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Notations

The following notations and abbreviations are found throughout this thesis:

Z The set of integers.
R+ The set of positive real numbers.
N The set of nodes (N = {1, . . . , n}).
E The set of links (E = {1, . . . , e}).
G The directed network (G = (N,E)).
M The set of players (M = {1, . . . , m}).
fj A flow routed on link j.
ℓj(·) A latency function of link j.
f i A flow quantity controlled by player i.
f i

j A flow quantity of player i on link j (f i =
∑

j∈E f i
j).

f i A routing strategy of player i that represents a partition of f i amongst all
n links (f i = (f i

1, . . . , f
i
n)).

f A flow of which is a combination of player strategies, one for each player
(f = (f1, . . . , fm)).

f The total network flow quantity (f =
∑

i∈M f i and f =
∑

j∈E fj).
w A weight vector (w = (f1, . . . , fm)).
Ci(f) A cost of player i in f (Ci(f) =

∑
j∈E f i

jℓj(fj) where f i
j is in f i for every

j ∈ E).
Ci

j(f) A cost of player i from link j in f (Ci
j(f) = f i

jℓj(fj) where f i
j is in f).

C(f) A social cost of flow f (C(f) =
∑

i∈M Ci(f) and C(f) =
∑

j∈E fjℓj(fj)).
Often we omit f if the reference to it is clearly understood from a context
or unnecessary.

NE Nash equilibrium.
SE System equilibrium..
SSL Selfish Stackelberg leadership.
UE User equilibrium.
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fSE Social optimal flow.
fNE Nash flow.
fSSL Selfish Stackelberg leadership flow.
fUE User equilibrium flow.
CSE Social cost of fSE.
CNE Social cost of fNE.
CSSL Social cost of fSSL.
ℓmin A minimal latency of links used.
ℓmax A maximal latency of links used.

RLS Randomised Local Search.
λh(f) A flow after the h-th move from an initial flow f (λ0(f) = f and λh(f)

is obtained by a single move of one players flow from λh−1(f)).
cj A capacity of link j.
cmax The ratio of largest to smallest non-empty link capacities.
fmax The ratio of largest to smallest player flow.
P (λh) A potential of flow λh ( P (λh) =

∑
j∈E(fj(λh))2/cj +∑

i∈M (f i)2/cf i(λh)).
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Preface

This thesis is mainly my own work and the sources from which material is drawn are
identified within. Chapter 1 and 2 contain introductory materials, literature review,
notations, definitions, properties and examples of which are drawn from various authors
from several related works, in particular from Roughgarden and Tardos [RT02] more
than others. Chapter 4 is based on the paper [GP07] that has been co-authored by
Paul Goldberg, and is intended to submit for publication. Chapter 5, is an extension
of Goldberg’s work [Gol04]—namely in [Gol04] identical links are considered while we
consider variable-capacity links. Some definitions and notations in that chapter are
borrowed from Even-dar et al.’s work [EDKM07], for instance the potential function.
Finally Section 5.3 is drawn from [Gol04] to demonstrate the distributed version of the
Randomised Local Search.
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Abstract

We study a class of games in which a finite number of “selfish players” each controls
a quantity of traffic to be routed through a congestion network in which n directed
links are connected from a common source to a common destination. In particular, we
investigate its equilibria in two settings.

Firstly, we consider a splittable flow model in which players are able to split their
own flow between multiple paths through the network. Recent work on this model has
contrasted the social cost of Nash equilibria with the best possible social cost. Here
we show that additional costs are incurred in situations where a selfish “leader” player
allocates its flow, and then commits to that choice so that other players are compelled
to minimise their own cost based on the first player’s choice. We find that even in simple
networks, the leader can often improve its own cost at the expense of increased social
cost. Focussing on a two-player case, we give upper and lower bounds on the worst-case
additional cost incurred.

Secondly, we study the computation of pure Nash equilibrium for a load balancing
game with variable-capacity links. In particular, we consider a simple generic algorithm
for local optimisation; Randomised Local Search (RLS), which can simulate a network
of selfish users that have no central control and only interact via the effect they have
on the cost latency functions of links. It is known that an algorithm with series of
self-improving moves will eventually reach the Nash equilibrium. Our contribution here
is to show furthermore that Nash equilibria for this type of games are reached quickly
by RLS.
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Chapter 1

Introduction

This thesis concerns the computation of equilibria in congestion networks. A congestion
network is a directed graph in which a routing cost of each edge increases as a traffic on
it increases. What happens when two or more players want to route their traffic through
links in the network? Naturally, every player acts selfishly, choosing a routing strategy
that will minimise its cost, without regard to other players’ cost. Certainly, every
player would expect the other players to behave in a similar egocentric fashion. Such a
network is called non-cooperative model and a famous example of it is the Internet. A
non-cooperative model has become increasing important in computer science and game
theory community.

A non-cooperative model is extensively studied in game theory community. Game
theory is the study of multi-person decision problems. A game is a mathematical rep-
resentation of the phenomena when decision-makers interact. A game consists of a set
of players, a set of strategies available to those players and a specification payoffs for
each combination of strategies.

1.1 Background

To introduce and motivate the questions investigated in this thesis, let us informally de-
scribe two basic games. The first is “Cournot competition” (sometimes called “Cournot
duopoly” in economics as the model represents a market with only two producers),
which was introduced by Cournot in 1838. The second is “congestion game”, which was
introduced by Rosenthal in 1973 [Ros73a].

1.1.1 Cournot Competition

Imagine there are two firms in the market that produce the same good. Suppose that
the cost experienced by each firm increases as the output it produces increases. All the

1



2 CHAPTER 1. INTRODUCTION

output is sold at a single price, determined by the demand for the good and the firms’
total output. Suppose that the market price decreases as the total output increases
(unless it is already zero). Each firm’s revenue is its output times price. Thus each
firm’s profit is its revenue minus its cost.

Assuming both firms are selfish, namely each firm wants to achieve the highest
possible profit, typical question to be asked would be what quantities q1 and q2, will
firm 1 and firm 2 manufacture respectively? Assume that both firms make their decision
simultaneously and independently; initially, each firm chooses to manufacture a quantity
that will minimise its cost without information of the other firm’s output. Both firms are
allowed to change their output provided that, after the change, their profit will increase.
After a long enough sequence of changes, we would expect the market to reach a stable
state in a sense that no firm can increase its profit by changing its output unilaterally.
This stable state is known in the game theory community as a Nash equilibrium.

Suppose that firm 1 has a Stackelberg leadership. That is firm 1 chooses what q1

at the start of the game and has to fix to that q1, then firm 2 chooses q2, knowing
the output chosen by firm 1. To find the Nash equilibrium in this case, firstly, for
any output q1, player 1 knows that player 2 will always manufacture the output that
maximises its profit. Suppose that for each output q1 of firm 1 there is one such output
of firm 2; denote this with b2(q1), thus the total output is q1 + b2(q1). Intuitively, firm 1
manufactures q1 that together with its corresponding b2(q1) maximises its profit.

It has been noticed that in the situation where firm 1 has the Stackelberg leadership,
it produces more output and obtains more profit than the situation where both firms
chooses a good to produce simultaneously. Subsequently, firm 2 produces less output
and obtains less profit in the sequential-move scenario than it does in the simultaneous-
choose scenario. More importantly, it turns out that firm 1’s profit rises by a lesser
amount than firm 2’s profit falls, thus the aggregate profit is lower. (see e.g. 2.1.B
in [Gib92] for more details)

1.1.2 Congestion Network Game

The Cournot competition suggests two interesting observations: the entire network can
be worse off with a Stackelberg leader than the standard Nash setting, and a sequence
of “self-improving” moves could lead to an equilibrium in the market. Next, we consider
a congestion network game which has been studied recently by researchers in computer
science as a basic foundation of routing information in a computer network. Our con-
centration will be on the loss of network efficiency in a model with a Stackelberg leader
from the model where all players simultaneously compete for their minimal costs.

We begin by imagining there are two players that wish to route a flow from the same
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source to the same destination through a shared network. Suppose that each player can
split its flow arbitrarily across all links in which each player experiences a cost of using
each link that is proportional to the sum of the total flow sharing that link. Thus, the
total cost experienced by each player is the sum over all links of the cost of using each
link. Again we assume that both players are selfish, want to minimise their own cost
without regard to the cost that the other player might suffer from the decision it makes.
If we let the game runs with both players making their decision simultaneously and
independently, similar to the Cournot competition, we expect the network to eventually
reach the Nash equilibrium after a long enough sequence of flow changes.

Suppose that player 1 has a Stackelberg leadership. Being selfish, player 1 may find
that it pays to route more flow on “cheaper” links, forcing player 2 to route less flow on
those links, but more flow on “more expensive” links than it does in the simultaneous
setting.

For a better explanation, imagine an example of the network that has two parallel
links. The cost of using link 1 equals the total flow on it, and the cost of using link 2
equals twice the total flow on it plus 1. Each player has one unit of flow to route.
Assume that player 1 routes the fractions f1

1 and f1
2 of its flow on link 1 and link 2

respectively. Similarly, assume that player 2 routes the fractions f2
1 and f2

2 of its flow
on link 1 and link 2 respectively. The total cost experienced by player 1 is f1

1 times the
total flow on link 1, plus f1

2 times the total flow on link 2. The total cost experienced
by player 2 is f2

1 times the total flow on link 1, plus f2
2 times the total flow on link 2.

The social cost is the sum of player 1’s cost and player 2’s cost.

The Nash equilibrium in this setting is the point when both players route 7/9 of
their flow on link 1 and the rest on link 2. When player 1 has the Stackelberg leadership,
it could have achieved its cost at the Nash equilibrium, but chooses to play differently
if that means its individual cost will be lower. It finds that overusing link 1 will force
player 2 to move some of its flow from link 1 to link 2, which will result in a lower
cost for player 1. Specifically, player 1 routes 5/6 on link 1 inducing player 2 to route
3/4 on link 1, i.e. 1/36 less than it does at the Nash equilibrium. Consequently, in
the simultaneous-move setting, the cost of both player 1 and player 2 are 1.63, and the
social cost is 3.26. In the sequential-move setting, the cost of player 1 is reduced to
1.62, but the cost of player 2 increases to 1.65, as a result, the social cost increases to
3.27. In summary, the cost of player 1 falls in the sequential-move setting by a lesser
amount than the cost of player 2 rises in the sequential-move setting.

We have just reaffirmed that there may be an additional cost in a Nash equilibrium
when one of the players is allowed to have a Stackelberg leadership, over and above the
standard simultaneous-setting Nash equilibrium. In this thesis, we study this additional
cost. Specifically, we consider a two-player game in a network with n parallel links where
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each link has an non-decreasing convex latency function. Each player has a quantity
of flow that can be split across available links. All players are assumed to be selfish
and will route their flow to minimise their personal cost. In order to gain a better
understanding of this principle, we study the computation of Nash equilibrium in these
networks, thus developing techniques and mathematical tools for quantifying the worst
additional social cost due to a selfish Stackelberg leader in this setting.

