
An Ontology in OWL for Legal
Case-based Reasoning

Adam WYNER1

Department of Computer Science, University of Liverpool, Liverpool, UK.

Abstract.
In this paper, we present an ontology in OWL for Legal Case-based Reasoning.
We outline some of the main motivations for providing an ontology in OWL, then
discuss Legal Case-based Reasoning along the lines of CATO and given a method
in which the factors of cases are compared and partitioned. An ontology in OWL,
developed in the Protege ontology editor, is presented. Theontology is useful as a
formal conceptualisation of what one reasons with in Legal Case-based Reasoning.
We claim that as legal cases are the input to Legal Case-basedReasoning, the form
in which cases are modelled ought to conditioned by the purpose to which they are
put.

Keywords.
OWL, Ontology, Legal reasoning, Legal cases, Case-based reasoning

Introduction

In this paper, we present an ontology in OWL for legal case-based reasoning (LCBR),
where one reasons from cases that are legal precedents (PCs)to argue for a decision
for a plaintiff (P) or defendent (D) in a current case (CC). While ontologies of the law
and for legal reasoning are under active development ([6], [9]) and there are references
to ontologies for LCBR (cf. [8] and [17]), there is little work which explicitly presents
an ontology for LCBR. Moreover, we are not aware of LCBR ontologies which are de-
signed to be web-based and as such support legal decision systems over the internet. Our
ontology in theOntology Web Language(OWL) is tailored to LCBR and for deployment
over the web.

In the course of modelling LCBR, we necessarily model legal cases. Arguably the
raison d’etreof modelling legal cases is to provide the instances on whichto carry out
LCBR (see [14] for a related point). While there may be many aspects of cases which can
be modelled, it is questionable that they are relevant unless they are used by some system
of LCBR. A similar point can be made with respect to information retrieval of cases [17].
Indeed, we would argue that to model an aspect of cases is to imply that there is such a
LCBR system, and it ought to be provided. While we do not consider this issue in its full

1Correspond to: Department of Computer Science, Universityof Liverpool, L69 3BX, UK. Tel.: +44
(0)151 795 4294; Fax: +44 (0)151 795 4235; E-mail: azwyner@liverpool.ac.uk. During the writing of this
paper, the author was supported by the Estrella Project (TheEuropean project for Standardized Transparent
Representations in order to Extend Legal Accessibility (Estrella, IST-2004-027655)).



complexity, our paper is a novel contribution to this discussion, using a relatively simple
model of cases in a particular system of LCBR.

As an ontology in OWL for LCBR is novel, we review basic motivations for an on-
tology in general and an ontology in OWL in particular. We briefly refer to the key works
in LCBR as well as present the particular approach to LCBR [16] for which this is the
ontology. We then present the ontology, followed by some future work and conclusions.
It should be emphasised that this isanontology for LCBR, and there may be other useful
ontologies relative to other analyses of LCBR, though some of the components of our
proposed ontology may be common to all.

1. Legal Ontologies and Ontology Web Language (OWL)

In this section, we outline some of the main reasons for providing an ontology in OWL
and using the ontology development toolProtege([15] and [10]), with particular refer-
ence to issues related to ontologies in the legal domain [5].

An ontology is an explicit, formal, and general specification of a conceptualisation
of the objects and structural relations between those object in a given domain. It defines
a common vocabulary and organization of information which can be shared, tested, and
modified by researchers. An ontology makes an assumptions explicit, separates domain
knowledge (what are the objects?) from operational knowledge (how do we use the ob-
jects?), has a clear structure which supports analysis, is close to the expert’s intuitions
that underwrite the formal ontology, and identifies structural units which can be reused
in other ontologies. In addition, the limitations of the ontology are narrowly proscribed;
the model represents aslice of a larger domain and limits the reasoning which can be
done with respect to it. As a slice of a larger domain, one’s ontology can be used as a
module along with ontologies of other domains or as a subontology of a more generic
ontology.

In providing an ontology, one givesclassesof objects along with their properties
such as the features, attributes, and restrictions that apply to the class. One specifies
subclasseswhich inherit properties from the superclass while being further defined in
their particular properties. An ontology describes the general classes; given instances of
the classes, we have aknowledge base. One then applies rules such asproduction rules
to elements of the knowledge base.

