
Annotation and Matching of First-Class Agent Interaction
Protocols

Tim Miller
Department of Computer Science

University of Liverpool
Liverpool, L69 7ZF, UK

tim@csc.liv.ac.uk

Peter McBurney
Department of Computer Science,

University of Liverpool
Liverpool, L69 7ZF, UK

p.j.mcburney@csc.liv.ac.uk

ABSTRACT
Many practitioners view agent interaction protocols as rigid
specifications that are defined a priori, and hard-code their
agents with a set of protocols known at design time — an
unnecessary restriction for intelligent and adaptive agents.
To achieve the full potential of multi-agent systems, we be-
lieve that it is important that multi-agent interaction proto-
cols are treated as first-class computational entities in sys-
tems. That is, they exist at runtime in systems as entities
that can be referenced, inspected, composed, invoked and
shared, rather than as abstractions that emerge from the
behaviour of the participants. Using first-class protocols, a
goal-directed agent can assess a library of protocols at run-
time to determine which protocols best achieve a particular
goal. In this paper, we present three methods for annotat-

ing protocols with their outcomes, and matching protocols
using these annotations so that an agent can quickly and cor-
rectly find the protocols in its library that achieve a given
goal, and discuss the advantages and disadvantages of each
of these methods.

Keywords: multi-agent systems, agent interaction, first-
class protocols, annotation, matching

1. INTRODUCTION
In the distributed environments of multi-agent systems,

coordination between agents is important for agents to achieve
their goals. Interaction protocols are seen as a promising
approach to coordination in multi-agent systems. However,
rather than view interaction protocols as rigid specifications
that are defined a priori, with agents being hard-coded to
follow the protocol rules — a restriction that is out of place
with the vision of agents being intelligent and adaptive —
we believe it is important that agent interaction protocols
are first-class computational entities, allowing agents to se-
lect, reference, share, compose, invoke and inspect protocols
at runtime. Such an approach would allow agents to assess
which protocols achieve their goals, and to learn the rules
and effect of new protocols.

In previous work, we proposed the RASA framework [7,
6], which regards protocols as first-class entities. These first-
class protocols are documents that exist within a multi-agent

system, in contrast to hard-coded protocols, which exist
merely as abstractions that emerge from the messages sent
by the participants. To promote decoupling of agents from
the protocols they use, RASA contains a formal, executable
language for protocol specification, about which agents can
reason to determine the rules and outcomes of protocols.

A major goal of research into first-class protocols is for
agents to maintain a library of interaction protocols, and to
be able to select the protocol that best suits the goals that
it wants to achieve at a given time and in a given environ-
ment. For this, agents must be able to quickly and correctly
determine the outcomes that can result for an interaction
protocol, and compare protocols in their library. In this pa-
per, we present methods for annotating a protocol with its
possible outcomes, so that it does not have to determine the
outcomes each time it is trying to find a suitable protocol,
and for matching a protocol that achieves a given goal, using
the annotations. Emphasis is placed on protocols specified
in the RASA protocol language, but such ideas would be
applicable to other protocol languages with operators simi-
lar to RASA’s.

2. THE RASA FRAMEWORK
The RASA framework was designed to allow us to repre-

sent and reason about first-class protocols, and investigate
the types of statements we can make about them. Our idea,
along with other researchers working in this area, is to have
goal-directed agents with access to libraries of first-class pro-
tocols. If an agent would like to interact with another to
achieve a particular goal, it can search its protocol library
to find the protocol that best achieves the goal.

The RASA specification language was designed as an
example of the minimal operators that would be required
for a successful first-class protocol specification language.
First presented in [7], along with its operational semantics,
the language uses constraint languages and process algebra
to specify interaction protocols. In this section, we briefly
present this language, and a logic for reasoning about pro-
tocols specified in this language.

2.1 Modelling Information
Communication in multi-agent systems is performed across

a universe of discourse. Agents send messages expressing
particular properties about the universe. We assume that
these messages refer to variables, which represent the parts
of the universe that have changing values, and use other
tokens to represent relations, functions, and constants to
specify the properties of these variables and how they relate

to each other.
Rather than devise a new language for expressing infor-

mation, or using an existing language, we take the approach
that any constraint language can be used to model the uni-
verse of discourse, provided that it has a few basic con-
stants, operators and properties. This allows us to express
and study a wider variety of protocols, such as those that
use description logics, constraint programming languages, or
even predicate and modal logics. It also permits us to use
different mechanisms for defining protocol meaning, such as
norms and commitments.

Definition 2.1. Cylindric constraint system. We assume
that the underlying communication language fits the defini-
tion of a cylindric constraint system proposed by De Boer
et al. [1]. They define a cylindric constraint system as a
complete algebraic lattice, 〈C,⊒,⊔, true, false, V ar,∃〉. In
this structure, C is the set of atomic propositions in the
language, for example X = 1, ⊒ is an entailment operator,
true and false are the least and greatest elements of C re-
spectively, ⊔ is the least upper bound operator, V ar is a
countable set of variables, and ∃ is an operator for hiding
variables. The entailment operator defines a partial order
over the elements in the lattice, such that c ⊒ d means that
the information in d can be derived from c.

A constraint is one of the following: an atomic propo-
sition, c, for example, X = 1, where X is a variable; a
conjunction, φ ⊔ ψ, where φ and ψ are constraints; or ∃xφ,
where φ is a constraint and x ∈ V ar. We extend this no-
tation by allowing negation on the right of an entailment
operator, for example, φ ⊒ ¬ψ is true if and only if φ ⊒ ψ

is not. Other propositional operators are then defined from
these, for example, φ∨ψ b= ¬(¬φ∧¬ψ) and φ→ ψ b= ¬φ∨ψ.
We will continue to use the meta-variables φ and ψ to refer
to constraints throughout this paper. We also use vars(φ)
to refer to the free variables that occur in φ; that is, the
variables referenced in φ that are not hidden using ∃.