1.1.3 Nash Equilibrium

Nash equilibrium is arguably one of the most fundamental concepts in game the-
ory [Osb94]. It is well known to be named after John Nash for his contribution in
the 1951 paper [Nas51] that proved that, in any game with a finite number of actions,
at least one equilibrium exists. Thereafter, Nash equilibrium has been studied exten-
sively in many contexts by many researchers of many different fields. For the past few
decades, researchers in theoretical computer science have been trying to create a foun-
dational understanding of the selfish behaviour of users in the Internet. It seems that a
natural tool to analyse this class of problems may come from that of the noncooperative
game theory, and an appropriate solution concept is that of Nash equilibrium.

However, the original notion of Nash equilibrium studied by Nash has limitations in
representing the present-day Internet. First, the classical Nash equilibrium that arises
in a game has a finite set of players, while in the today Internet, there are so many
users that it could be deemed as infinitely many user network. Second, in the classical
Nash equilibrium, all players are assumed to have “perfect-information”, that is every
player knows what every other players do. This is impossible with the astronomical
scale of the Internet and the limited amount of time for each player to choose a path
for transferring data.

There are a few alternative approaches that we can see being a mathematical rep-
resentation of the Internet. For example “Selfish routing” initialised by Roughgarden
and Tardos [RT02] considers a simpler network in which there are an infinite num-
ber of infinitesimally small players. A Nash equilibrium in this setting is often called
“Wardrop’s first principle” which states that all users choose a minimal-cost path to
route their traffic (we briefly discuss the computation of Nash equilibrium in this setting
in Section 2.3). Another possible alternative is an approximate Nash equilibrium of a
model where each user is restricted to some constraints, e.g. a user only aware of other
“nearby” users’ traffic activities.
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1.1.4 The Problem Statements

Interesting classes of noncooperative games are congestion games [Ros73a] and its equiv-
alent model of potential games [MS96]. Recent works on Nash equilibrium in congestion
games can be briefly summarised as follows:

1. Quality of Nash equilibrium:

(a) the existence and uniqueness of Nash equilibria with distinct cost functions
in a system of selfish players.

(b) the loss of social welfare due to selfish, uncoordinated behaviour by comparing
the social cost of Nash equilibrium with the socially optimal cost.

2. Computation of a Nash equilibrium:

(a) via “unrestricted algorithms”.

(b) via algorithms that simulate selfish behaviour.

In this thesis, we study two of those topics: 1b and 2b. Regarding the problem of the
quality of Nash equilibrium, it is known that a Nash equilibrium is suboptimal [RT02].
Furthermore, as we have shown in examples of Cournot competition and congestion
network game, there can also be an additional cost to the Nash equilibrium of a network
that has a Stackelberg leader. We are interested to know how much is the additional
social cost because of a selfish leader, specifically in two-player games?

Regarding the problem of the computation of Nash equilibrium, we study a simple
generic algorithm for local optimisation called Randomised Local Search that can con-
struct a Nash equilibrium. It is known that there are efficient algorithms for finding
a Nash equilibrium (e.g. [FKK+02, EDKM07]). The main reason we are interested in
studying Randomised Local Search is because it can be realised by a simple distributed
network of selfish users that have no central control and only interact via the effect they
have on the latency functions of links, hence simulates a real network of internet users.

For this problem, the model will be slightly different from that of the problem of
the quality of Nash equilibrium. We concentrate on a finite number of players, rather
than just two players usually assumed in the previous problem. Moreover, each player
chooses a single link to route its flow, rather than splitting its flow across available links.
This is called pure strategy. An opposite strategy to pure strategy is mixed strategy in
which each player decides on a probability for each pure strategy. By restricting to pure
strategy, we always have, at least, one pure Nash equilibrium in our setting [FKK+02,
EDKM07].

Consider the congestion game shown in Subsection 1.1.2, Randomised Local Search
(RLS) could construct a Nash equilibrium as follows. At each step, RLS selects a
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player and a link uniformly at random. The player moves its flow to that link if its
resulting cost is lower. It is known (e.g. [EDKM07, FKK+02]) that an algorithm with the
sequence of such “self-improving” moves in this particular setting must eventually reach
a Nash equilibrium. Clearly, RLS will not make a self-improving move on every attempt,
however, we show that RLS has a high enough probability of selecting a successful
attempt to construct a Nash equilibrium quickly.

For this topic, we will be concentrating on a potential game framework. In a potential
game, there is a potential function which maps a current state of the game to a real
number (in our situation, a state would mean the assignment of flows to links). Thus,
in our RLS, the move happens when the resulting potential is lower. If the change to
player costs and that to the potential function caused by a move of a single player flow
is related by a factor that only depends on that player, the game is called “weighted
potential game” which is what we will be focussing on. (For other types of potential
games see previous works later in this chapter or [MS96].)

Our focus will be on the load-balancing model introduced by Koutsoupias and Pa-
padimitriou [KP99], that is intended to model a simple version of the Internet of users
and service providers. A load balancing game is essentially equivalent to a two nodes
connected by parallel links. We consider a scenario where each player controls a non-
negligible flow.

The problems being studied in this thesis can be summarised as follows:

• How much is the loss of social welfare due to a selfish leader, especially in the
two-player scenario? The problem is extensively studied in Chapters 2–4.

• Does RLS converge quickly to a Nash equilibrium in a load balancing game? In
Chapter 5, we present convergence rate bounds of RLS to address this problem.

1.2 Our Contributions

Our contributions can be categorised into two main topics. In Subsection 1.2.1 we
describe the results in Chapter 3 and 4, and the results, which are described in Subsec-
tion 1.2.2, are based on the study in Chapter 5.

To describe our results more precisely, we must be more formal about our model of
selfish routing in a congestion network. We consider a parallel-link network in which
there are n links, all of which directing from a common source node to a common sink
node. Each link has a latency function as a function of the link congestion on it. We
assume that all latency functions are non-negative, non-decreasing and convex. There
are m players, each of which controls a non-negligible flow to be routed from the source
to the sink. In Chapter 3 and 4, we assume player flows are splittable, while unsplittable
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flow is studied in Chapter 5. For the splittable flow scenario, each player experiences
the cost that is the sum, over all links used by that player, of the amount of that player’s
flow on that link multiplied by the latency of using that link, while, for the unsplittable
flow case, each player experiences the total cost of the link which that player uses.

We assume that every player will always choose a routing strategy, namely an as-
signment of flow, that will minimise its cost. As the route which is chosen by one player
affects the congestion (and hence the latency) experienced by others, it is natural to
apply the theory of a non-cooperative game. Following the conventions of the non-
cooperative game, the network is at Nash equilibrium if no player can reduce its cost
by unilaterally changing its routing strategy. The network is called system equilibrium
(SE) [CP91] when the network has a minimal-possible total cost.

1.2.1 Bounding the Price of Selfish Stackelberg Leadership

In Chapters 3 and 4, our focus is on a network of two players, each with a non-negligible
splittable flow. We call a player a leader if it has a Stackelberg leadership, that is, a
leader chooses its routing strategy before others. The leader is not allowed to change
its routing strategy afterwards. The other player(s) is called follower(s). The followers
react to the leader’s strategy, reaching the Nash equilibrium relative to it. In the case
of two-player games in which we will be study mainly in Chapter 4, the follower will
treat the leader’s flow as constant, and will try to achieve a system equilibrium relative
to the modified network. In other words, the follower will behave like an optimal
flow relative to the modified network after the leader has played. The network is at
Stackelberg equilibrium when the flow of the followers reaches a Nash equilibrium, or,
in the case of two-player games, the follower reach a system equilibrium. We call
the Stackelberg equilibrium where the leader’s cost is minimal the selfish Stackelberg
leadership equilibrium (which will often be shortened to SSL equilibrium).

The main objective is to obtain bounds on the additional social cost caused when
one of the players becomes a leader. We define the worst ratio between the social cost
at Nash equilibria and that at SSL equilibria, the price of selfish Stackelberg leadership
(which will often be shortened to the price of SSL).

Even though, a game of two players is one of the most basic models studied in non-
cooperative game theory, it is arguably one of the most studied games. Many classical
examples are two-player games, for instance Cournot competition which we have shown
earlier, the prisoner’s dilemma which famously illustrates that Nash equilibrium is sub-
optimal, and the battle of sexes which shows that there could be more than one pure
Nash equilibria.

In Chapter 2, we give the basic definitions and preliminary technical results needed in
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the rest of this thesis. The technical results, which are shown in Section 2.2–2.4, include
techniques for finding a system equilibrium, a Nash equilibrium and a SSL equilibrium.
By using the techniques, we demonstrate the social costs of several alternative network
set-ups to not only show the positive price of SSL, but also compare and contrast to
other problems studied in related works.

In Chapter 3, we study lower bounds on the price of SSL for various latency function
forms. From examples shown in Chapter 2, we notice that, different sets of coefficients
of latency functions and a player fraction can generate different prices of SSL. This has
raised a few questions which lead us to the experiments in Chapter 3. In Chapter 3, we
optimise the price of SSL with respect to coefficients of latency functions and a fraction
of player flows in simple restricted networks. The latency functions considered are affine
linear, quadratic, cubic and quartic. We solve the optimisation problem by using a local
search algorithm that is based on Hill climbing (see e.g. [RN03] for more detail on
Hill climbing). We found that, for the network of two players, both with access to two
parallel links, each of which has affine linear latency functions, the price of SSL can be
as high as 1.075. For polynomial latency functions, we found the price of SSL of 1.091,
1.135 and 1.161 for quadratic, cubic and quartic latency functions respectively. For an
asymmetric network that has two private links which only the owner of that link can
use, and one shared link; every link has a linear latency function, we show the price of
SSL of 1.074. These prices of SSL establish lower bounds.

In Chapter 4, we study upper bounds on the price of SSL. Our focus will be on
linear latency functions. If the latency functions are homogenous—homogenous linear
functions are in the form of f(x) = ax where a > 0, not only is there no price of
SSL, but also all players split their flows in a uniform way. For the case of affine linear
latency functions, we show that the price of SSL is at most multiplicative constant (thus,
independent of the number of links) at most 1.322. This upper bound corresponds to
the lower bound of a multiplicative factor of 1.075.

1.2.2 Bounding the Convergence Rate of Randomised Local Search in

a Load-balancing Game with Variable-capacity Resources

In contrast, in Chapter 5, we are concerned with an algorithm that can construct a Nash
equilibrium and the time it takes to reach a Nash equilibrium, rather than the quality
of Nash equilibrium. Our focus is still on the parallel-link network. However there
are some crucial differences between this chapter and the previous chapters. First, we
consider m players in this chapter while two-player games are considered in the previous
chapter. Moreover player flows are restricted to be integer, and the total flow is not
necessarily one as previously assumed in the previous chapters. And finally player flows
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are unsplittable, that is each player chooses a single link to route its flow.

We assume that all player flows are positive integer in the range {1, . . . , fmax} where
fmax denotes the ratio of the maximal to the minimal player flow. Every link in the net-
work has a capacity which is assumed to be a positive integer in the range {1, . . . , cmax}
where cmax denotes the ratio of the maximal to the minimal capacity. This model is
equivalent to the parallel-link network in which each link has a homogeneous linear
latency function of the form f(x) = ax, where the coefficient a is a fraction of one over
the capacity of that link.

We study a simple generic local search called Randomised Local Search (RLS). An
attempt is the process via RLS of selecting a single player and a single link uniformly at
random. If the selected player can reduce its cost by transferring its flow to the selected
link, then that attempt is successful. We call a successful attempt a move. We study
the number of attempts RLS takes to reach a Nash equilibrium.