We have developed our ontology in the Ontology Web Language (OWL) using the
Protegeontology editor. OWL provides a machine readable ontology which can then
be processed by applications; it is designed to underpin development of theSemantic
Web. OWL provides a range offlavours, which are distinct in terms of the richness of
the semantic information; each subsort is associated with adegree of logical expressive-
ness and associated computational properties. However, for our purposes, OWL Lite has
been sufficient. TheProtegeontology editing tool supports systematic development of
an ontology. More importantly,Protegeprovides links to reasoners such that one can test
one’s proposed ontology forconsistencyas well as generateinferred classes: consistency
means that there is a model in which the classes can all be instantiated and there are no
instances with inconsistent properties; theinferred classesare those which are consistent
with the ontology but which one has not explicitly stated andthat may be desireable or
undesireable classes. We have tested our ontology with thePellet-1.3reasoner, which



found the ontology to be consistent. Finally,Protegeprovides plugins to graphical tools
which represent the ontology, which facilitates understanding and communication of the
model.

As our domain of application is LCBR, we want an ontology which represents those
elements of LCBR such asfeatures, cases, andcase comparisions. Our ontology is the
conceptualisation of the objects used in the argument schemes for LCBR in [16]. The
schemes are used to reason with case comparisons in order to provide explanations which
justify why a current undecided case ought to be decided in favour of one party or the
other based on comparable precedents. As the ontology is web-based and provided in the
context of an open-source European Project (ESTRELLA), ourobject is to allow public
use and development of the ontology. In the legal domain, theimportance of ontology
development is relatively recent, as it has became clear that the application of legal rules
is often contingent on the satisfaction of a particular definition and as a range of problems
with rule-based systems emerged [5, p.5, 10-11]. Our paper is a novel contribution to this
growing body of work.

2. Background on LCBR

There are a variety of approaches to implementations of LCBR, beginning with HYPO
[2], and subsequently developing into CATO [1], IBP [7], CABARET [12], and BankXX
[13]. More theoretical work on LCBR appears in [11], [3], and[4]. For the purposes of
our ontology, we have focussed on the CATO system [1] to whichwe have applied the
case comparison method of [3]. The key object of the ontologyis the case comparison.
While there are several components that go into the construction of the case comparison,
the method itself which generates case comparisons is outside the scope of the ontology,
though the requirements of the method inform the construction of the ontology. Thus, to
understand the design of the ontology, we outline the elements of the method in this sec-
tion, focussing primarily on the partitioning of the case factors and the association with
the parties of a case. We also provide some examples. The chief reason we have adopted
this method is for clarity and familiarity; as ontologies inOWL for other approaches
LCBR are developed, presumably they would bealigned, related, and common elements
abstractedinto anüberontology in OWL for LCBR.

CATO [1] represents LCBR using factors, cases, and parties to cases (i.e. P and D).
We focus on the factors and how we use them in comparing cases,leaving other aspects
for further discussion in the ontology. The factors are those features of a case which are
used in making a decision in favour of one of the parties to thecase. In addition to a
name (which gives an idea of what the factor is about) and an ID(to facilitate reference),
the factors are associated with that party of the case which the factor favours, either a
D or a P. As in CATO, the factors are organized into afactor hierarchyso that one can
reason about cases using anabstract factor; however, motivation for and use of the factor
hierarchy is not relevant to the presentation of the ontology [16].

To illustrate, we use some of the factors, cases, and case comparisons discussed in
[16]. Our objective is to give a sense of the method to help understand the ontology rather
than to discuss the outcome of the method in every instance. In Table 1, we list factors,
the side the factor favours, and the factor parent. The Factor ID gives a handy label to the
factor, while the Factor Name gives a brief idea what the factor is about. To say that the



factor favours a D or P is to claim that the factor, if present in a case, favours a decision
being made for that side. For example, if a case has F1, that isa factor in favour of the
case being decided for D. However, whether and how strongly aparticular factor favours
the decision for a party in a current case depends on the otherfactors of the case and how
the current case factors counterbalance with the factors ofa precedent case.