2.2 Modelling Protocols
The RASA protocol specification language is based on

process algebras, and resembles languages such as CSP [4].
However, we add the notion of state to the language. State
is useful, because it allows us to build up the meaning of
protocols compositionally, for example, the effect of sending
two messages sequentially is the effect of sending the second
in the state that results after sending the first. The final
outcome of the protocol is the end state.

Definition 2.2. A protocol specification is a collection of
protocol definitions of the format N(x, . . . , y) b= π, in which
N, x, . . . , y ∈ V ar, and π represents a protocol.

Let φ represent constraints defined in constraint language,
c communication channels, N protocol names, and x a se-
quence of variables. Protocol definitions adhere to the fol-
lowing grammar.

π ::= φ→ ǫ | φ
c(i,j).φ
−−−−−→ φ | π;π | π ∪ π | var

φ
x·π | N(x)

Protocols are defined using the two types of atomic proto-
col, and algebraic operators for building up compound pro-
tocols from these. The first atomic action/protocol is the
empty action: ψ → ǫ. This specifies that if the precondi-
tion ψ is provable from the current state, then no message
sending is required.

The second atomic protocol is message sending, ψ
c(i,j).φm

−−−−−−→
ψ′. This is read as follows: if the precondition, ψ, is provable
(using ⊒) from the current state, then the agent i is permit-
ted to send the message φm to agent j. The effect of this
message on the state is specified by the postcondition, ψ′.
Omitting the prefix c(i, j) from a message template implies
that φm is an action other than a protocol. In this paper, we
omit (i, j) when we do not care who the sender and receiver
of the message is. We use the notion of inertia in calculating
the new state from the postcondition; that is, any variables
in ψ′ are constrained by ψ′ in the new state, and any other
variables in the state are left unchanged. We allow agents
to send the message φ′

m, such that φ′

m ⊒ φm, so that agents
can further constrain the values of the messages; thus, φm is
only a template of the message. For example, consider the
following atomic protocol:

X ≥ Bid
c.bid(X)
−−−−−→ Bid = X.

in which the sender is bidding on an item, and Bid and X

are variables. As part of the interaction, the sender would
like to instantiate X to its actual bid, for example, to 10.
Therefore, it would send the message bid(X) ⊔ X = 10,
which constrains the message template by adding further
information: that its bid is 10. If the pre-state is φ, then
the post-state is calculated by taking ψ′⊔φ′

m, and conjoining
it with ∃zφ, where z = vars(ψ′ ⊔ φm).

Compound protocols can be built up from these atomic
protocols. If π1 and π2 are two protocols, then the following
are also protocols: the protocol π1;π2, which represents se-
quential concatenation, such that π1 is executed, followed by
π2; the protocol π1 ∪ π2, which represents a choice between

π1 and π2; and the protocol varψx ·π1, which is a protocol the
same as π1, except that a local variable x is available over
the scope of π1, but with the constraints ψ on x remaining
unchanged throughout that scope. Any variable x already
in the state is out of scope until π1 finishes executing. In
addition, RASA supports the referencing of protocols via
their names. That is, for a protocol definition N(x) b= π1,
one can reference this from within another protocol using
N(y), where y ∈ V ar.

Using such a definition, one can express protocols as sets
of possible interactions, in which interactions are sequences
of triples containing legal pre-states, messages, and post-
states. The meaning of a protocol is derived from the post-
states; that is, the messages themselves do not specify mean-
ing, but are use only as a way to communicate information
and constrain the post-states.

2.3 Reasoning about Protocols
RASA defines a logic for reasoning about protocols. By

logic, we mean a syntax, semantics, and proof system. The
logic is concerned with protocol outcomes; that is, the state
of the protocol after it is executed. For this reason, we have
adapted a version of propositional dynamic logic [3] to tailor
it to the RASA specification language, and derived a proof
system that corresponds to the system for dynamic logic.

The syntax for a proposition in this logic is defined using
the following grammar, assuming that φ0 is a constraint in
the underlying constraint language:

φ ::= φ0 | φ ∧ φ | ¬φ | [π]φ

A formal semantics for this logic has been defined in [6].
Here, we discuss this briefly. Each proposition is evaluated

under a state (that is, a constraint). If ψ0 is this state, then
φ0 is true if and only if ψ0 ⊒ φ0. φ∧ψ and ¬φ are defined as
conjunction and negation respectively. The interesting op-
erator, [π]φ, which is found in propositional dynamic logic,
has the meaning that φ holds for every possible outcome of
the protocol π. That is, no matter which interaction path
is taken in the protocol π, the proposition φ will hold after
the protocol has executed.

As we did with the underlying constraint language, we
define other propositional operators. We also define another
operator from dynamic logic: 〈π〉φ, which is the dual of [π]φ,
and means that φ holds in at least one possible outcome of
the protocol π. This is defined as shorthand for ¬[π]¬φ.
That is, φ holds in at least one end state of π if and only if
¬φ does not hold in all of them. We use subscripts on the
Greek letters φ and ψ to indicate something that is strictly
a constraint; that is, φ0 is a constraint, while φ can be a
constraint or a dynamic logic proposition.

We use this logic to match protocols, as well as to define
rules for deriving annotations on protocols (Sections 5 and
6). Using such a logic is beneficial to us because it has a
sound and complete proof system [6], which we use to prove
that our annotation rules are correct, and to establish the
soundness and correctness of our methods.