We show that RLS can be realised in a distributed setting and present a distributed
version of RLS that can be executed by all players simultaneously in non-cooperative
games.

Two upper bounds are proved for the expected number of attempts for Nash conver-
gence via RLS. Firstly, we quickly obtained an upper bound of O(m3n(fmax)2(cmax)2).
Secondly, with a more detailed analysis, we prove an alternative upper bound of
O
(
n(mcmaxfmax)2(n + cmaxfmax)

)
. We consider the later bound to be better in a sense

that the number if players m decreases from cubic to quadratic, and could be linear in
the distributed setting.

1.3 Previous Work

In this section, we describe and compare some previous works related to the problems
studied in this thesis.

Selfish Routing

The term “selfish routing” was initialised in computer science mainly by Roughgar-
den and Tardos in [Rou05a, RT02] to represent a model of non-cooperative, selfish
users simultaneously active in transportation networks. However, the original concept
was formally formulated as far as the work of Beckmann et al. in 1955 [BMW55].
Most of the early works considered the selfish routing in transportation models, until
Rosenthal [Ros73a, Ros73b] described how the transportation model can be naturally
generalised to a more abstract setting, and introduced the name “congestion game” for
the model in 1973.
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Even though, a selfish routing in congestion games has been studied extensively
thereafter, it was not until 1999 that the idea of quantifying the cost of selfish routing
was proposed by Koutsoupias and Papadimitriou [KP99]. The main idea is to mea-
sure how much selfishness can degrade the overall performance of a system. The term
coordination ratio was used as a tool to measure the degradation in that paper, but
later Papadimitriou replaced it with the new term, the “price of anarchy” in [Pap01].
The term mathematically represents the ratio of the cost in the worst possible Nash
equilibrium to the best possible social cost.

The concept of the price of anarchy of selfish routing has been studied in numer-
ous variants and generalisations. Two of the earliest works that studied the concept
are [KP99, RT02]. Koutsoupias and Papadimitriou [KP99] studied a simple parallel-
link network (though it was called a load-balancing network in that paper) which
is one of the most commonly studied network topologies in computer science (e.g.
[CV02, KLO97b, KP99, MS01, ORS93, Rou04]). In that work, each user chooses a
probability based on the set of links (specifying the probability that the user will route
all of its flow on a given link). Each user wishes to minimise the expected cost it will
experience, while the global objective is to minimise the maximum expected latency.
They obtained a tight analysis of the price of anarchy in two-node, two-link networks
and obtained partial results for two-node networks with three or more parallel links.

Roughgarden and Tardos [RT02] studied the price of anarchy in a nonatomic model,
in which there is an infinite number of players, each of whom controls a negligible
amount of traffic. For a general network, they proved that, if the latency of each link
is a linear function of its congestion, then the price of anarchy is at most 4/3. For
the more general setting in which the edge latency functions are assumed only to be
continuous and nondecreasing in the edge congestion, they showed that the price of
anarchy is unbounded; however, the social cost of selfish users is no more than the
total cost incurred by optimally routing twice as much traffic (see the book [Rou05a]
by Roughgarden for a good overview of the price of anarchy).

The Price of Selfish Stackelberg Leadership

In contrast with the previous works on selfish routing that study games in the simulta-
neous setting, namely every player play a game simultaneously, we are interested in the
model of having one of the players acts as a leader who will select its strategy before
others. If the leader hold its strategy fixed, the other players react to the modified
network, reaching the Nash equilibrium relative to it. This model is described in the
game theory community as a Stackelberg game, and its corresponding equilibrium is
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known as a Stackelberg equilibrium. The Stackelberg game is named after von Stack-
elberg [von34] who originally considered the model of two competing companies. He
introduced the idea of two-stage game; the leader choosing a strategy in the first stage,
and the follower choosing a strategy in the second stage, with full knowledge of the
leader’s strategy.

Many works have studied the Stackelberg games and the corresponding Stackelberg
equilibria in congestion games, for example [CS07, ES90, KS06, KPS05, KK07, KLO97a,
KM02, Rou04, Swa07, YZM07]. Problems that recent works have considered in the
Stackelberg game include

• What is the loss (or gain) of efficiency of the system with a Stackelberg leader?

• What is the impact of the following leader behaviours:

1. A selfish leader—a leader whose objective is to minimise its own cost.

2. A benign leader—a leader whose objective is to achieve the lowest possible
social cost of the system.

3. A malicious leader—a leader whose objective is to maximise the social cost
of the system.

Most of the recent works on the Stackelberg games considered the benign leader in
the context of network flow as a tool for mitigating the degradation due to selfish users,
for instance [CS07, KS06, KPS05, KLO97a, Rou04, Swa07]. The fraction of the flow
that is controlled by the leader is routed so as to minimise the social cost in the presence
of followers who minimise their own cost. One of the earlier works that studied this
problem was by Korilis et al. [KLO97a]. They considered a model of a finite number
of players, each with a splittable flow in a parallel-link network with linear latency
functions. They proposed the leader’s guaranteed-optimal strategy and methodology
to derive it. Roughgarden [Rou04] investigated the same parallel-link model, but with
infinitely many infinitesimal followers. He showed that it is NP-hard to find an optimal
strategy for the benign leader in this setting. Furthermore, he proved that if an α

fraction of the overall traffic can be globally regulated, then for an arbitrary class of
latency functions, there is a strategy that ensures that the price of anarchy is at most
1/α. For the same model, Kaporis and Spirakis [KS06] analysed the least portion of a
total flow that the leader must have in order to enforce the optimal system cost.

In contrast to other recent works on the Stackelberg games in congestion networks,
we are interested in the impact of a selfish leader on the networks. We consider a
basic model in which there are one leader and one follower, each with a non-negligible
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splittable flow1. We study an additional social cost occurred when the leader chooses
the strategy that will minimise the leader’s cost, by predicting what the followers will
do afterward to maximise their own costs.

We denote the additional social cost induced by a leader with the price of selfish
Stackelberg leadership. The concept of the price of SSL, as far as we know, has never
been formally studied even for a simple two-player game studied in this thesis. However,
there have been observations of this additional cost, for example, in Cournot competi-
tion, Gibbon [Gib92] pointed out that a follower profit falls more than a leader profit
rises when compare to the standard Nash equilibrium.

Nash equilibrium

In this thesis, we study Nash equilibrium of the atomic splittable model. Nash equilib-
rium is a solution concept of a game involving two or more players. The original concept
was first developed by Cournot in 1838 for pure strategies in a two-player game. Back
then Nash equilibrium was called Cournot equilibrium. It was a long time after then
before von Neumann and Morgenstern [vM44] introduced Nash equilibrium for mixed
strategies and showed that a mixed-strategy Nash equilibrium will exist for any zero-sum
game2 with a finite set of actions in 1944. In 1951, Nash [Nas51] had a breakthrough
result by showing that a mixed strategy Nash equilibrium for any game with a finite set
of actions must exist.

Many researchers have pursued existence and uniqueness results of Nash equilibrium
for the atomic model and several extensions. Orda et al. [ORS93] showed that the Nash
equilibrium of a network of two nodes connected by parallel links each of which has
a convex latency function always exists. This fact is used in out thesis to guarantee
the existence of Nash equilibrium. They further proved that if latency functions are
increasing functions, the Nash equilibrium is unique. They proved their theorems using
the classical existence theorem of [Ros65]. Independently, Harker [Har85] proved the
same facts using the theory of variational inequalities. Altman et al. [ABJS00] extended
the uniqueness results to general networks for a restricted class of latency functions.
Haurie and Marcott [HM85] showed that the Nash equilibrium for the nonatomic model
is the unique limit of any sequence of Nash equilibria obtained for a sequence of the
atomic splittable games in which the number of players is finite and tends to infinity.

1A model where there are finitely many players each with non-negligible spittable flow is sometimes
called an atomic model, and a player in the model is called atomic player.

2A game in which a player’s gain or loss is exactly balanced by the losses or gains of the other
player(s). If the total gains of the players are added up, and the total losses are subtracted, they will
sum to zero.
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The Convergence Rate of RLS

In Chapter 5, We consider a simple generic algorithm called Randomised Local Search
(RLS) since it is similar to “randomised local search” that is studied in other contexts.
Because of its generic and simple to implement, RLS is used in many problems, especially
as a generic optimisation method ([GW03, NW07, Weg03, WW05]). For example, given
a binary string of length m with a function f : {0, 1}m → R to be optimised, RLS
can be used to flip repeatedly a random bit. The change is accepted whenever f is
higher for the modified string. In the context of minimum spanning tree [NW07] and
maximum matching [GW03], a variant of RLS is used where two bits may be flipped
simultaneously. In our setting, an assignment is an element of {1, . . . , n}m where m is
the number of players and n is the number of links. RLS repeatedly replaces a random
entry of this vector by a random element of {1, . . . , n}, and accepts the new assignment
if its potential value of f is lower. RLS is a variant of the more extensively studied
(1+1) Evolutionary Algorithm of [DJW02].

We study a congestion game in a framework of a potential game which was in-
troduced by Monderer and Shapley [MS96]. In a potential game, there is a potential
function which maps a flow configuration to a real number. Comparing the change
in player’s cost with that in the potential function as a result of that player deviates
its route, Monderer and Shapley categorised a class of potential games as follows. In
an exact potential game, the change are identical. In a weighted potential game, the
changes are related by a factor that depends only on the player. In an ordinal potential
game, the changes are in the same direction, while, in a generalised potential game,
a decrease in a players cost implies a decrease in the potential function (but not vice
versa). In this thesis, we borrow the potential function from [EDKM07] in which the
game is proved to be a weighted potential game.

Our focus in this topic is on pure strategies in a parallel-link network network with
arbitrary capacities. It was shown by Fotakis et al. [FKK+02] how to find a pure-
strategy Nash equilibrium in polynomial time with respect to the number of players in
the model. In the same setting, Feldmann et al. [FGL+03] termed an algorithm that
constructs a Nash equilibrium from an arbitrary state without increasing the social cost,
a Nashification algorithm. They showed that an algorithm that allows an unsatisfied
player to move using its best strategy may take time exponential in the number of
players, for both identical link and links with arbitrary capacities.

We consider an integer flow setting, i.e. all players flow are positive integer. Even-
dar at el. [EDKM07] proved an upper bound for the time an self-improving algorithm
takes to reach a Nash equilibrium. The bound is of O(W 2c2

max) where W denotes the
maximal total weight of players. Note that W would be equivalent to mfmax in our
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notation system.
With regard to random algorithms constructing Nash equilibria, Even-dar at el. [EDKM07]

studies “Random” algorithm, in which at each step a player is randomly selected; then
its flow is moved to the lowest-cost link. They obtained an upper bound of O(W +m) for
identical links. In the same model, Goldberg [Gol04] studied RLS and proved a bound
of O(n2mfmax) for the integer flow setting. The work in this topic in this thesis is mo-
tivated by [Gol04] and somewhat an attempt to extend [Gol04]. For unrestricted-flow,
Goldberg also proved an upper bound of O(f2

maxn
4m5 log(mn)).

1.4 Thesis Outline

The rest of the thesis is organised as follows. The notations of the model and the basic
definitions are formally given in Chapter 2. This is followed by the definitions and
computational methods of the three equilibrium concepts; System equilibrium, Nash
equilibrium and SSL equilibrium. We end Chapter 2 with Pigou’s example, in which
we study a simple two-node, two-parallel-link network in various set-ups.