Table 1. Factors

Factor ID Factor Name Side Parent

F1 Disclosure in Negotiations D Efforts to Maintain Secrecy

F2 Bribed Employee P Questionable Means

F10 Secrets Disclosed to Outsiders D Info Known and Available

F12 Outsider DisclosuresRestricted P Info Known and Available

F15 Unique Product P Valuable Product

F25 Information Reverse Engineered D Questionable Means

F26 Used Deception P Questionable Means

Table 2 provides hypothetical cases which are variations onMason v. Jack Daniels,
in which Jack Daniels, a major whiskey manufacturer, is D in a case whereMason, a
private bar owner, is P; P is sueing D for damages, claiming D stole his secret cocktail
recipe and used it in a promotion. Each case contains factorswhich favour either P (P
Factors) or D (D Factors). For example, the caseVanilla has the factorUnique Product,
which favours P since P claims his product was unique, and thefactor Disclosure in
Negotiations, which favours D since D claims the recipe was disclosed in negotiations.
The other example cases can be understood in a similar manner.

Turning to the case comparisons, we take as CC a case in which the outcome is
undecidedand compare it to a PC in which theoutcome is decided. For the moment,
we discuss only those PCs decided for P since those which weredecided for D can be
determined in a similar fashion. Reasoning to a decision in the CC proceeds on the basis
of analogy with the PC: as the factors in the PC led to a decision in favour of P and the
CC is analogous to the PC, so the CC should also be decided in favour of P. However,
the analogy depends on a counterbalancing interplay between the factors, the side each
factor favours, and the side favoured in the decision in the PC. To clarify this, we next
consider the partition of the factors.

Suppose that we compare the factors of a CC and a previously decided precedent
case (PCi). The question is whether on the basis of the comparison we should decide CC
for the same party (P or D) as PCi was decided. Given the factors of each case, we form
partitionsof the factors relative to the cases and the side which the factors favour. For
instance, in P3, we find those factors in CC which are not in PCiand which favour P. P1

Table 2. Summary of Cases in Example

Case Name P Factors D Factors

Vanilla F15 F1

Bribe F2, F15 F1

Deceit F15, F26 F1

Restrict F12, F15 F1, F10

Reverse F15 F1, F25



Table 3. Partitions of Factors in CC and PCi

Partition Biases Decision For Factors Support

P1 P P factors in both CC and PCi.

P2 P D factors in both CC and PCi.

P3 P P factors in CC not in PCi.

P4 P D factors in PCi not in CC.

P5 D D factors in CC not in PCi.

P6 P P factors in PCi not in CC.

P7 U Factors not in either CC or PCi.

and P2 represent what is similar in the cases. We assume that aPCi can be a precedent for
a CC only so long as these partitions are not empty. In Table 3,we have seven partitions
since we compare the intersection of the sets of factors relative to which side is favoured
in CC or PCi. In the Table, we represent how the factors support a party and how that
partition biases the decision in CC. We discuss each part.

In the ontology, we say that each partition of factorssupportsone side or the other of
the case; in Table 3, we see that under the column labelledFactors Support, P1 supports
P, P2 supports D, and so on. However, we must clearly distinguish between this and
how the partition is used in making a decision in the CC for or against a side, which
we term thepartition bias in CCand which is presented in the column labelledBiases
Decision For. Factors Supportidentifies thesideused for the set, whileBiases Decision
For is based onthe decision in the precedent case. Recall that we are examining for the
moment only PCs which were decided for P; case comparisons which use PCs decided
for D follow very similar reasoning, but give rise to different patterns. Suppose a case
comparison where we have a non-empty P3, which is the set of P factors in CC that
are not in PCi. Here the factors support P. We say that thepartition biases the decision
in favour of Pbecause CC contains more factors for P than PCi, which was decided
for P. In contrast, though a non-empty P4 partition hasFactors Supportfor D, it biases
the decision in favour of P since this partition specifies that the CC has strictlyfewer
D factors; since PC was decided in favour of P withmoreD factors than CC, then CC
should be decided in favour of P. In P5, where there aremoreD factors in CC than PCi,
the decision is biases in CC towards D. In contrast, P6 biasesthe decision in CC towards
P since while there are more P factors in PCi for P than in CC, those P factors which the
cases do share may still be sufficient to decide in favour of P in CC. The partitions in
Table 3 represent these biases in the second column. Parallel considerations apply where
we use PCs that have been decided in favour of D. However, the presence of the partition
only biases the decision and does not decide it since the decision depends on the content
of the other partitions and how we reason with them, which is outside the scope of this
paper (see [16]).