3. PROTOCOLS, GOALS, AND MATCHES
Before we continue with our presentation, we first define

what it means for a protocol to “match” a goal.
Given a goal, φG, a matching protocol is a protocol, π,

in an agent’s protocol library, such that, from some initial
state, ψI , the following holds:

ψI → 〈π〉φG.

That is, from the initial state, at least one outcome of the
protocol entails the goal.

We define a protocol to be executable when it contains at
least one possible path of interaction. We note that for an
executable protocol, π, the following holds:

[π]φG → 〈π〉φG.

That is, if φG holds for all outcomes, of which there is at
least one (because it is executable), then it must hold for
at least one outcome. From this, we can say that for an
executable protocol, π, and goal φG, if [π]φG, then π is a
match for φG.

We explicitly distinguish this from the former type of
match by calling the latter a strong match, and the former a
weak match. Clearly, all strong matching protocols are also
weak matching protocols.

The motivation for the work in this paper is the need for
agents to be able to identify, at runtime and for a given
goal, which protocols in its library achieve that goal. In
this paper, we assume that an agent will want to retrieve
all matching protocols, weak or strong, and then deliberate
over which one is the most suitable at that point using some
additional criteria.

4. MATCHING PROTOCOLS VIA PROOF
Using the logic discussed in Section 2.3, we can define

a straightforward method for identifying whether a protocol
achieves a given goal. For a goal φG, and an initial state, φI ,

an agent can find a weak match by proving the proposition
ψI → 〈π〉φG, and a strong match by proving ψI → [π]φG.

However, there is an obvious downside to this approach
for agents whose goals change regularly: performing such a
calculation for every goal and every protocol is costly if an
agent’s goals continue to change. A proof of the form [π]φG
is costly to perform. Caching the proof for further matching
could offer some improved efficiency, but the caching is valid
only for the initial state ψI , so a proof would have to be
performed any time the initial state changed. For an agent
whose goals remain static, or have a slow rate of change,
this approach could be quite useful, but for other agents,
the approach is impractical, and we prefer an approach that
does not require an agent to discharge these proofs so often.

An additional downside of this approach is that it does
not (necessarily) annotate protocols, therefore, it does not
provide agents with any guidance as to the interactions that
best achieve their goals. There is no restriction that would
prevent agents from doing so, however, as with matching
protocols via proof, the annotations will only be relevant to
the specific goals and initial states.

5. ANNOTATING AND MATCHING PROTO-
COLS VIA DERIVATION

A key reason for deriving the logic for RASA is to anno-
tate protocols with their outcomes to help an agent form a
strategy at runtime. It is clear that agents could annotate
protocols with meta-information, such as from where the
protocol came, how much it trusts the protocol, et cetera,
but in this paper, we are concerned only with annotations
that can be derived from the protocol specification itself.
Although this information can be derived at runtime, the
overhead of calculating outcomes is impractical for more
than a handful of protocols; therefore, we want to reduce
the amount of calculation for agents at runtime as much as
possible.

We express annotations using the logic presented in Sec-
tion 2.3, for example, [π]φ is an annotation on protocol π
specifying that φ holds in all outcomes, and for all initial
states. However, we introduce one strict condition: out-
comes must be specified using the underlying constraint
language, not the dynamic logic. That is, for an annota-
tion [π]φ, we want φ to be a constraint — not to contain
any expressions using [] or 〈〉. We assume that the goals
of agents are specified using (or at least translated to) the
constraint language. If φ contains a dynamic logic operator,
the agent can still use this annotation, but it will need to
derive the corresponding constraint that satisfies φ, which
is an unnecessary overhead.

Our goal is to annotate, for each protocol in a protocol
library, not only the outcomes that it achieves, but the out-
comes of the sub-protocols that make up this protocol. For
example, Figure 1 shows an abstract syntax tree of a pro-
tocol with φ0 being the starting state, and the annotations
that we may want to derive. This protocol contains two
paths: (1) π1 followed by π2; and (2) π1 followed by π3.
From the annotations, an agent could calculate that the en-
tire protocol achieves ψ0 for some, but not all, of its paths,
and that ψ0 is achieved by the path π1; π2.

We use the term “annotation” because the formula are
related to the nodes of the abstract syntax trees, and would
perhaps be attached to the definition of the protocol. For

π1

π2 π3

φ1

ψ1ψ0

φ0

φ1 : [π2]ψ0

[π3]ψ1

φ0 : [π1]φ1

[π1;π2]ψ0

[π1;π3]ψ1

〈π1; (π2 ∪ π3)〉ψ0

〈π1; (π2 ∪ π3)〉ψ1

Figure 1: Protocol and its annotations

the example in Figure 1, the first two annotations are on the
node φ1, while the rest are on the node φ0.

In this section, we present a method for annotating proto-
cols with their outcomes, and then matching protocols based
on these annotations.

5.1 Annotating Protocols
Instead of proving annotations for the specific goals of an

agent, it may be more efficient if the agent derives anno-
tations directly from the protocol definition. It would not
be possible to annotate the protocol with every constraint
that could hold in an end state, so instead, we document
the outcomes as maximal postconditions. By maximal, we
mean a constraint such that every end state satisfies that
constraint, and that it is satisfied only by those end states.
Therefore, every end state would entail the maximal post-
condition. We also document the maximal postconditions
of the sub-protocols that make up a compound protocol,
to help agents choose between multiple protocols that each
achieve a goal, and to help them reason about which paths
of interaction best achieve their goals.

The advantage of this approach is that each annotation
needs to be calculated only once, and it remains valid for the
lifetime of the system/protocol. In fact, annotations can be
added to protocols and shared between agents, therefore not
requiring each agent to derive them.