The methods used to compute the equilibria described earlier are used in Chapter 3
in our optimisation program to find the lower bound of the price of SSL. We give several
examples which shows that the price of SSL in a simple two-parallel-link networks with
latency functions that are linear, quadratic, cubic and quartic, and a simple asymmetric
network where two links are private links and one link is a shared link: every links have
linear latency functions. The upper bounds on the price of SSL for the two players in a
parallel-link network with linear latency functions are proved in Chapter 4. We end the
chapter with the results showing that the price of SSL for homogeneous linear latency
functions is one and Nash flow and SSL flow are identical and unique.

We study RLS in load balancing games in Chapter 5. We show a distributed version
of RLS before proving the upper bounds on the number of attempts RLS take to reach
a Nash equilibrium for players with integer flow.

Finally, the conclusions and possibilities for future works are discussed in Chapter 6.



Chapter 2

Preliminaries

In this chapter, we present the notations, basic definitions and properties needed for
the rest of the thesis. In Section 2.1, we give the formal definitions and notations of the
models. We discuss the characteristics and techniques for finding a system equilibrium,
a Nash equilibrium and a SSL equilibrium in Section 2.2, 2.3 and 2.4 respectively.
Finally, in Section 2.5, we present a simple example that whereby using techniques
for finding the equilibria shown in the earlier sections, demonstrates the social cost of
several alternative network set-ups. The social costs will not only show the additional
social cost that could arise in a SSL equilibrium over that in a Nash equilibrium, but are
also used to compare and contrast the problem studied in this thesis with the previous
works discussed in Section 1.3.

2.1 The Model

We consider a directed network G = (N,E), where N is a set of nodes (or vertices) and
E is a set of links (or edges). We consider a special case where there are two nodes in N ,
where we call one of the nodes a source and the other node a sink. A link is a directed
link that connects the source node to the sink node. We denote n the number of links
in E, i.e. |E| = n. For each link j ∈ E, we define a latency function ℓj : R+ −→ R+ as
the cost of using link j which is a function of the load on j. We will generally assume
that latency functions are non-negative, continuous and non-decreasing.

We denote a set of noncooperative players by M and the number of players by m.
Each player routes its flow from the source to the sink by splitting its flow over the set of
available links. For each player i ∈ M , f i ∈ R+ denotes an amount of flow belonging to
player i, (in the related literature, flow is sometimes called “weight” or “demand”), and
f i

j denotes a non-negative flow of player i assigned to link j. Let f i = (f i
1, . . . , f

i
n) denote

a strategy (or a player flow) of player i that represents a partition of f i amongst all n

15
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links in E. Let a flow f = (f1, . . . , fm) denote a combination of player strategies, one
for each player (A flow is sometimes called a player profile, or a solution). Let f ∈ R+

denote an amount of the total flow in the system. A flow f is feasible if f =
∑

i∈M f i.
Furthermore, let w denote a weight vector (f1, . . . , fm) that specifies how much flow
each player has.

Given a total flow f , fj ∈ R+ denotes the portion of f on link j ∈ E, i.e. f =
∑

j fj .
We usually assume (by re-scaling as necessary) that the total amount of flow is one
(unless we explicitly state another quantity). Regarding the latency functions ℓj , if fj

is the flow routed on j then the latency of link j is ℓj(fj). It is sometimes useful to let
ℓj denote ℓj(fj).

We often denote one of the players as player 1 and the other as player 2. Also, we
call the leader player 1, and the follower player 2 in the case where one of them is a
leader.

Definition 2.1.1. The cost experienced by a player with respect to a flow f = (f1, . . . , fm)
is the sum, over all links used by that player, of the amount of that player’s flow on that
link multiplied by the cost of using that link. (The cost of the link is of course affected
by the other players’ strategies.) The cost of player i under the flow f is denoted by

Ci(f) =
∑
j∈E

f i
jℓj(fj). (2.1)

We often use Ci for the cost of player i, dropping f , if the reference to the flow is
clear from the context or unnecessary. It is useful sometimes to denote Ci

j = f i
jℓj(fj)

the contribution to player i’s cost from link j, thus

Ci =
∑
j∈E

Ci
j .

We define a social cost C(f) with respect to a flow f as the sum of the individual
players’ costs:

C(f) =
∑
i∈M

Ci(f). (2.2)

Again, we often use C instead of C(f). A social cost can also be expressed as the
sum over all links, of the flow on that link multiplied by the cost of using that link:

C =
∑
j∈E

fjℓj(fj). (2.3)

With respect to latency functions, our results usually apply to certain subclasses of
latency functions, that have been considered in the literature and can be listed with a
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formal definition in an incremental order of general form as follows.

• Homogeneous linear function is a linear function of the form ℓj(fj) = aj(fj) where
aj > 0.

• Affine linear latency function is a linear function of the form ℓj(fj) = aj(fj) + bj

where aj ,bj ≥ 0.

• Polynomial function has a general form of ℓj(fj) = aj,d(fj)d + aj,d−1(fj)d−1 +
. . . + aj,1(fj) + aj,0 where d is nonnegative integer and aj,0, . . . , aj,d are constant
coefficients where aj,d ̸= 0. In particular we consider

– Quadratic function: d = 2.

– Cubic function: d = 3.

– Quartic function: d = 4.

• Convex function.

Since all the above functions are convex, we give a formal definition of convexity as
follows.

Definition 2.1.2. [NW99] Convexity

1. S ∈ Rn is a convex set if the straight line segment connecting any two points in
S lies entirely inside S. Formally, for any two points x ∈ S and y ∈ S, we have
αx + (1 − α)y ∈ S for all α ∈ [0, 1].

2. f is a convex function if its domain is a convex set and if for any two points x and
y in this domain, the graph of f lies below the straight line connecting (x, f(x)) to
(y, f(y)) in the space Rn+1. That is, we have

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y),

for all α ∈ [0, 1].

For the rest of this thesis, we will assume that for every link j ∈ E, fj · ℓj(fj) is
convex. Under this assumption, every cost function C(·) is convex. This gives us a
useful property which states that any local optimal solution is a global solution in an
optimisation problem where the objective function is convex (see e.g. Nocedal [NW99]).
This becomes very useful for the problem of optimising C(·).

We usually assume that links are indexed in increasing order of marginal costs at
zero flow, i.e. ℓj(0). For example, links are indexed in increasing order of bj for networks
with linear latency functions.



18 CHAPTER 2. PRELIMINARIES

2.2 Optimal Flows

In this subsection, we note some basic facts and behaviours of optimal flows—flows with
minimal-possible social costs. In [CP91], an optimal flow is called “System Equilibrium”
(SE). We let fSE denote an optimal flow.

The objective of fSE is to optimise the social cost C(f) =
∑

j∈E fjℓj(fj) of a network.
Intuitively, when fSE has reached any locally optimal outcome, moving flow from one
link to another can only increase the cost of fSE. That means that the marginal benefit
of removing flow from any link is at most the marginal cost of adding flow to any other
link. Since we assume all cost functions are convex, any local minimum is a global
minimum. This condition should be necessary and sufficient for fSE to be globally
optimal. Before we formally formulate this idea, let us define a marginal cost of a given
latency function ℓ(·).

Definition 2.2.1. If ℓ(·) is a differentiable latency function, then the corresponding
marginal cost function is ℓ′(·) defined by

ℓ′(x) =
∂

∂x
(x · ℓ(x)). (2.4)

Given the definition of marginal cost function, we are ready to formalise an impor-
tant characteristic of the optimal flow in the following proposition. (The proof will be
omitted. See [BMW55] for a complete proof).

Proposition 2.2.2. [BMW55] Suppose we are given a network G. A flow f is an
optimal flow of G if and only if for every j and k ∈ E with fj > 0, ℓ′j(fj) ≤ ℓ′k(fk).

Briefly, Proposition 2.2.2 implies that, for a parallel-link network, the marginal cost
of using link j is equal to the marginal cost of using link k if both j and k have non-zero
flow in the optimal flow in the network.

Next, it will be useful, especially for Chapter 4, to consider a special case of affine
linear latency networks. Recall that a linear function is of the form ajfj + bj , for aj and
bj ≥ 0. The following lemma shows a characteristic of fSE when the latency functions
of a network are linear. Recall that w denotes a weight vector (f1, . . . , fm).

Lemma 2.2.3. [RT02] Suppose we have a network G with affine latency functions
ℓj(fj) = ajfj + bj, and a weight vector w to be routed on G. An optimal flow of G has
the property that 2ajfj + bj is the same for all links j on which fj > 0.

Proof. From Proposition 2.2.2, fSE is globally optimal if and only if for all j and k ∈ E

that are used, ℓ′j(fj) = ℓ′k(fk). By Definition 2.2.1, for every link j and k, we have

fj
∂ℓj(fj)

∂fj
+ ℓj(fj) = fk

∂ℓk(fk)
∂fk

+ ℓk(fk).
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In the linear context where ℓj(fj) = ajfj +bj , we are saying that for all j, fjaj +ajfj +bj

is the same, i.e. the result follows.

One consequence of the above observation is that all latencies end up within a factor
of 2 of each other (for links that carry non-zero flow).

Corollary 2.2.4. Let G be a network with affine linear latency functions. If f is an
optimal flow of G then the maximum latency of links used is at most twice the minimal
latency of links used, in f .

Proof. Suppose j is a maximal latency link and k is a minimal latency link in an
optimal flow of a given network G. If both j and k carry flow, then, from Lemma 2.2.3,
2ajfj + bj = 2akfk + bk. The ratio of the latency of j to that of k is

ajfj + bj

akfk + bk
=

2ajfj + bj − ajfj

akfk + bk
=

akfk + bk + (akfk − ajfj)
akfk + bk

≤ 2.

Another useful consequence from Lemma 2.2.3 is that the latency difference between
the two links that are used in fSE will end up being half of the difference of their marginal
costs at zero flow b.

Lemma 2.2.5. Let G be a network with affine linear latencies in the form ℓj(fj) =
ajfj + bj, and suppose links j and k both carry flow in an optimal flow fSE of G.
Assume j < k and bj < bk, and fSE

j denotes a flow of fSE on link j ∈ E. Then
ℓk(fSE

k ) − ℓj(fSE
j ) = 1

2(bk − bj).

Proof. If j and k both carry flow, then we noted from Lemma 2.2.3 that 2ajfj + bj is
the same for all j. Hence we have,

2
(
ℓk(fSE

k ) − ℓj(fSE
j )

)
= (2akf

SE
k + 2bk) − (2ajf

SE
j + 2bj)

= (2akf
SE
k + bk) − (2ajf

SE
j + bj) + bk − bj

= bk − bj .

Note that Lemma 2.2.5 implies the fact (shown in [HTW06]) that in the homogeneous
linear case (where all bj ’s are zero) the latencies are equal in an optimal flow. They also
showed that flows at Nash equilibrium will behave the same. We study the homogeneous
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linear case in details later in Section 4.5 and show that flows at SSL equilibrium have
the same property.

One consequence from Lemma 2.2.5 is that, if an optimal flow is routed through a
set of links, then, given our assumption that links are indexed in increasing order of bj ,
their latencies ℓj(fSE

j ) are sorted in increasing order of j.