Using these factors, cases, and case comparsion method, we can provide selected
case comparisons as in Table 4. We see in the case comparisonRestrict/Vanilla, where
Restrictis the current case andVanilla is the PC, thatVanilla can be used as a PC (P1 and
P2 are not empty), while P3 are P factors in favour of decidingthe current case for P in
Restrict, but P5 are D factors in favour of deciding the current case for D. The ontology
does not consider how these partitions are weighed in comingto a decision on the CC.



Table 4. Selected Case Comparisons

CC/PCi P1 P2 P3 P4 P5 P6

Bribe/Vanilla F15 F1 F2 - - -

Vanilla/Reverse F15 F1 - F25 - -

Deceit/Bribe F15 F1 F26 - - F2

Restrict/Vanilla F15 F1 F12 - F10 -

3. LCBR Ontology in OWL

The LCBR ontology has six main classes, which may have their own subclasses. The
main classes and their subclasses are mutually disjoint. Wediscuss each of these classes
and their properties and relations. Each class may be comprised of subclasses and have
asserted conditions, which relate instances of one class toinstances of another class.
Subclasses inherit the conditions which hold of every member of the superclass, but may
otherwise be distinguished according to other conditions.We start with the less complex
classes, then work up to the more complex classes which use the simpler classes. All the
classes and subclasses are mutually disjoint.

3.1. Names

We have a class ofNames which has four subclassesFactorID, FactorName,
CaseComparisonID, andCaseID. FactorID refers to a particular factor, while
FactorName gives more informative content. As an instance, if we have aFactorName
such asPublic Disclosure, meaning that this is a factor in some case, we would give it
a FactorID such asF12 in order to abbreviate a reference to it. EveryCase has a
CaseID, which is just some way to refer to the particular cases. Similarly, when we
come to makingcase comparisonsbetween a CC and a PC, then each comparison has a
CaseComparisonID to label it. At the bottom level, classes are said to haveinstances
of that class. We read Figure 1 from the bottom up as, for example, the class of instances
which areFactorIDs is a subclass of the class ofNames. The subclasses are mutually
disjoint, meaning there can be no instances which arebothaFactorID and aCaseID.

Figure 1. Name Class

FactorID

Names

isa

FactorName

isa

CaseComparisonID

isa

CaseID

isa

3.2. Parties

In Figure 2, we have the class ofPartywith three subclassesPlaintiff,Defendant,
andUnknown. The first two are clear.Unknown is needed for CCs, which are cases
that have not yet been decided in for P or D.



Figure 2. Party Class

Plaintiff

Party

isa

Defendant

isa

Unknown

isa

3.3. Factors

In Figure 3, we have theFactor class, asserted conditions which hold for some fac-
tors, and three subclasses. We read from the factor class (the first row) to the prop-
erty and then an instance of some other class (in some other row). In this figure, we
include all the conditions that are found forsomeor all subclasses as we specify be-
low as given in the ontology in OWL. For example, every instance of a Factor
must have aFactorID, a FactorName as well as aFactorSide which is an
instance of someParty. The three subclassesRootFactor, MidFactors, and
LeafFactors are indicated with theisa relation. Subclasses inherit the conditions
which hold of the superclass, though additional conditionsor restrictions on inherited
conditions may apply. We represent thefactor hierarchywith theFactorChildren
andFactorParent properties. TheRootFactor has an unknownFactorSide
and some factors asFactorChildren. TheLeafFactors have some factors as
FactorParent and no factors asFactorChildren. TheMidFactors have some
factors asFactorParent and some factors asFactorChidlren.

Figure 3. Factor Class

RootFactor

Factors

hasFactorChildren Instance* Factors

hasFactorSide Instance Party

hasFactorID Instance FactorID

hasFactorParent Instance Factors

hasFactorName Instance FactorName

isa

MidFactors

isa

LeafFactors

isa

3.4. Cases

In Figure 4, we have a classCase and two subclassesPrecedentCase and
CurrentCase. Every case has all the properties, so every case has aCaseDefendant
which is aDefendant party, aCasePlaintiff which is aPlaintiff party,
a CaseDecisionFor some element ofParty, a set ofCaseFactors, and a
CaseID. The subclassCurrentCase has aCaseDecisionFor the Unknown
party, while the subclassPrecedentCase has aCaseDecisionFor either the
Defendant or thePlaintiff party, but not theUnknown party.