To derive annotations, we specify a set of annotation rules.
When receiving a new protocol, an agent applies these rules
to the protocol, and its sub-protocols, adding the annota-
tions. Annotation rules are specified as theorems in the
RASA logic. Each rule is of the form φ ∧ φ′ ∧ . . . → ψ, re-
sembling a Horn clause, and should be read: if φ,φ′,. . . can

be derived as maximal postcondition annotations, then ψ is

a maximal postcondition annotation. Each of the annotation
rules in this section has been proved using the axiom system
defined in [6].

5.1.1 Global Annotations
The most straightforward of the rules is that if a protocol

π achieves φ0 for all outcomes, and has at least one outcome,
then it must achieve φ0 for at least one outcome.

[π]φ0 ∧ 〈π〉true → 〈π〉φ0

This is similar to the D axiom found in many modal log-
ics. Note that, for a protocol, π, that is not executable, for
example, a protocol whose precondition is false, the propo-
sition [π]φ will hold for any φ; that is, for all end states, of
which there are none, φ holds. Therefore, if false is prov-
able at all end states, either there are no end states, or all
end states are equivalent to false, which is represented as

¬[π]¬false, and is equivalent to 〈π〉true from the definition
of 〈 〉. Therefore, we annotate with 〈π〉φ0 only if 〈π〉true.

5.1.2 Annotating ψ0 → ǫ
An empty protocol receives only one annotation:

[ψ0 → ǫ]ψ0

This rule contains no premise. An empty protocol does
not change the state, therefore, the postcondition is any-
thing that is true before the execution of the protocol. In
the case of the maximal postcondition, the only information
that we can derive is that the precondition must hold for the
protocol to execute, therefore, the maximal postcondition is
the precondition ψ0.

5.1.3 Annotating ψ0
c.φm

−−−→ ψ′

0

An atomic protocol receives only one annotation:

〈ψ0
c.φm

−−−→ ψ′

0〉true →

[ψ0
c.φm

−−−→ ψ′

0](ψ
′

0 ⊔ φm ⊔ ∃vars(ψ′

0
⊔φm)ψ0)

The premise of this rule insists that the protocol is exe-
cutable. The maximal postcondition of an atomic protocol

ψ0
c.φm

−−−→ ψ′

0 is the constraint that corresponds to the ψ′

0⊔φm
(the constraint that specifies the postcondition), conjoined
with the constraints on variables from the precondition ψ0

that have not been changed by the protocol; that is, those
that are not free in ψ′

0 or φm.

5.1.4 Annotating π1;π2

Two annotation rules are associated with sequentially com-
posed protocols:

[π1][π2]φ0 → [π1; π2]φ0

〈π1〉〈π2〉φ0 → 〈π1;π2〉φ0

The first says that if, for every end state of π1, the maxi-
mal postcondition of π2 is φ0, then the maximal postcondi-
tion of π1;π2 is also φ0. The second is similar, but for the
〈〉 operator. Note that, as a result of the global annotation
rule specified in Section 5.1.1, an agent will also derive the
annotation 〈π1;π2〉φ0 from [π1]〈π2〉φ0 or 〈π1〉[π2]φ0.

To derive [π1][π2]φ0 (and similarly for 〈〉), one must derive
the maximal postcondition of π2 under the initial state that
is the maximal postcondition of π1. That is, for the anno-
tation [π1]ψ0, derive the maximal postcondition for ψ0 →
[π2]φ0. This can be expressed as the following rule.

[π1]ψ0 ∧ ψ0 → [π2]φ0 → [π1;π2]φ0

〈π1〉ψ0 ∧ ψ0 → 〈π2〉φ0 → 〈π1;π2〉φ0

These rules are read differently to others, because it is
unlikely that there will be annotations ψ0 → [π2]φ0 or ψ0 →
〈π2〉φ0. In these cases, the rules are read that if [π1]ψ0

(respectively 〈π1〉ψ0) is an annotation, and then calculate
the maximal postcondition, φ0, of π2 under the state ψ0. φ0

is then the maximal postcondition of π1;π2.

5.1.5 Annotating π1 ∪ π2

Choice protocols are the most difficult to annotate be-
cause they offer more than one path, each with a maximal
postcondition, and our method must derive information that
covers all of these paths. We propose the following three
rules, each which is straightforward to prove.

〈π1〉φ0 → 〈π1 ∪ π2〉φ0

〈π2〉φ0 → 〈π1 ∪ π2〉φ0

[π1]φ0 ∧ [π2]ψ0 → [π1 ∪ π2](φ0 ∨ ψ0)

However, the final rule above is not adequate as an anno-
tation. Recall from the start of this section, that we restrict
the annotations to propositions of the form [π]φ0, in which
φ0 is a constraint. Constraint stores cannot hold negations
or disjunctions, and as a result, the application of this rule is
non-trivial, and in many cases, deriving the maximal post-
condition is not possible.

Despite this, we can still derive some information that
is useful. For example, take the following choice protocol
definition:

N b= x = 1
c.a(x)
−−−−→ x = y ⊔ x ∈ [0..7] ∪

x = 1
c.b(x)
−−−−→ x 6= y ⊔ x ∈ [3..10]

Despite the fact that these two postconditions are incon-
sistent with each other (because one contains x = y and
the other x 6= y), we can still derive common information.
The maximal postcondition is x ∈ [3..7], so we could derive
the annotation [N](x ∈ [3..7]) — that is, we know that x
will be in the range [3..7] whichever path is taken. Such an
annotation could prove useful for an agent.