Corollary 2.2.6. Let G be a parallel-link network with linear latency functions, and
suppose that links are labelled in increasing order of bj, i.e. j < k if bj ≤ bk. If f is
an optimal flow of G then the latencies ℓj(fj) are sorted in increasing order of j, i.e.
ℓj(fj) ≤ ℓk(fk) if bj ≤ bk.

Proof. Suppose, for a contradiction proof, that there are two links j and k such that if
f is an optimal flow of a given network G and bj ≤ bk then ℓj(fj) > ℓk(fk).

From Lemma 2.2.5, ℓj(fj)−ℓk(fk) equals (1/2)(bj −bk). However, from the assump-
tion, (bj − bk) ≤ 0 which implies that ℓj(fj) ≤ ℓk(fk). Hence the result follows.

2.2.1 How to Find an Optimal Flow

In this subsection, we demonstrate how to mathematically compute an optimal flow of
a given network G.

For general latency functions, we can find an optimal flow by solving the problem
argminf C(f). Using linear programming technique and by assuming all cost functions
are convex and differentiable, the solution to argminf C(f) can occur either at its sta-
tionary points or at points on its domain boundary. A stationary point is a point where
the derivative is equal to zero. (see e.g. [MT03] for more details).

Let us demonstrate this with a network of two parallel links. For this case, the
problem of finding the optimal flow fSE = (fSE

1 , fSE
2 ) can be reduced to the problem

of finding only fSE
1 , since, knowing fSE

1 , we can obtain fSE
2 with 1 − fSE

1 . Since we
assume that the total flow is one, the optimal flow must be fSE

1 = 0 or fSE
1 = 1 or the

critical point where ∂C(f)/∂f1 = 0. The following steps summarise how to compute an
optimal flow:

1. Let for (f1)∗ be the solution to ∂C(f)/∂f1 = 0.

2. If (f1)∗ is feasible, i.e. 0 ≤ (f1)∗ ≤ f then fSE
1 = (f1)∗.

3. If (f1)∗ is infeasible, i.e. fSE
1 > 1 or fSE

1 < 0, then either (fSE
1 ) = 0 or (fSE) = 1

whichever has the lower cost.

Alternatively, we can use Proposition 2.2.2 to find an optimal flow. Again, let us
demonstrate this with a network of two parallel links.
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1. Compute the marginal cost function ℓ′1(f1) and ℓ′2(f2).

2. Choose fSE
1 and fSE

2 such that ℓ′(fSE
j ) = ℓ′(fSE

k ).

Roughly speaking, to find an optimal flow using Proposition 2.2.2 is to solve for the
optimal flow on link j fSE

j such that the marginal costs of every link j that carries
non-zero flow fSE

j are equal, i.e. ℓ′j(f
SE
j ) are equal for every j ∈ E for which fSE

j > 0.
Specifically for a network with linear latency functions, we can use the property

stated in Lemma 2.2.5 to find an optimal flow. Assuming that links are sorted in the
increasing order of bj , we describe the process of obtaining an optimal flow in a network
of n parallel links as follows.

Imagine an optimal flow increasing from 0 to 1. Initially all the flow will be put on
link 1, i.e. the link with the lowest constant cost. If link 1 is a fixed cost link then all
the flow will be allocated to link 1. Or else, according to Lemma 2.2.5, once the flow
is increased to the point that the latency in link 1 is half the difference of the constant
cost between link 2 and link 1, that is ℓ1(fSE

1 ) = (b2 − b1)/2, the optimal flow starts
using link 2. At this point, the amount of flow of fSE has increased to (b2 − b1)/(2a1)
and assigned only to link 1. If link 2 is a fixed cost all further flow will be routed on
link 2. Otherwise, further flow will be assigned to both of the first two links, at the
rate that will make those links continue to be increased with equal latency. And once
the latency of link 2 increases to (b3 − b2)/2, the optimal flow starts using link 3. The
process continues until all of fSE is assigned.

The optimal flow prefers links with low constant cost. The following observation
indicates which links will carry the optimal flow.

Observation 2.2.7. Let G be a parallel-link network with linear latency functions. Let
j be the link with the maximal index in the optimal flow of G which has fSE

j > 0. Then

• j = j′ where j′ is maximal with
∑j′

k=1 (bj′ − bk)/2aj′ ≤ f and k is not a fixed
latency link, i.e. ℓk = akfk + bk where ak ̸= 0 . Otherwise,

• j = j′ where j′ is minimal with ℓj′ = bj′.

Example 2.2.8. Suppose we are given a two-parallel-link network. Link 1 has the
latency function of ℓ1(f1) = 2f1 and link 2 has the latency function of ℓ2(f2) = 1. We
need to route a flow of one unit from a source to a destination through link 1 and link 2
with the minimal possible cost. From Definition 2.2.1, the marginal cost of link 1 is 4f1

and 1 for link 2. Hence, if we route a quarter of the flow on link 1 and the rest on link 2
then, by Proposition 2.2.2, the flow is socially optimal.

Remark 2.2.9. We should point out that the computation of an optimal flow for
network with linear latency functions can be done efficiently (in polynomial time). That
is, we solve the problem C(f)/∂f by linear programming.
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2.3 Nash Flows

In this section, we investigate a flow at Nash equilibrium (NE). We shall denote a flow
at Nash equilibrium (which we sometimes call Nash flow) by fNE.

Definition 2.3.1. Let G be a network of m players. A flow f∗ =
(
(f1)∗, . . . , (fm)∗

)
of

G is at Nash equilibrium if, for every player i,

Ci
(
(f1)∗, . . . , (f i−1)∗, (f i)∗, (f i+1)∗, . . . , (fm)∗

)
≤ Ci

(
(f1)∗, . . . , (f i−1)∗, f i, (f i+1)∗, . . . , (fm)∗

)
(2.5)

for every feasible strategy f i.

We can look at a Nash equilibrium as the best strategy that each player can play
based on the given set of strategies of the other players. Such the strategy is known as
best response strategy which we give the formal definition in the following definition.

Definition 2.3.2. A strategy of player i (f i)∗ is a best response for a given flow f =(
f1, . . . , fm

)
if and only if

Ci
(
f1, . . . , f i−1, (f i)∗, f i+1, . . . , fm

)
≤ Ci

(
f1, . . . , f i−1, f i, f i+1, . . . , fm

)
(2.6)

for every feasible strategy f i of player i.

Corollary 2.3.3. A flow f is at Nash equilibrium if and only if every player i routes
using the best response strategy (f i)∗.

From Definition 2.3.3, finding a Nash equilibrium is equivalent to every player i

solving the problem

argmin
f i

Ci
(
f1, . . . , f i−1, f i, f i+1, . . . , fm

)
(2.7)

while holding other strategies fk fixed for every k ̸= i.
Following from [HTW06], since we assume that cost functions are convex, we can

state the convex optimality condition that a Nash flow must satisfy. Consider a link j

and a player i. The cost of i on j is f i
j · ℓj(fj). Increasing i’s flow on j increases the

cost of i at the rate of ℓj(fj) + f i
j · ℓ′j(fj) where ℓ′j(fj) is a marginal cost function of ℓj

as defined in Definition 2.2.1.

Lemma 2.3.4. [HTW06] A flow f is at Nash equilibrium, for all links j and k and for
all players i that have f i

j > 0, if the following inequality holds,

ℓj(fj) + f1
j · ℓ′j(fj) ≤ ℓk(fk) + f1

k · ℓ′k(fk).
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It is crucial that, when we talk about a Nash equilibrium, we should clarify the exis-
tence and uniqueness of it. The following proposition was first proved by Harker [Har85]
using the theory of variational inequalities, and subsequently shown by Orda et al.
in [ORS93]. The proof relies on the assumption that the cost function must be convex.
We shall omit the proof (for the complete proof see [ORS93]).

Proposition 2.3.5. [HM85, ORS93] Let G be a parallel-link network for m atomic-
splittable players with continuous, differentiable, convex cost functions. A Nash flow of
G must exist.

Remark 2.3.6. A network in our setting could admit more than one Nash flow (See
Example 2.3.7), it is easy to see that all Nash flow must have the same cost. Borrowing
term from [Rou02], we claim that Nash flow in our setting is essentially unique.

Example 2.3.7. A network of links parallel links. Both links have a constant cost of
1. It is easy to see that, regardless of how many players in the network, there are more
than one Nash flows. However every Nash flow has a social cost of exactly 1.

Next, let us consider the Nash equilibrium of a flow f of a special case of two players.
Given a network of two players: player 1 and player 2, a flow f∗ =

(
(f1)∗, (f2)∗

)
is at

Nash equilibrium if,

C1
(
(f1)∗, (f2)∗

)
≤ C1

(
f1, (f2)∗

)
and C2

(
(f1)∗, (f2)∗

)
≤ C2

(
(f1)∗, f2

)
(2.8)

for every feasible strategies f1 and f2.
This is equivalent to solving two problems, one for each player. Assuming that

player 2 will play with the feasible strategy (f2)′, player 1 solves the problem

argmin
f1

C1
(
f1, (f2)′

)
.

Similarly, assuming player 1 will play with the feasible strategy (f1)′, player 2 solves
the problem

argmin
f2

C2
(
(f1)′, f2

)
.

Suppose that player 1 and player 2 obtain (f1)∗ and (f2)∗ respectively from solving
the above problems. (f1)∗ (respectively (f2)∗) is essentially the best response to (f2)′

(respectively (f1)′). If (f1)∗ = (f1)′ and (f2)∗ = (f2)′ then the condition in (2.8) is
satisfied, hence the flow ((f1)∗, (f2)∗) is a Nash flow.

We have so far considered the case of atomic players. It is useful, especially for the
final section of this chapter, to formulate a formal definition of a Nash equilibrium of
a flow of nonatomic players. Following from [CP91], let fUE denote a flow of infinitely
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many players, each of which controls a negligible fraction of the total flow (We sometimes
refer to this type of flow as UE flow). Each player in fUE follows the Wardrop’s user
equilibrium principle in its routing decision, which states that, at Nash equilibrium,
the latencies in all links actually used are equal and less than those which would be
experienced by a single player on any unused link. The following definition formally
summarised this idea.

Definition 2.3.8. [RT02] Let G be a network of nonatomic players. A flow f of G is at
Nash equilibrium if and only if for every links j and k ∈ E with fj > 0, ℓj(fj) ≤ ℓk(fk).

2.3.1 How to Find a Nash Flow

In this subsection, we demonstrate how to compute a Nash flow fNE for a two-player
game in a network with two parallel links. As mentioned earlier, finding the Nash flow
fNE =

(
(f1)NE, (f2)NE

)
of the two-player flow is equivalent to player 1 solving the

problem
argmin

f1

C1
(
f1, (f2)NE

)
,

and player 2 solves the problem

argmin
f2

C2
(
(f1)NE, f2

)
.

Since, in two-link networks, knowing the amount of a player flow on one link ob-
viously grants us the player flow on the other link, we shall use f i

1 instead of f i for
the strategy of player i. Since when solving the problem argminf i Ci for player i, the
other player’s flow is fixed, we can use the derivative technique that we described for
the problem of finding an optimal flow.

Thus, for a two-player case, we will have two conditions so that, if fNE satisfies,
both conditions will be necessary and sufficient for fNE to be a Nash flow. Let us
demonstrate this with a simple two parallel-link network with linear latency functions
in the following example.

