X) = error (133)
(X =e¢))or(X = e1l)) — combine(ea, X) = error (134)
«order Converts a regular list of naturals to an order
aorder([]) = e (135)
aorder(H :: T) = combine(ac(H),aorder(T)) (136)

alist New Type. A quadruple of two booleans, an aelem and an ordeefidement ofaorder. The first boolean
indicates whether the list is nonempty, the second whethes only one element, the third element gives the
head of the list and the third the ordering information helthie order type.

a This converts a regular list of naturals to an alist.

o) = (L L,ne el]) (137)
a(Hy =T) = (T,(T=]),ac(Hy),aorder(T)) (138)
set; New type. Constructors:
setp
set;(alist, set;)
rmhd
rmhd((l) = ] (139)
rmhd(H = T) = T (140)
setelem
set_elem(E, sety) = L (141)
set_elem(E,set;(E, X)) = T (142)
-(E = X) — set_elem(E,set;(X,T)) = set_elem(E,T) (143)
armhd
armhd({L, A, B,C)) = set;({L, L, ne,e]]),sety) (144)
armhd((A,T,B,C)) = set;({L, L, ne,e[]),sety) (145)
armhd((T, L, X e[])) = set;({T,L,ne,e[]),set;({T, T,ne,el]), setp)) (146)
armhd((T, L, X, e1l)) = set;((T,L,e1,e[]),set;((T, T,e1,e]),set;({T, L, ne, eil), sety)){147)

16



armhd((T, L, X, exl)) = set;((T, L, ea,e[]), set;((T, T, ea, el]),set;({T, L, ne,eal), sety)){148)
armhd({T, L, X, e1exl)) = set;({(T, L, ne, ereal), set;({T, L, e1,eal),setp)) (149)
armhd({T, L, X, e1e1l)) = set;({(T, L, ne,ererl), set;({T, L, ea,e1l), setp)) (150)
armhd((T, L, X, error)) = set;({T,L,ne,error),set;({T, L, ey, el),
set;((T, L, e1,ereal), set;({T, L, eq,eserl),
set;({T, L, e1,errory,set;({T, L, ea, esl),
set;({T, L, es,ereal), set;({T, L, eq, eaeql),
set;({(T, L, eq, error), sety))))))))) (151)

16.3 Theorem
Vi.set_elem(a(rmhd(l)), armhd(a(l))) (152)

16.4 Comments

Provided by Dieter Hutter for 2000 Challenges. The problerariginally attributed to Dennis Dams of Eindhoven
University. Believe the problems involve the need for gafisations and some challenges for Rippling.

17 IWCO012: Verifying Abstractions in Model Checking (Safety Lemma for
the prefix Operation)

17.1 Summary
e Generalisation(?).
e Lemmas.
e Challenges for Rippling.

e Goalis not equational.

17.2 Definitions

aelem Defined as for IWCO011.
order Defined as for IWCO011.
alist Defined as for IWCO011.
aelem Defined as for IWCO011.
combine Defined as for IWCO011.
aorder Defined as for IWCO011.
a Defined as for IWCO011.

prefix
prefiz(,L) = T (153)
prefiz(h::tl,h :t2) = prefiz(tl,t2) (154)
(hl # h2) — prefiz(hl :: t1,h2 = t2) = L (155)

17



aprefix

aprefiz({(L,A,B,C),(E,F,G,H)) = T (156)
aprefiz((A, B,C,D),(E,F,G,error)) = T (157)
aprefix((A, T,D,e]]),(T,F,G,H)) = T (158)
aprefiz((A,B,D,e[|),(T,L,G,H)) = T (159)
aprefiz((A, T,D,e1l),(E,F,G,e1l)) = T (160)
aprefiz((A, B, D, e l),(E, L,G,eil)) = T (161)
aprefix((A, T,D,e1l),(E, F, G, e1esl)) T (162)
aprefix((A, T,D,exl), (T, L, G e3l)) = T (163)
aprefiz((A, B, D,exl), (E, L,G,exl)) = T (164)
aprefiz((A, B, D, exl), (E, F, G, eseql)) T (165)
otherwise false (166)