However, except for the most trivial cases (e.g. where
φ0 ⊒ ψ0 or ψ0 ⊒ φ0), calculating this is beyond the means
of any constraint solver known to the authors, because con-
straint solvers are not designed to find the most general
constraint store that is consistent with two unrelated, and
possible inconsistent, constraints.

To find a solution such as the one above, we propose an
approach in which an agent analyses different parts of the
constraints. This does not necessarily find the best solution,
but it can derive a constraint that satisfies parts of both φ0

and ψ0.
To do this, we consider the variables in the two con-

straints. Clearly, any maximal postcondition of a choice
must only reference variables that are in both φ0 and ψ0 —
any variables in only one will not be constrained in the max-
imal postcondition of the choice protocol. Therefore, what
we aim to do is derive a set of constraints, each of which is
relevant to only a subset of the variables. For example, if
we take the two postconditions from above and hide y from
both, then the constraint ∃y(x = y ⊔ x ∈ [0..7]) ⊔ ∃y(x 6=
y ⊔ x ∈ [3..10]) is reduced to the constraint x ∈ [3..7], which
is the maximal postcondition relative to x, so we can use
this as an annotation. If we hide x instead, then the result-
ing constraint is unsatisfiable, so this is not considered as
an annotation.

In this example, we examine the variables in φ0 and ψ0,
and look at constraints that result from hiding some of these
variables. It is not always useful to hide only one variable,
otherwise we lose information about the constraints between
variables. Instead, we hide different combinations of vari-
ables. To obtain the relationships between all variables,
one can take an approach that, for every set of variables
Z ⊂ vars(φ0)∩vars(ψ0), check if the constraint ∃Zφ0⊔∃Zψ0

is satisfiable — something which we hope is straightforward
for any constraint solver to check. If this is satisfiable, then
we add the annotation [π1 ∪ π2](∃Zφ0 ⊔ ∃Zψ0).

We note that this approach is sound but not complete.
That is, such an approach will always produce annotations

that are correct, but they are not guaranteed to be annota-
tions containing the maximal postcondition. For example,
take the following definition:

P b= x = 1
c.a(x)
−−−−→ x = 1 ∪ x = 1

c.b(x)
−−−−→ x = 2

Here, either x = 1 or x = 2 will hold in the outcome.
Therefore, the proposition [P]x ∈ [1..2] is valid, but our an-
notation rules fail to derive this, because x = 1 ⊔ x = 2
is not satisfiable, and as a result, we derive only the anno-
tations 〈P 〉x = 1 and 〈P 〉x = 2 (using the first two rules),
even though the annotation [P]x ∈ [1..2] is the annotation
containing the maximal postcondition.

While this approach is sound and may prove useful, the
approach for calculating it is somewhat undesirable, because
for n variables, we have 2n − 1 different combinations to
check, and a worst case of 2n − 1 annotations. For a large
n, deriving annotations is costly, as is searching through
annotations to match protocols. For large n, agents could
selectively choose to calculate annotations based on the vari-
ables in their current goals. That is, if they generally have
goals that related to certain variables in the system, then
calculate only the annotations for those variables.

However, all is not lost in this derivation. Theorem 5.1
(Section 5.2.2) shows that the final rule does not need to
be applied to find a suitable protocol, provided that the
first two rules for choice protocols are applied. While not
necessary, applying the above rule may reduce the runtime
complexity of finding a suitable protocol. This is discussed
further in Section 5.2.

5.1.6 Annotating var
ψ0
x ·π

Annotation of variable declarations is straightforward. If
the maximal postcondition of the sub-protocol π is φ0, then

the maximal postcondition of var
ψ0
x ·π is φ0 with the value

of x constrained to the same value as it is before execution.
For this we introduce a new variable x0 and constrain it to
be equal to x. In the postcondition, we then constrain that
x must be equal to x0. We know that the constraints on x0

have not been changed by π because it is a fresh variable
and therefore not referenced in in π. Finally, the variable
x0 is hidden using the ∃ operator, because x0 is not part of
the maximal postcondition.

ψ0 → [π]φ0 → x = x0 → [varψ0
x ·π]∃x0

(x = x0 ⊔ φ0)

where x0 is fresh

5.1.7 Annotating π1; (π2 ∪ π3)

Protocols of the form π1; (π2 ∪ π3) (and (π1 ∪ π2);π3) are
special cases of protocols. These protocols form the basis
of paths in the protocols, because the ∪ operator introduces
a branching in the abstract syntax tree, and ; introduces a
concatenation of protocol paths. Theories of business pro-
cess modelling often refer to these as or-splits and or-joins

respectively, because they represent the splitting and joining
of single traces with multiple traces respectively.

We can derive important annotations from protocols of
this format, mainly those that annotate the outcomes achieved
by individual paths in protocols. This is important because
it gives agents additional information for choosing protocols
that achieve their goals, as well as choosing which paths best
achieve their goal. The rules specified so far in this section
fail to take into account these special cases.

We specify two annotation rules for protocols of this form:

〈π1;π2〉φ0 → 〈π1; (π2 ∪ π3)〉φ0

〈π1;π3〉φ0 → 〈π1; (π2 ∪ π3)〉φ0

These say that if the protocols π1;π2 or π1;π3 have at
least one end state in which φ0 is the maximal postcondition,
then the composite protocol π1; (π2 ∪ π3) also has at least
one end state such that φ0 holds. This is clear from the
semantics of 〈〉, and is provable by showing that π1; (π2∪π3)
is equivalent to π1;π2∪π1; π3, and using the annotation rules
from Section 5.1.5.

Note that the annotations produced on the right hand
side of the rules will be derived from the rules for choice and
sequential composition, but the annotations in the premise
will not. Therefore, these two rules exist solely to document
that one must annotate π1;π2 and π1;π3.