Example 2.3.9. Suppose we are given a network of two parallel links. Link 1 has the
latency of ℓ1 = 2f1 and link 2 has the latency of ℓ2 = 1. In addition, we are given a flow
of two players, each of which has a 1/2 unit of flow to route from the sink node to the
source node using link 1 and/or link 2. First, we solve the problem argminf1 C1

(
f1, f2

)
.

From Definition 2.1.1, player 1’s cost is

C1 = f1
1 · 2(f1

1 + f2
1 ) + (

1
2
− f1

1 ) · 1
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because f1
2 = 1/2 − f1

1 . The partial derivative of C1 with respect to f1
1 is

∂C1

∂f1
1

= 4f1
1 + 2f2

1 − 1.

Equating the result to zero, we get

4f1
1 + 2f2

1 − 1 = 0 (2.9)

We then solve the problem argminf2 C2
(
f1, f2

)
. The cost of player 2 can be written as

C2 = f2
1 · 2(f1

1 + f2
1 ) + (

1
2
− f2

1 ) · 1,

because f2
1 = 1/2 − f2

1 . The partial derivative of C2 with respect to f2
1 is

∂C1

∂f1
1

= 4f2
1 + 2f1

1 − 1.

Setting the result to zero, we have

4f2
1 + 2f1

1 − 1 = 0 (2.10)

For a flow of both players to be the Nash flow, both (2.9) and (2.10) must be satisfied.
Solving both equations, yields f1

1 = f2
1 = 1/6. Because both f1

1 and f2
1 are feasible

(positive and less than the corresponding player’s flow) the flow ((1/6, 1/3), (1/6, 1/3))
is the Nash flow.

2.4 Stackelberg Routing

In this section, we consider another concept of equilibrium. Let us suppose that one of
the players in M acts as a leader that will have a priority to route its flow before others.
After the leader chooses its strategy, the rest of the players—followers—react to the
strategy, trying to minimise their individual cost with latency functions that have been
modified by the leader, reaching the Nash equilibrium relative to it. In game theory,
this is the concept called Stackelberg games. To clarify, in Stackelberg games, the leader
is not necessarily selfish. As we have mentioned earlier in the Previous Works section,
there are other related works that consider both benevolent leaders and malicious leaders
(see Section 1.3 for more details).

Our focus is on a selfish leader. If the leader’s strategy that will optimise the
leader’s cost after all players have played is f1 =

(
f1
1 , . . . , f1

n

)
, the followers will take the
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leader’s flow as fixed and minimise their cost with respect to the modified cost—namely
ℓ̃j(fj) = ℓj(fj + f1

j ) for each j. A flow is at selfish Stackelberg leadership equilibrium
(or SSL equilibrium) in two cases. The first is where the number of players m > 2, after
the leader has played, the followers form an m − 1 Nash equilibrium relative to ℓ̃j(fj).
The second where there is a single follower, the follower forms an optimal flow relative
to ℓ̃j(fj). Note that we mainly study SSL equilibrium in the second case. We denote
such a flow as selfish Stackelberg leadership flow (or SSL flow or fSSL). We formalise
the idea of the SSL equilibrium in the following definition.

Definition 2.4.1. Given a network G, in which player 1 is a leader and the rest of
the players (2 to m) are followers, all of which route their flow simultaneously. Let
player 1’s strategy be f1 =

(
f1
1 , . . . , f1

n

)
that optimise C1, and let ℓ̃j(fj) = ℓj(fj + f1

j )
for each link j ∈ E. The flow f is at a selfish Stackelberg leadership equilibrium if and
only if the flow f ′ of players 2 to m is at Nash equilibrium, or, in the case where m = 2,
f ′ of player 2 is at system equilibrium, with respect to a latency ℓ̃j(fj) for each j ∈ E.

Since after the leader has played the modified latency functions retain the prop-
erty to be continuous, differentiable and convex, the existence of the SSL equilibria is
guaranteed by Proposition 2.3.5.

Proposition 2.4.2. Let G be a parallel-link network of m atomic-splittable players with
continuous differentiable convex cost functions. The flow of G at SSL equilibrium must
exist.

2.4.1 The Price of Selfish Stackelberg Leadership

Now that we have defined the SSL equilibrium and the Nash equilibrium, we are ready
to give the formal definition of the price of selfish Stackelberg leadership that we use to
quantify the additional social cost that occurs when one of the players acts as a leader.
Informally, the price of SSL is the worst ratio between the social cost at SSL equilibria
and that of SSL equilibria.

Definition 2.4.3. Let G be a parallel-link network of m atomic-splittable players. Let
fSSL and fNE respectively be the SSL flow and the Nash flow of G. If F is the set of
all feasible flows of G, the price of selfish Stackelberg leadership in G is defined as

sup
fSSL,fNE∈F

C
(
fSSL

)
C
(
fNE

) . (2.11)

Remark 2.4.4. The definition focuses on the additional social cost of SSL setting over
Nash setting; so we do not define it as C(fSSL)/C(fSE) where fSE denote the optimal
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flow of the corresponding f . However in later chapters, specifically in Chapter 4, we
often use the ratio C(fSSL)/C(fSE) to upper bound the price of SSL.

2.4.2 How to Find a SSL Flow

In this subsection, we demonstrate how to compute a SSL flow for a network of two
parallel links and two players. To compute the SSL flow fSSL, we first have to determine
what the second player will do.

The Last Player’s Behaviour

We have noted earlier that the last player in a Stackelberg game will act similar to an
optimal flow. Suppose that player 1 routes with the strategy f1 = (f1

1 , . . . , f1
n). After

player 1 has played, the latency function on each link has changed to ℓ̃j(fj) = ℓj(fj+f1
j ).

Thus, player 2 now has to solve the problem

argmin
f2

∑
j∈E

f2
j · ℓ̃(fj).

Solving the above problem, player 2 obtains f2 which essentially is the best response
strategy of player 2 with respect to any player 1’s strategy f1.

Alternatively, we can use Proposition 2.2.2, and find the strategy of player 2 such
that all of the marginal costs of the links used are equal.

Proposition 2.4.5. Let G be a parallel-link network with two players. In the SSL
setting, assume that the leader routes its flow with f1, and let ℓ̃j(fj) = ℓj(fj + f1

j ) for
all links j. Player 2’s cost is minimised if for every pair of links j and k with f2

j > 0,
ℓ̃′j(f

2
j ) ≤ ℓ̃′k(f

2
k ).

The next step would be to determine what the first player would do.

The First Player’s Behaviour

Let us denote
(
f2
)′ (f1) the solution to the problem argminf2

∑
j∈E f2

j · ℓ̃(fj) for any
given f1. The objective of player 1 now is to choose f1 such that the combined flow
gives the minimal-possible cost of player 1. That is, player 1 solves the problem

argmin
f1

C1(f1,
(
f2
)′ (f1)).

The next example shows how to find the SSL flow in the two parallel link network with
linear latency functions.
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Example 2.4.6. Consider the network in Example 2.3.9. That is, we are given a
network of two parallel links where link 1 has the latency function of 2f1 and link 2 has
the latency function of 1. We are also given a flow of two players, each of which has
1/2 unit of flow to route from the source to the sink in the network. Suppose player 1
routes its flow before player 2. We find the SSL flow in the network.

Firstly, we consider player 2’s behaviour. If player 1 routes with the strategy f1 =
(f1

1 , f1
2 ), the cost of player 2 is

C2 = f2
1 · 2(f1

1 + f2
1 ) + (

1
2
− f2

1 ) · 1,

because f2
2 = 1/2 − f2

1 . The partial derivative of C2 with respect to f2
1 is

∂C2

∂f2
1

= 4f2
1 + 2f1

1 − 1.

Equating the result to zero before solving for f2
1 , we have

f2
1 =

1 − 2f1
1

4
. (2.12)

Secondly, we consider what player 1 will do. Player 1 knows that if it routes with
f1
1 then player 2 will respond with f2

1 according to (2.12). Hence, the cost of player 1 is

C1 = f1
1 · 2(f1

2 +
1 − 2f1

1

4
) + (

1
2
− f1

1 ) · 1.

by f1
2 = 1/2 − f1

1 and (2.12). The partial derivative of C1 with respect to f1
1 is

∂C1

∂f1
1

= 2f1
1 − 1

2
.

Setting the derivative to zero and then solve for f1
1 , we obtain f1

1 of 1/4. Furthermore,
from (2.12), f2

1 is 1/8. Hence the SSL flow is ((1/4, 1/4), (1/8, 3/8)).

Combining Examples 2.3.9 and 2.4.6, we show in the following example the price of
SSL of the network discussed in the previous example.

Example 2.4.7. Consider the social costs obtained in Example 2.3.9 and Example 2.4.6.
The social cost of the SSL flow is 29/32 and that of the Nash flow is 8/9. Thus, we have
the price of SSL of approximately 1.019.
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s t

`1(f1) = 1

`2(f2) = f2

Figure 2.1: Pigou’s example shows a simple two-node, two-parallel-link network. A
latency function ℓ(x) describes the cost experienced by a player for using that link.

2.5 Pigou’s Example

In this section, we illustrate the definitions, characterisations and techniques of the
previous sections in a simple network. We hope that this will not only motivate the main
problem studied in this thesis, but also distinguish between our work and other works
studying Stackelberg routing games. We consider the network depicted in Figure 2.1.
The network was first studied by Pigou in 1920 [Pig20].

Suppose that the latency function of link 1 is ℓ1(f1) = 1 and the latency of link 2
is ℓ2(f2) = f2. Suppose the total traffic flow is 1, and, in the case where there are two
players, player 1’s flow f1 is 2/5 and player 2’s flow f2 is 3/5. Assume that all players
aim to minimise an individual cost, unless stated otherwise, of routing a flow from s to
t by splitting their flow across the links. We compute the routing strategies, which are
equivalent, to obtain f1 for the one player game and f1

1 and f2
1 for the two-player game

for the following set-ups:

1. A system equilibrium.

2. A user equilibrium.

3. Two atomic players in a Nash equilibrium.

4. Two atomic players in the selfish Stackelberg leadership setting.

5. An atomic leader and a UE follower.

6. A benevolent atomic leader and an atomic follower.

7. A benevolent atomic leader and a UE follower.

8. A malicious atomic leader and an atomic follower.
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9. A malicious atomic leader and a UE follower.

We investigate each set-up in the order listed. In each set-up, we compute the routing
strategy for each player, its individual cost and the social cost. Table 2.1 summarises
the results at the end of this section.

2.5.1 A System Equilibrium

In this first scenario, we compute the optimal flow of the network. Since the latencies
of the network are affine linear, from Lemma 2.2.3, the strategy of the optimal flow is
to make the terms 2aj + bj the same for both links. That is, 2f2 from link 2 must equal
to 1 from link 1. Routing half of the flow on link 1 and the other half on link 2 equalises
the terms. Hence the optimal flow is (1/2, 1/2), which gives the social cost of

C
(
fSE

)
=

1
2
· 1 +

1
2
· 1
2

=
3
4
.

2.5.2 A User Equilibrium

Next, we consider the nonatomic setting. That is, we investigate the UE flow which has
an infinite number of players, each of which controls a negligible fraction of the overall
flow. By Definition 2.3.8, the UE flow fUE is at Nash equilibrium if and only if fUE

routes all its flow along link 2 which makes the latency of link 1 and link 2 equal.