Figure 4. Case Class

CurrentCase

Case

hasCaseDefendant Instance Defendant

hasCaseDecisionFor Instance Party

hasCasePlaintiff Instance Plaintiff

hasCaseFactors Instance Factors

hasCaseID Instance CaseID

isa

PrecedentCase

isa

3.5. Partitions

In Figure 5, we have thePartition class which has two subclassesCase-
ComparisonPlaintiffPartitionsandCaseComparisonDefendantPart-
itions. These latter two subclasses each have subclasses, which wediscuss further
below. Every instance ofPartition has aPartitionFactors which is some
Factors, aPartitionBiasInCC which is someParty, and aPartitionOf-
FactorsSupportwhich is someParty. Each of these properties is related to the dis-
cussion in Section 2 and further specified when we discuss thesubclasses.Partition-
Factors is just that set of factors created by that particular case comparison of factors.
The other two properties give sides as stipulated below.

Figure 5. Partition Class

CaseComparisionPlaintiffPartitions

Partitions

hasPartitionFactors Instance Factors

hasPartitionBiasInCC Instance Party

hasPartitionOfFactorsSupportInstance Party

isa

CaseComparisonDefendantPartitions

isa

Each ofCaseComparisonPlaintiffPartitionsandCaseComparison-
DefendantPartitions have seven disjoint subclasses, each of which vary from
the others in terms of the instantiations of the propertiesPartitionBiasInCC and
PartitionOfFactorsSupport. We present this as a Table 5.

3.6. Case Comparisons

Our final class appears in Figure 6. It has no subclasses and draws on all the other classes.
There is aCaseComparisonDecisionFor someParty (which presumably can
beUnknown if no decision is made), aCaseComparisonID, aCurrentCase and
PrecedentCase, which are the cases that are used in making the case comparison, and
finally CaseComparisonPartitions, which are the partitions of factors generated
by comparing the current case and PC.



Table 5. Partitions which Bias a Decision and Support a Side

PartitionBiasInCC PartitionOfFactorsSupport

Plaintiff Partitions

1 Plaintiff Plaintiff

2 Plaintiff Defendant

3 Plaintiff Plaintiff

4 Plaintiff Defendant

5 Defendant Defendant

6 Plaintiff Plaintiff

7 Unknown Unknown

Defendant Partitions

1 Defendant Plaintiff

2 Defendant Defendant

3 Plaintiff Plaintiff

4 Plaintiff Defendant

5 Defendant Defendant

6 Defendant Plaintiff

7 Unknown Unknown

Figure 6. Case Comparison Class

CaseComparison

hasCaseComparisonDecisionFor Instance Party

hasCaseComparisonPartitions Instance Partitions

hasCurrentCase Instance Case

hasPrecedentCase Instance Case

hasCaseComparisonIDInstance CaseComparisonID

4. Future Work

For future work, we intend to examine the issue raised at the onset about the relationship
between modelling cases and LCBR. We would continue to use ontology develop to
clarify the problems, comparing and contrasting alternative models, as well as making
generic ontologies for cases and LCBR. Furthermore, we wantto consider how to extend
the method of case comparison beyond the legal domain to other issues in case-based
reasoning.

5. Conclusion

We have provided a ontology in OWL for LCBR. It contributes tounderstanding the rela-
tionship between modelling LCBR and modelling cases. We have made progress towards
several of the objectives outlined in [5]. Domain knowledge(i.e. the ontology) is distin-
guished from the rules which apply to them found in [16]. Giving an explicit, formal, and
general conceptualisation of the LCBR domain, we have a clearer understanding of the



elements and properties. The faults of the conceptualisation should be easier to identify;
one can easily compare and contrast this ontology with alternatives expressed in the same
language. The model is easy to maintain, develop, and reuse.It is also very accessible
to the legal expert who is not familiar with formal modellingas familiar structures and
relationships are apparent. Furthermore, one can ask questions about the model that are
intuitive. We have also narrowly constrained our model to those objects most directly
relevant to LCBR. In addition to these longstanding objectives, the ontology is provided
in OWL, so can be publically available and used as the basis of a markup language. Using
Protegeto develop the language, we can use the reasoning facilitiesto check that our
model is consistent and to generate inferred classes.