We also note that protocols of the form (π1 ∪π2);π3 have
similar annotation rules, however, these should be clear to
the reader, so they are omitted.

5.2 Using Derived Annotations
Agents use annotations to search for protocols that achieve

their goals, and to guide them through the execution of a
protocol. In this section, we present a method for determin-
ing whether an annotated protocol achieves a given goal.
The process of selecting a protocol, should there be more
than one such match, and the process of reasoning about in-
teraction are more likely to be varied between different agent
implementations, so they are not discussed here. However,
the process of matching protocols is more straightforward
and likely to follow a similar pattern between implementa-
tions.

If an agent has a goal, φG, then it must find a protocol
that achieves φG. To do this, it could either search through
annotations of protocols until it finds a protocol that satisfies
its needs, or search through all protocols and then make a
choice if multiple protocols achieve its needs. In this section,
we focus only on the process of assessing whether a protocol
achieves the goal — that is, matching protocols — assuming
that the annotations have been derived using the rules from
Section 5.1. This method is guaranteed to find a protocol,
if one exists.

5.2.1 A First Attempt
For a goal φG and protocol π, take the annotations of π

and then perform the following:

1. For every annotation of the format [π]φA, test φA ⊒
φG; that is, test whether the maximal postcondition
satisfies the goal. If this entailment is successful, and
the initial state under which the protocol will be ex-
ecuted satisfies its precondition, add π to the list of
strong matching protocols.

2. If step 1 fails, for every annotation of the format 〈π〉φA,
test φA ⊒ φG. If this entailment is successful, and
the initial state under which the protocol will be ex-
ecuted satisfies its precondition, add π to the list of
weak matching protocols.

This is a reasonable way to match protocols, however, it
does not guarantee that an agent will find a protocol that
satisfies its goal, even if one exists. For example, take a
situation in which an agents goal is x = 1. We have an an-
notation [π](x ∈ [1..5] ⊔ x = y), but the above process fails

to match this because x ∈ [1..5] ⊔ x = y does not entail
x = 1. However, it may be the case that one end state
satisfies x = 1, but because the annotations document only
maximal postconditions, there is no annotation such that
x = 1.

Clearly, adding annotations for every possible postcondi-
tion is at best, expensive, and at worst, impossible. Instead,
we add an extra step to the process which is not expensive,
and which guarantees that we find a matching protocol.

5.2.2 A Complete Approach
A complete approach requires us to assess the maximal

postconditions in more detail. To do this, we perform an
additional test for every annotation, while still performing
the naive approach. For a goal φG and protocol π, take
the annotations of [π]φA and 〈π〉φA and then perform the
following:

1. Test whether φG and φA are consistent with each other;
that is, φG ⊔ φA 6⊒ false. If the goal and postcondition
are consistent, then it may be that there is an outcome
stronger than the maximal postcondition that satisfies
our goal, as in the example above. If not, then π can
never achieve the goal φG, so do not continue.

2. If step 1 succeeds, attempt to prove ψI → [π]φG, in
which ψI is the initial state in which the protocol will
be executed. If this is provable, add π to the list of
strong matching protocols.

3. If step 1 succeeds and step 2 fails, attempt to prove
ψI → 〈π〉φG, in which ψI is the initial state in which
the protocol will be executed. If this is provable, add
π to the list of weak matching protocols.

Using our example above, if an agent has a protocol with
the maximal postcondition x ∈ [1..5], and a goal x = 1, then
it can calculate in a straightforward manner that x = 1 is
consistent with x ∈ [1..5]. From here, it tries to prove if it is
possible that x = 1 in all outcomes of the protocol: [π]x = 1.
If this holds, then its possible for the agent to achieve its
goals with this protocol. If not, the it tries to prove 〈π〉x = 1.
The steps of proving [π]x = 1 (and 〈π〉x = 1) are in fact nec-
essary, because it may be possible that the goal and maxi-
mal postconditions are consistent, but that the goal is not
achieved by the protocol. For example, consider a case in
which x ∈ [1..5] is also the only constraint that holds for x
in all outcomes of a protocol:

N b= x = 0
c.a(y)
−−−−→ y = 1 ⊔ x ∈ [1..5]

Here, because the sender cannot constrain the value of x
(it not being part of the message), the only postcondition
is y = 1 ⊔ x ∈ [1..5], so x = 1 is not achieved. However,
consider the following alternate protocol, in which y = 1 is
replaced with y = x in the postcondition:

N b= x = 0
c.a(y)
−−−−→ y = x ⊔ x ∈ [1..5]

An agent can constrain the value of x , and therefore x = 1
is a possible end state, and 〈N〉x = 1 could be proved.

We also note that attempting the proof [π]φG is beneficial,
rather than only proving 〈π〉φG. That is, it is possible that
φA 6⊒ φG, but that all outcomes hold for φG, which may
initially seem counter-intuitive. This is best demonstrated
with the following example:

P b= x = 1
c.a(x)
−−−−→ x = 1 ∪ x = 1

c.b(x)
−−−−→ x = 2

Here, either x = 1 or x = 2 will hold in the outcome.
Therefore, the proposition [P]x ∈ [1..2] is valid, but, as dis-
cussed in Section 5.1, our annotation rules fail to derive this.
As a result, the goal x ∈ [1..2] would not be matched, but
the proof [P]x ∈ [1..2] would succeed.

Although the approach outlined in this section requires a
proof to be performed at runtime, similar to the matching-
via-proof method described in Section 4, checking whether
or not the goal is consistent with the maximal postcondi-
tion before attempting the proof would eliminate the need
to do these proofs for many protocols. This is advantageous
because proofs in the dynamic logic are more computation-
ally expensive than the matching rules, especially for large
protocols.