Alternatively, we can describe fUE as follows. For each selfish nonatomic player to
ensure the minimal individual cost possible, it routes its flow on link 2. This is because
the cost of using link 2 is never worse than the cost of using link 1 even when link 2 is
loaded with all the traffic. (The cost of using link 1 is always 1 and the cost of using
link 2 when the entire flow is routed on it is 1.) And it is even better when there are
some foolish players routing their flow on link 1.

In conclusion, by Definition 2.1.1, the social cost is,,

C(fUE) = f1 · ℓ1(f1) + f2 · ℓ2(f2) = 0 · 1 + 1 · 1 = 1.

Note that, for any UE flow that is bigger than one in this network, one unit of that
flow will be routed on link 2 and the rest will be on link 1. This is because if the flow
on link 2 is less than the flow on link 1 then some players on link 1 will be better off
deviating to link 2, and if already one unit of flow is on link 2, then any player deviating
from link 1 to link 2 will be worse off.



2.5. PIGOU’S EXAMPLE 31

2.5.3 Two Atomic Players at Nash Equilibrium

In this subsection, we consider the scenario in which there are two atomic-splittable
players. Recall that player 1 has 2/5 of the overall flow and the rest of the flow belongs
to player 2. To find the Nash equilibrium for this set-up, by Definition 2.3.3, basically
we want to find a pair of feasible strategies (f1

1 )NE and (f2
1 )NE respectively for player 1

and player 2 such that

C1
(
(f1

1 )NE, (f2
1 )NE

)
≤ C1

(
f1
1 , (f2

1 )NE
)

and

C2
(
(f1

1 )NE, (f2
1 )NE

)
≤ C2

(
(f1

1 )NE, f2
1

)
for every feasible strategy f1

1 and f2
1 .

That is, we must solve the optimisation problems argminf1
1

C1(f1
1 , (f2

1 )NE) while

holding (f2
1 )NE) fixed and argminf2

1
C2((f1

1 )NE, f2
1 ) while holding (f1

1 )NE). The cost
of player 1 and player 2 can be explicitly written as

C1(f1
1 , (f2

1 )NE) = f1
1 · 1 + (f1 − f1

1 )(f1 − f1
1 + f2 − (f2

1 )NE),

and

C2((f1
1 )NE, f2

1 ) = f2
1 · 1 + (f2 − f2

1 )(f1 − (f1
1 )NE + f2 − f2

1 ).

Substituting f1 = 2/5 and f2 = 3/5, we get

C1 = f1
1 + (

2
5
−f1

1 )(1 − f1
1 − (f2

1 )NE),

and

C2 = f2
1 + (

3
5
−f2

1 )(1 − (f1
1 )NE − f2

1 ).

The partial derivative of C1 and C2 with respect to f1
1 and f2

1 respectively are

∂C1

∂f1
1

= 1 + (
2
5
− f1

1 )(−1) + (−1)(1 − f1
1 − (f2

1 )NE)

= 2f1
1 + (f2

1 )NE − 2
5
, (2.13)

and

∂C2

∂f2
1

= 1 + (
3
5
− f2

1 )(−1) + (−1)(1 − (f1
1 )NE − f2

1 )

= 2f2
1 + (f1

1 )NE − 3
5
. (2.14)
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Setting (2.13) and (2.14) to zero, we then can solve for (f1
1 )NE and (f2

1 )NE. We
have

(f1
1 )NE =

2 − 5(f2
1 )NE

10
, (2.15)

and

(f2
1 )NE =

3 − 5(f1
1 )NE

10
. (2.16)

In order for the pair of strategies (f1)NE and (f2)NE to be at Nash equilibrium, both
(2.15) and (2.16) must be satisfied. Solving the pair of equations, we get (f1

1 )NE = 1/15
and (f2

1 )NE = 4/15. Thus we get the following costs:

C1 =
1
15

· 1 +
1
3
(
1
3

+
1
3
) =

13
45

≈ 0.289,

and

C2 =
4
15

· 1 +
1
3
(
1
3

+
1
3
) =

22
45

≈ 0.489.

And the social cost is
C =

13
45

+
22
45

=
7
9
≈ 0.778.

2.5.4 Two Atomic Players in the SSL Setting

In this subsection, we consider the same set-up as in the previous Subsection 2.5.3,
except that, in this subsection the game is played in the SSL setting—one of the players
acts as a selfish leader, routing its flow first and has to commit to the strategy it chooses.
The other player then allocates its flow to minimise its cost according to the first player’s
choice. We consider two scenarios in this setting. One is when player 1 is the leader
and the other is when player 2 is the leader. We determine the SSL flow fSSL which as
noted earlier it is sufficient to find f1

1 and f2
1 at SSL equilibrium.

Player 1 as a leader

Suppose player 1 is a leader. To find what player 1 will do, we have to first determine
what player 2’s strategy is. Player 2 will have to solve the problem, given that player 1
previously chooses strategy f1

1 , argminf2
1

C2(f1
1 , f2

1 ). The cost of player 2 is

C2(f1
1 , f2

1 ) = f2
1 · 1 + (f2 − f2

1 )(f1 − f1
1 + f2 − f2

1 ).
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Substituting f1 = 2/5 and f2 = 3/5, we get

C2 = f2
1 + (

3
5
− f2

1 )(1 − f1
1 − f2

1 ).

Taking the partial derivative of C2 with respect to f2
1 , we get

∂C2

∂f2
1

= 1 + (
3
5
− f2

1 )(−1) + (−1)(1 − f1
1 − f2

1 )

= 2f2
1 + f1

1 − 3
5
.

Setting the result to zero then solving for f2
1 , we have

f2
1 =

3 − 5f1
1

10
. (2.17)

Secondly, we determine f1
1 in the SSL flow. Player 1 solves the problem argminf1

1
C1(f1

1 , f2
1 ),

knowing that if player 1 routes with f1
1 , player 2 will respond with f2

1 according to (2.17).
The cost of player 1 is

C1(f1
1 , f2

1 ) = f1
1 · 1 + (f1 − f1

1 )(f1 − f1
1 + f2 − f2

1 ).

Substituting (2.17) for f2
1 , f1 = 2/5 and f2 = 3/5, we get

C1 = f1
1 + (

2
5
− f1

1 )(
7 − 5f1

1

10
).

The derivative of C1 with respect to f1
1 is

∂C1

∂f1
1

= 1 + (
2
5
− f1

1 )(
1
2
) + (−1)(

7 − 5f1
1

10
)

= f1
1 +

1
10

Setting the derivative to zero and solving for f1
1 , we obtain the infeasible f1

1 of −1/10.
Since the cost of player 1 is convex, the feasible f1

1 in the SSL flow must be equal to
either 0 or 2/5. When f1

1 equals to 0 yielding f2
1 of 3/10 (using (2.17)) which gives the

cost of player 1 of 0 ·1+(2/5)(2/5+3/10) ≈ 0.28. When f1
1 equals to 2/5 yielding f2

1 of
1/10 which gives the cost of player 1 of 2/5 · 1+0 · (0+1/2) = 0.4. Hence, the SSL flow
is (0, 3/10). And we have the cost of player 2 of (3/10) · 1 + 3/10(2/5 + 3/10) = 0.51.
Finally, the social cost is 0.28 + 0.51 ≈ 0.79.
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Player 2 as a leader

Suppose player 2 is a leader. Firstly, we determine what player 1 will do. Given that
player 2 previously routes with a strategy f2

1 , player 1 solves the problem argminf1
1

C1(f1
1 , f2

1 ).
The cost of player 1 is

C1(f1
1 , f2

1 ) = f1
1 · 1 + (f1 − f1

1 )(f1 − f1
1 + f2 − f2

1 ).

By substituting f1 = 2/5 and f2 = 3/5, we get

C1 = f1
1 + (

2
5
− f1

1 )(1 − f1
1 − f2

1 ).

Taking a partial derivative of C1 with respect to f1
1 , we get

∂C1

∂f1
1

= 1 + (
2
5
− f1

1 )(−1) + (−1)(1 − f1
1 − f2

1 )

= 2f1
1 + f2

1 − 2
5
.

Setting the result to zero then solving for f1
1 , we have

f1
1 =

2 − 5f2
1

10
. (2.18)

Secondly, player 2 solves the problem argminf2
1

C2(f1
1 , f2

1 ). Substituting (2.18) into
C2, we get the cost of player 2 as

C2 = f2
1 + (

3
5
− f2

1 )(1 − 2 − 5f2
1

10
− f2

1 )

= f2
1 + (

3
5
− f2

1 )(
8 − 5f2

1

10
).

The partial derivative of C2 with respect to f2
1 is

∂C2

∂f2
1

= 1 + (
3
5
− f2

1 )(−1
2
) + (−1)(

8 − 5f2
1

10
)

= y − 1
10

.

Equating the result to zero then solving the equation, we get f2
1 = 1/10 therefore,
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by (2.18), f1
1 = 3/20. Thus, we have the following costs:

C1 =
3
20

· 1 +
1
4
(
1
4

+
1
2
) =

27
80

≈ 0.337,

and

C2 =
1
10

· 1 +
1
2
(
1
4

+
1
2
) =

19
40

= 0.475.

And the social cost is

C =
27
80

+
19
40

=
13
16

≈ 0.812.

2.5.5 An Atomic Leader and a UE Follower

In this setting, we consider the scenario in which the leader (player 1) is an atomic
player and player 2 is a UE flow. Again, we first determine what the follower will do. If
player 1 has 2/5 of the total flow then, by Definition 2.3.8, for every strategy of player 1,
player 2 routes all of its flow on link 2.

For the strategy of player 1 at SSL equilibrium, player 1 solves the problem
argminf1

1
C1(f1

1 , f2
1 ). By substituting f2

1 = 0, f1 = 2/5 and f2 = 3/5, we have the cost
of player 1 as

C1 = f1
1 · 1 + (

2
5
− f1

1 )(1 − f1
1 ).

The partial derivative of C1 with respect to f1
1 is

∂C1

∂f1
1

= 1 + (
2
5
− f1

1 )(−1) + (−1)(1 − f1
1 )

= 2f1
1 − 2

5
.

Setting the derivative to zero then Solving the equation, we obtain f1
1 = 1/5. The

resulting flow is ((1/5, 1/5), (0, 3/5)). We have the following costs:

C1 =
1
5
· 1 +

1
5
(
1
5

+
3
5
) =

9
25

= 0.36,

and

C2 = 0 · 1 +
3
5
(
1
5

+
3
5
) =

12
25

= 0.48.

The social cost is
C =

9
25

+
12
25

=
21
25

= 0.84.
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2.5.6 A Benevolent Atomic Leader and an Atomic Follower

In this subsection, we consider the situation similar to Subsection 2.5.4, in which there
are two atomic players in the SSL setting. However, in this subsection, we assume
that the leader is benevolent. That is, the leader’s objective is to allocate its flow to
entice the other player to route its flow such that the social cost is minimal. Korilis et
al. [KLO97a] studied the more general setting in which there are finitely many atomic
followers. And, for this setting, they presented the leader strategy that can always
enforce the optimal flow.

We first consider the situation where player 1 is a leader; then we consider the
situation where player 2 is a leader.