References

[1] Vincent Aleven. Teaching case-based argumentation through a model and examples. PhD thesis, Uni-
versity of Pittsburgh, 1997.

[2] Kevin Ashley. Modeling Legal Argument: Reasoning with Cases and Hypotheticals. Bradford
Books/MIT Press, Cambridge, MA, 1990.

[3] Trevor Bench-Capon. Arguing with cases. In A. Oskamp et al., editors,JURIX 1997, pages 85–100,
Nijmegen, 1997. Gerard Noodt Instituut.

[4] Trevor Bench-Capon and Giovanni Sartor. A model of legalreasoning with cases incorporating theories
and values.Artif. Intell., 150(1-2):97–143, 2003.

[5] Trevor J.M. Bench-Capon and Peter R.S. Visser. Deep models, ontologies and legal knowledge based
systems. InLegal Knowledge Based Systems. JURIX 1996: The Nineth Annual Conference., pages 3–14.
Tilburg University Press, 1996.

[6] Joost Breuker et al. Ontologies for legal information serving and knowledge management. In John
Horty, Aspassia Daskalopulu, and Radboud Winkels, editors, Legal Knowledge and Information Sys-
tems: Proceedings of Jurix 2002, pages 73–82. IOS Press, 2002.

[7] Stefanie Brüninghaus and Kevin D. Ashley. Generating legal arguments and predictions from case texts.
In ICAIL 2005, pages 65–74, New York, NY, USA, 2005. ACM Press.

[8] John Henderson and Trevor Bench-Capon. Dynamic arguments in a case law domain. InICAIL ’01:
Proceedings of the 8th international conference on Artificial intelligence and law, pages 60–69, New
York, NY, USA, 2001. ACM Press.

[9] Rinke Hoekstra, Joost Breuker, Marcello Di Bello, and Alexander Boer. The lkif core ontology of basic
legal concepts. InLegal Ontologies and Artificial Intelligence Techniques, Stanford University, Palo
Alto, CA, USA, June 2007.

[10] Natalya Noy and Deborah McGuinness. Ontology development 101: A guide to creating your first
ontology. Technical report, Standford University, 2000.

[11] Henry Prakken and Giovanni Sartor. A dialectical modelof assessing conflicting arguments in legal
reasoning.Artificial Intelligence and Law, 4(3-4):331–368, 1996.

[12] Edwina L. Rissland and David B. Skalak. Cabaret: rule interpretation in a hybrid architecture.Int. J.
Man-Mach. Stud., 34(6):839–887, 1991.

[13] Edwina L. Rissland, David B. Skalak, and M. Timur Friedman. Bankxx: Supporting legal arguments
through heuristic retrieval.Artificial Intelligence and Law, 4(1):1–71, 1996.

[14] Bram Roth and Bart Verheij. Cases and dialectical arguments. an approach to case-based reasoning. In
R. Meersman, Z. Tari, and A. Corsaro, editors,On the Move to Meaningful Internet Systems 2004: OTM
2004 Workshops. WORM’04: The Second International Workshop on Regulatory Ontologies., volume
Volume 3292 ofLecture Notes in Computer Science, pages 634–651, Heidelberg, 2004. Springer.

[15] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications.Knowledge Engineer-
ing Review, 11(2):93–155, 1996.

[16] Adam Wyner and Trevor Bench-Capon. Argument schemes for legal case-based reasoning. In to appear,
editor,JURIX 2007, page to appear, Amsterdam, 2007. IOS Press.

[17] Yiming Zeng, Ruili Wang, John Zeleznikow, and Elizabeth A. Kemp. Knowledge representation for the
intelligent legal case retrieval. In Rajiv Khosla, Robert J. Howlett, and Lakhmi C. Jain, editors,KES (1),
volume 3681 ofLecture Notes in Computer Science, pages 339–345. Springer, 2005.