17.3 Theorem
Viy, la.prefiz(ly,la) — aprefiz(a(ly), a(ls)) (167)

17.4 Comments

Provided by Dieter Hutter for 2000 Challenges. Believe thabfems involve the need for generalisations and some
challenges for Rippling.
Lemmas required by INKA include:

aprefix((T, L,U,Y), (T, L, V,Z)) — aprefiz({T, L, W, combine(X,Y)), (T, L, W, combine(X, Z)))
aprefiz((T, L, U, combine(U,el])), (T, L, U, combine(U,V)))
prefix(Y,Z) — aprefiz({T, L, Z,aorder(Y)),(T, L, X, aorder(Z)))

18 IWCO013: Divide and Conquer
18.1 Summary

e Destructor style induction (at least)

18.2 Definitions

dc
de(F,B,[) = B (168)
de(F,B,X = [)) = X (169)
de(F, B, Hy = (Hy = L)) — F(dc(F,B,mke(w,L)),dc(F,B,drop(%,m))um)

foldr
foldr(F,A,]) = A (171)
foldr(FAH :T) = F(H, foldr(F,AT)) (172)

18



split

split(0,L) = L] (173)
split(s(0),L) = L: ] (174)
split(s(s(X)), L) = take(leng;h(L) (L) = split(1, drop(w, L) (175)

18.3 Theorem
Vi bzl n. f(b,x) =x — de(f,b,l) = foldr(f,b, foldr(<>,[], map(map(Ax.f(b, ), split(n,1)))))

18.4 Comments

Prove the equivalence of two divide and conquer algorithms.

18.5 Source:

Greg Michaelson.

19 IWCO014: Harald’s Problem
19.1 Summary

e Non-standard induction scheme.
e Needs alLemma

e Higher Order

19.2 Definitions

foldl
foldl(F,A) = A (176)
foldl(F,A,H = T) = foldl(F,F(A, H),T) (177)

foldr
foldr(F,A)) = A (178)
foldr(F,A,H ::T) = F(H,foldr(F,A,T)) (179)

19.3 Theorem

Yo1,09,1,2,y, z,a. (01(a, ) = 0a(x,a) A o1(o2(x,y),z) = 0a2(x,01(y, 2))) — foldl(o1,a,l) = foldr(oz,a,l)

19.4 Comments

Allegedly easy to understand and prove when expressed igsi&ll A key lemma suggested j®ldI(F, A, (L <>
[e])) = F(foldl(F, A, L), E) (NB. Itis probably not unreasonable to assume the presefitesdemma in a well
developed theory.) and a suggested induction rule is
P(]),P(E]),P(TYNP(H = T)NP(T <> [E]) = P(H : T <> [E])
VL.P(L)
which gives 3 induction hypotheses in the step case.

19



19.5 Source
Attributed to Harald Ganzinger. A. BundRippling in Harald's ProblemEdinburgh MRG Group BBNote 978

20 IWCO015: Paulson’s Problem
20.1 Summary

¢ Non-standard induction scheme
e Lemma needed

e Problems for Rippling

e Higher Order

20.2 Definitions
foldl

Foldl(F, A, ) A (180)
Foldl(F,A,H = T) = foldl(F,F(A, H),T) (181)

20.3 Theorem
Yo,l,z,y,e. o(xz,e) =z Ao(o(x,y),z) = o(x,0(y, 2)) — o(y, foldl(o,e,l)) = foldl(o,y,l)

20.4 Comments

Paulson presents two proofs of this. In both cases he usestnartural induction to justify the use of a non-standard
but structural induction scheme.
The two schemes are:
P(l), P() = P(L <> [X])
VL.P(L)

and
P(]), P([z]), P(x : 1) = P(xy :: (29 l))

VL.P(L)
With the first of these schemes a rippling proof goes throagtyfeasily, given the lemma

foldl(F, X, L <> M) = foldl(F, foldl(F,X, L), M)

The second presents some fairly serious challenges tongppl
Another suggested lemma is:

foldl(F,X,L <> H :: T) = F(foldl(F,X,L),H)

20.5 Source

L. C. Paulson, ML for the Working Programmer.
A. Bundy, Non-Structural Inductions and Ripplingdinburgh MRG Group BBNote 1188

20



21 [IWCO016: The Whisky Problem
21.1 Summary

e Needs some sort of Generalisation.

e Goal is not an equation.