Theorem 5.1. This annotation and matching method is

sound and complete.

Proof. To prove this theorem, we need to demonstrate
that any matched protocol achieves the goal, and that only
protocols that achieve the goal are matched.

Soundness is straightforward to prove. For a goal φG, and
annotations [π]φA and 〈π〉φA, a match is noted when at least
one of the following two conditions hold:

1. φA ⊒ φG; or

2. φG ⊔ φA 6⊒ false and [π]φG (respectively 〈π〉φG).

Part (1) is trivially sound from modus ponens and the modal
logic inference rule of necessitation; Part (2) is trivially
sound from [π]φG (or 〈π〉φG). Additionally, annotations are
added using the rules from Section 5.1, which are valid the-
orems of our logic. Therefore, the method is sound.

Completeness is less straightforward to prove. For com-
pleteness, we must prove that, for any true formula [π]φG
(or 〈π〉φG), the rules defined in Section 5.1 will produce an
annotation [π]φA (respectively 〈π〉φA), such that either:

1. φA ⊒ φG; or

2. φG ⊔ φA 6⊒ false and [π]φG (respectively 〈π〉φG).

This is proved via reductio ad absurdum. It is trivially
valid that every valid protocol receives an annotation, and
from the soundness proof, we know that each annotation
is correct, therefore, we know there is a correct annotation
〈π〉φA. We prove this only for the case of 〈π〉φA, because
from the global annotation rule, this will also be valid for
[π]φA, for executable π.

If our method is incomplete, then there exists φG such
that 〈π〉φG holds, but that:

1. φA 6⊒ φG; and

2. φG ⊔ φA ⊒ false or ¬〈π〉φG.

That is, π is not matched as achieving φG, despite the
fact that it is a valid postcondition. It suffices to prove that
item 2 above is a contradiction. Firstly, ¬〈π〉φG contradicts
the assumption that φG is a valid postcondition.

Secondly, if φA is the maximal postcondition of at least
one path in π, then it must be that any postcondition of
that path is consistent with φA. It holds trivially from the
annotation rules that every path in a protocol receives an

annotation, therefore, it cannot be that each annotation on
π is inconsistent with φG if φG is a valid postcondition.

If φA is not the maximal postcondition (recall from Sec-
tion 5.1.5 that the final annotation rule for choice proto-
cols does not necessarily derive the maximal postcondition),
then it may be that the case that an annotation on φA is
inconsistent with the goal φG. However, the third rule from
Section 5.1.5 is not necessary for completeness, because the
first two rules cover such a case: if 〈π1 ∪ π2〉φG is true, then
is must be that 〈π1〉φG or 〈π2〉φG, one of which will be de-
rived from the first two rules. Therefore, the other anno-
tations rules defined in Section 5.1.5 will have annotated
π1 ∪ π2 with their maximal postconditions, one of which
must be consistent with φG, and therefore the protocol will
be matched.

From this, we see that the final annotation rule defined
in Section 5.1.5 is redundant. However, it may be useful
because in some cases, it can prevent an agent from having to
discharge proofs for propositions [π]φG and 〈π〉φG. Whether
the rule is used would clearly be a policy of individual agents.

Such a decision is specific to the strategy of the agents,
not the protocol itself, and therefore it is out of scope of this
paper.

6. ANNOTATING AND MATCHING
PRE/POSTCONDITION MODELS

When using our framework, we often specify protocols
as precondition/postcondition models; that is, models that
specify a relationship between pre-states and post-states of
protocols. The semantics of atomic protocols (and therefore
compound protocols) does not support specifying postcondi-
tions as a relation with the pre-state. For example, consider
a case in which we want to increment the integer value of
a variable, x. The only way to specify this is to specify
that the value of x is 1 greater than before the message was
sent, which is not possible using an atomic protocol; the
postcondition merely represents a constraint between state
variables, with no way of referencing pre-state values. How-
ever, we use the variable declaration operator to simulate
this behaviour:

N b= var
x0=x
x0

·x < 10
c.q(x)
−−−−→ x = x0 + 1

Recall that the constraints placed on a locally declared
variable are maintained throughout its entire scope. There-
fore, the constraints on x0 in the postcondition are that it
equals the constraints on x in the pre-state. If we were
to execute this message sending in the state x = 1, then
the postcondition would resolve to the following: ∃x(x =
1 ⊔ x0 = x) ⊔ x = x0 + 1. The only solution for this is
x0 = 1⊔x = 2. The scope of the variable x0 would end, and
the post-state would be x = 2.

Annotating protocols using the rules in Section 5.1 would
annotate this correctly, however, we would lose all infor-
mation about the relationship between the pre-state and
post-state. That is, we would have an annotation [π]x < 11,
which contains no information about the relationship be-
tween the pre-state and x < 11. To preserve this rela-
tionship, we propose annotating variable declarations in a
different manner. Note, this approach is only applicable if
each atomic protocol is surrounded by a variable declara-
tion; that is, the precondition/postcondition notion is used
throughout the entire protocol.

This new approach to annotation requires us to explicitly
consider the pre-state in the annotation rules. If we label
our pre-state as ψ0, then rule is as follows:

x0 = x ∧ ψ0 → [π]φA →

[varx0=x
x0

·π]∃x0
(∃x(ψ0 ⊔ x0 = x) ⊔ φA)

where vars(φA) = x ∪ x0. Therefore, this rule says that
if φA is the maximal postcondition of π, then the maximal
postcondition of the variable declaration protocol, under the
initial state ψ0, is calculated by assigning the pre-state oc-
currences of each variable x to a local variable x0, and hiding
this pre-state occurrence. Conjoin this with the postcondi-
tion, which specifies the relationship between each x and
its pre-state counterpart, x0. Finally, the local variables
are hidden, because they are out of scope. When the agent
reads this annotation, it substitutes in the initial state for
ψ0, giving it the postcondition.

As an example, take the protocol from above that incre-
ments a variable x. The annotation would be the following:

[varx0=x
x0

·π]∃x0
(∃x(ψ0 ⊔ x0 = x) ⊔ x = x0 + 1).

Substituting in the current state, for example, x = 1, will
result in the constraint

∃x0
(∃x(x = 1 ⊔ x0 = x) ⊔ x = x0 + 1)

which simplifies to ∃x0
(x0 = 1 ⊔ x = x0 + 1), which in turn,

simplifies to x = 2.
This is a neat and useful approach, however, we note that

the above annotation is in fact meta-level, because ψ0 in
this case is a variable in the annotation, rather than just
a meta-variable used to represent a constraint. Substitut-
ing in the current state for ψ0 will give us the precondi-
tion/postcondition annotation. Unless the constraint solver
supports constraints as variables, this substitution must be
done before asking the constraint solver to provide a solu-
tion.

This approach overcomes many weaknesses of the previous
approaches: it does not require the agent to perform entire
proofs, therefore reducing the overhead of the matching-via-
proof method from Section 4; and it is not a general annota-
tion, overcoming the problem of having to perform dynamic
logic proofs if the goal entails the end state of the annota-
tion, as described in Section 5.1. The obvious disadvantage
to using this approach is that it is restricted only to proto-
cols that are modelled using the precondition/postcondition
approach.

7. RELATED WORK
As far as the authors are aware, there has been no in-

vestigation into the annotation and matching of first-class
protocols to date. While such a topic may seem similar to
classical planning techniques, the methods outlined in this
paper are quite different to classical planning altogether.
The goal in this paper is to take an existing definition of
a protocol, and to summarise its outcomes; whereas plan-
ning aims to derive plans that are similar to the protocols
themselves.

Our concept of protocol libraries is similar to plan li-
braries, such as those found in the Procedural Reasoning
System [2]. However, there are some notable differences.
Firstly, plan postconditions are generally not derivable from
the plan themselves, but instead form part of the definition,
and the authors are unaware of any types of plans that use

concepts similar to maximal postconditions. In addition,
the matching of plans to goals is usually testing whether
the plan postcondition unifies with the goal, which is differ-
ent to our approach of matching, due to us using constraint
languages rather than logical languages, and using maximal
postconditions.

Specification matching for component-based software en-
gineering has been explored in the past [8]. Motivation for
specification matching is similar to our motivation for pro-
tocol matching: to find a component that satisfies a specifi-
cation. These approaches are considerably different to ours.
Firstly, they consider only pre- and postcondition models,
and, more importantly, unlike our approach, they do not
consider cases in which the goal specification (the equiva-
lent of an agent’s goal) is stronger than the postcondition,
because specifications are not written using maximal post-
conditions.

There are many approaches to specification of first-class
protocols. Space prevents us from a discussion of these, how-
ever, [5] gives detailed presentation of the state-of-the-art in
this area, and presents the advantages and disadvantages the
different approaches, including RASA. We assert that the
general idea of annotation and matching could be applied
to protocols specified in these languages.

8. DISCUSSION AND OTHER WORK
In this paper, we have presented three methods for anno-

tating and matching first-class protocols specified in RASA.
Each of these methods has advantages and disadvantages.
The method that we believe is the most useful involves anno-
tating a protocol with its maximal postcondition, and then
using these annotations to match the protocols that an agent
will test at runtime to find a protocol that achieves a given
goal.

In related work, we are investigating how protocol libraries
can be stored and searched for efficient protocol matching.
We are also investigating several other interesting aspects of
first-class protocols, such as runtime composition of proto-
cols, which would permit agents to compose new protocols
if no protocol can be found that achieves a certain goal. In
future work, we plan to assess other techniques for protocol
annotation and matching, such as analysing properties other
than outcomes, for example, the number of participants. To
develop and test these ideas, we plan a prototype implemen-
tation in which agents negotiate the exchange of information
using protocols specified using the RASA framework.

9. REFERENCES
[1] F. S. De Boer, M. Gabbrielli, E. Marchiori, and

C. Palamidessi. Proving concurrent constraint
programs correct. ACM Transactions on Programming

Languages and Systems, 19(5):685–725, 1997.

[2] M. P. Georgeff and A. L. Lansky. Reactive reasoning
and planning. In Proceedings of the 6th National

Conference on Artificial Intelligence, pages 677–682,
1987.

[3] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
MIT Press, Cambridge, MA, USA, 2000.

[4] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

[5] J. McGinnis and T. Miller. Amongst first-class
protocols. In Engineering Societies in the Agents World

VIII, LNAI, 2007. (To Appear).

[6] T. Miller and P. McBurney. Executable logic for
reasoning and annotation of first-class agent interaction
protocols. Technical Report ULCS-07-015, University of
Liverpool, Department of Computer Science, 2007.

[7] T. Miller and P. McBurney. Using constraints and
process algebra for specification of first-class agent
interaction protocols. In G. O’Hare, A. Ricci,
M. O’Grady, and O. Dikenelli, editors, Engineering

Societies in the Agents World VII, volume 4457 of
LNAI, pages 245–264, 2007.

[8] A. Zaremski and J. Wing. Specification matching of
software components. ACM Transactions on Software

Engineering and Methodology, 6(4):333–369, 1997.