21.2 Definitions

p(0,0) (182)
p(X,0) — p(h(X),0) (183)
p(h(X),Y) — p(X,s(Y)) (184)
21.3 Theorem
Vy.p(0,y)

21.4 Comments

This is a proof from the domain of first order temporal logior i to go through the original conjecture needs to be
generalised tovy, n.p(h™(0),y) (whereh™ means: applications ofi - which is second order) or a new functibh
needs to be introduced

R*(0,X) = X (185)
h*(s(n),X) = h(h*(n,X)) (186)

and the conjecture generalised to
Yy, n.p(h*(n,0),y)

21.5 Source

Logics group at Liverpool. In particular Michael Fisher aAdatoli Degtyarev. Problem originally attributed to

Regimantas Pliuskevicius.

L. A. Dennis and A. Bundy, A Comparison of two Proof CriticooviRer vs. Robustness, in V. A Carreno, C. A. Munoz,
S. Tahar (Eds.)Proceedings of Theorem Proving in Higher Order Logics, 1sternational Conference, TPHOLSs

2002 Hampton, VA, USA, August 20-23, 2002. pp 182-198. LNCS 243@ringer.

22 IWCO017: Dixon’s Problem

22.1 Summary
22.2 Definitions

P0 < (PO < P1)
Pl «— (Pl < P2)

Pi «— (Pi < P(i+1))
Pn < (Pn < P0)

21



Which can be captured in something like the following equatio

q(N)=(V0<i < Np(i) <= (p(i) <= p(s(i))) Ap(N) <= (p(N) <= p(0))) (187)

22.3 Theorem

vn. g(n) — p(0)

22.4 Comments

Interestingly this problem is easy for classical logic, legs easy if you are using intuitionistic logic (but stilié¢rand
provable). Either way induction is a natural way to solvephablem.

22.5 Source

Lucas Dixon, Edinburgh MRG group.

References

[1] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Systdescription: INKA 5.0 - a logical voyager. In
H. Ganzinger, editod 6th International Conference on Automated Deduction, EAIB, volume 1732 of ecture
Notes in Artificial IntelligenceTrento, 1999. Springer.

[2] R.S.BoyerandJS. Mooréd Computational LogicACM monograph series. Academic Press, New York, 1979.

[3] A. Bundy, D. Basin, D. Hutter, and A. IrelandRippling: Meta-Level Guidance for Mathematical Reasoning
volume 56 ofCambridge Tracts in Theoretical Computer Scien€ambridge University Press, 2005.

[4] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The @ysClam system. In M. E. Stickel, editdtpth
International Conference on Automated Deductipages 647—648. Springer-Verlag, 1990. Lecture Notes in
Artificial Intelligence No. 449. Also available from Edintgh as DAI Research Paper 507.

[5] D. Kapur and H. Zhang. An overview of rewrite rule labamat (RRL). J. Computer and Mathematics with
Applications 29(2):91-114, 1995.

[6] M. Kaufmann and J S. Moore. ACL2: An industrial streng#rsion of Ngthm. IlCompass’96: Eleventh Annual
Conference on Computer Assuranpage 23, Gaithersburg, Maryland, 1996. National IngtiaftStandards and
Technology.

[7] F. Pfenning and C. Sémmann. System description: Twelf — A meta-logical framewr deductive systems.
In H. Ganzinger, editoRroceedings of the 16th International Conference on Auteth®eduction (CADE-16)
pages 202-206, Trento, Italy, 1999. Springer-Verlag LNA&32.

[8] J.D.C. Richardson, A. Smaill, and I. Green. System dpt8on: Proof planning in higher-order logic with
lambda-clam. In C. Kirchner and H. Kirchner, edita@anference on Automated Deduction (CADE;3&)lume
1421 ofLecture Notes in Computer Scienpages 129-133. Springer-Verlag, 1998.

[9] G. Sutcliffe. The CADE-17 ATP system competitiodournal of Automated Reasonirzj/(3):227-250, 2001.

[10] G. Sutcliffe and C. Suttner. The TPTP problem libranhlErelease v1.2.1Journal of Automated Reasoning
21(2):177-203, 1998.

22