Player 1 as a benevolent leader

Suppose player 1 is a leader. Recall from Example 2.5.1 that the optimal flow is
(1/2, 1/2). If player 1 routes its flow such that it does not change the latency dif-
ference between link 1 and link 2, i.e. f1

1 = 2/5, then player 2, who will treat player 1’s
flow as constant, will act as an optimal flow. By Lemma 2.2.5, player 2 will route 1/10
on link 1 which makes the combined flow an optimal flow. Therefore we get the following
costs:

C1 =
2
5
· 1 + 0(0 +

1
2
) =

2
5

= 0.4,

and

C2 =
1
10

· 1 +
1
2
(0 +

1
2
) =

7
20

= 0.35.

And the social cost is
C =

2
5

+
7
20

=
3
4

= 0.75.

Player 2 as a benevolent leader

Suppose player 2 is a leader. Similar to when player 1 is a leader, player 2 will try yo
allocate its flow such that the latency different between link 1 and link 2 stays the same
after its turn. That is, player 2 routes 1/2 unit of flow on link 1. Player 1 will act like
an optimal flow, and, by Lemma 2.2.5, will route all of its flow on link 2. Consequently



2.5. PIGOU’S EXAMPLE 37

the combined flow is an optimal flow. Thus, we get the following costs

C1 = 0 · 1 +
2
5
· (2

5
+

1
10

) =
1
5

= 0.2,

and

C2 =
1
2
· 1 +

1
10

(
2
5

+
1
10

) =
11
20

= 0.55.

And the social cost is
C =

1
5

+
11
20

=
3
4

= 0.75.

2.5.7 A Benevolent Atomic Leader and a UE Follower

In this subsection, we consider a similar setting as the previous subsection, but with
player 2 as a UE flow. This set-up is commonly studied by many recent works in
Stackelberg games for example [KS06, Rou04, Swa07].

As usual, we consider what player 2 will do first. For every strategies f1
1 , link 2 is

always better for player 2. Hence, player 2 routes all its flow on link 2. Player 1 aim to
minimise the social cost. After player 2 has played, the social cost is

C = (f1
1 + 0) · 1 + (2/5 − f1

1 − 3/5) · (2/5 − f1
1 − 3/5)

= f1
1 + (1 − f1

1 )2.

The partial derivative of C with respect to f1
1 is

∂C

∂f1
1

= 2f1
1 − 1.

Setting the derivative to zero then solving for f1
1 , we get an infeasible f1

1 of 1/2. Let
us rewrite C as the following

C = (f1
1 )2 − f1

1 + 1

which essentially is a decreasing convex function for f1
1 in the range [0, 2/5]. Therefore

the feasible strategy of player 1 that minimise the social cost must be one of its border,
namely f1

1 equals to either 0 or 2/5. Since when f1
1 equals to 2/5 the social cost is lower

than that when f1
1 equals to 0, player 1 routes all its flow on link 1. In conclusion, we
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get the following costs

C1 =
2
5
· 1 + 0(0 +

3
5
) =

2
5

= 0.4,

and

C2 = 0 · 1 +
3
5
· (0 +

3
5
) =

9
25

≈ 0.36.

And the social cost is
C =

2
5

+
9
25

=
19
25

= 0.76.

2.5.8 A Malicious Atomic Leader and an Atomic Follower

So far, we have considered a benevolent leader and a selfish leader. In this subsection,
we consider a malicious leader. The objective of the leader is to seek, independently of
its own cost, to degrade the cost of the total network. In this subsection, we consider
the scenario in which player 1 is the malicious leader, and player 2 is an atomic follower.
This is similar to the SSL setting in a sense that player 1 predicts what player 2 do then
maximise the social cost with regard to the prediction of what player 2 will do. Firstly,
we consider what player 2 will do. The cost of player 2 is

C2(f1
1 , f2

1 ) =
3
5
· 1 + (

3
5
− f2

1 )(
2
5
− f1

1 +
3
5
− f2

1 ),

where f1 = 2/5 and f2 = 3/5. Taking the partial derivative of C2 with respect to f2
1 ,

we have

∂C2

∂f2
1

= 1 + (
3
5
− f2

1 )(−1) + (−1)(1 − f1
1 − f2

1 )

= 2f2
1 + f1

1 − 3
5
.

Setting the derivative to zero then solving for f2
1 , we have

f2
1 =

3 − 5f1
1

10
. (2.19)

Secondly, we determine f1
1 which is the solution to argmaxf1

1
C(f1

1 , f2
1 ) where f2

1 is
obtained from (2.19). Substituting (2.19) for f2

1 , the social cost C becomes

C = (f1
1 + f2

1 ) · 1 + (1 − f1
1 − f2

1 )2

= (f1
1 +

3 − 5f1
1

10
) · 1 + (1 − f1

1 − 3 − 5f1
1

10
)2.
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The partial derivative of C with respect to f1
1 is

∂C

∂f1
1

=
5f1

1 − 2
10

Setting the result to zero then solving for f1
1 , we have f1

1 = 2/5, which implies that
f2
1 = 3/10. The cost of player 1 and player 2 are

C1 = 0 · 1 + (
2
5
− 0)(1 − 0 − 3

10
) = 0.28,

and

C2 =
3
10

· 1 + (
3
5
− 3

10
)(1 − 0 − 3

10
) = 0.51.

And the social cost if given by

C = (0 +
3
10

) · 1 + (1 − 0 − 3
10

)2 = 0.79.

2.5.9 A Malicious Atomic Leader and a UE Follower

In this final subsection, we still consider the malicious leader, instead, with a UE flow
as a follower. We know that for every strategies of player 1, player 2 will always route
all of its flow on link 2. Therefore for player 1 to maximise the social cost, it similarly
routes all of its flow on link 2. Clearly the cost of player 1 is 2/5, and the cost of player 2
is 3/5. And the social cost if 1.

2.5.10 Comments

In this subsection, we give some comments based on the results shown in Table 2.1.

1. The ratio of the social cost of the user equilibrium to that of the system equi-
librium is 4/3. This ratio is known as the price of anarchy. Roughgarden and
Tardos [RT02] showed that the ratio of 4/3 is the tight bound for the price of
anarchy for a general network with linear latency functions.

2. The social costs of the SSL flow both when player 1 is a leader and when player 2
is a leader, are higher than the social cost of the Nash flow. In the SSL flow, the
leaders over-use link 2 forcing the followers to move some of their flows to link 1.
As a consequence, it turns out that the leaders’ costs are lower, but the followers’
costs increase with greater amount, thus increasing the social costs. This fact was
previously noticed by earlier works, for example Gibson mentioned it in [Gib92]
for a Cournot competition. For a congestion network game, we initially found this
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observation in [CP91] by Catoni and Pallottino. They studied a network of three
parallel links where two of them are private links and one is a shared link. Note
that the network we studied here is somewhat more restrict than that in [CP91]
in that there are no private links.

3. The ratio of the social cost of when player 1 is a leader to that of the Nash
equilibrium, and the social cost of player 2 is a leader and that of the Nash
equilibrium are 1.015 and 1.044 respectively. These ratios demonstrate the price
of selfish Stackelberg leadership studied in this thesis.

4. The fraction of the total flow a leader has can effect how much the leader benefits.
As it shows in the comparison between when player 1 is a leader and when player 2
is a leader. Player 2, who has the bigger fraction of the total flow, reduces more
of its per-unit cost than player 1 does. That is, when player 1 is a leader, it
reduces (0.009)/(2/5) ≈ 0.0225 while player 2 reduces (0.014)/(3/5) ≈ 0.0233 in
the set-up 4.2.

5. Comparing the cost of the leader when a follower is a UE flow to that of when a
follower is an atomic player shows that having an atomic follower can be better off
for the selfish leader. We believe this is in fact true in general, in a sense that an
atomic follower reacts more responsively to a leader’s strategy than a UE follower
as shown in a few examples in which a UE flow completely disregards a leader’s
strategy.

6. For a benevolent leader, with regard to the leader’s objective, an atomic follower
is preferred. When a follower is a UE flow, the leader’s strategy is insignificant to
the follower. As a result, the the leader cannot ensure that the combined file is
optimal. This is previously noticed by Roughgarden [Rou04].

7. The idea of a benevolent leader has been studied by many recent works as a tool to
mitigate selfish users, for example Roughgarden [Rou04] who studied a network in
which a follower is a UE flow, and Korilis et al. [KLO97a] and Orda et al. [ORS93]
who studied a network with atomic followers.

2.5.11 Conclusion

A few conclusions can be drawn from the study in this subsection. First of all, we have
reaffirmed that there are price of SSL (Comment 3). Moreover, we have observed that,
in this particular example, when a leader has more flow in the system, the price of SSL
gets higher. Clearly, this observation is not always true, as when the leader flow get
much higher than the follower flow, the price of SSL will get closer to 1.
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Another interesting observation from this study when comparing benefits that lead-
ers obtain between infinitely many followers and a single follower, is that, a leader will
prefer atomic followers because they react more responsively to leader’s strategies. This
implies that leaders can enforce strategies easier than infinitely many followers which
often completely neglect leader’s strategies.

Set-up Description f1
1 f2

1 f1 C1 C2 Social Cost

1. System equilibrium - - 1/2 - - 0.75

2. User equilibrium - - 0 - - 1

3. Two atomic players in NE 1/15 4/15 1/3 0.289 0.489 0.778

4.1 Two atomic players in SSL 0 3/10 3/10 0.28 0.51 0.79
(player 1 as a leader)

4.2 Two atomic players in SSL 3/20 1/10 1/4 0.337 0.475 0.812
(player 2 as a leader)

5. Atomic leader and UE follower 1/5 0 1/5 0.36 0.48 0.84

6.1. Benevolent atomic leader and 2/5 1/10 1/2 0.4 0.35 0.75
atomic follower (player 1 as a leader)

6.2 Benevolent atomic leader and 0 1/2 1/2 0.2 0.55 0.75
atomic follower (player 2 as a leader)

7. Benevolent atomic leader and 2/5 0 2/5 0.4 0.36 0.76
UE follower

8. Malicious atomic leader and 0 3/10 3/10 0.28 0.51 0.79
atomic follower

9. Malicious atomic leader and 0 0 0 2/5 3/5 1
UE follower

Table 2.1: Routing strategies and their corresponding costs in the Pigou’s example





Chapter 3

The Price of Selfish Stackelberg

Leadership: Lower Bound from

Examples

In Chapter 2, we have demonstrated that in a network of two parallel links and two
selfish players each with a splittable flow, there might be an additional cost arising
when allowing one of the players to have a Stackelberg leadership, in comparison to
the social cost of Nash equilibrium. In this chapter, we show furthermore how much
the additional cost can be in that simple network setting. In other words, what is
the maximal price of SSL? We look at the problem of optimising the price of SSL of
the following network configurations: a two-parallel-link network with latency functions
that are linear, quadratic, cubic and quartic, and a three-parallel-link network in which
two of the links are private links and one is a shared link, and each link has a linear
latency function. For each configuration, we show an example that demonstrates the
maximal price of SSL we obtained. These examples offer lower bounds for the price of
SSL. We show in the next chapter an upper bound to match the lower bound of the
network with two parallel links, each of which has a linear latency function.

3.1 Overview

Computing the price of SSL from examples shown in the previous chapter, we have
noticed that with different coefficients of latency functions and a different fraction of
player flows, prices of SSL are different. For example, in Example 2.4.7 where the
latency of link 1 is ℓ1(f1) = 2f1 and the latency of link 2 is ℓ2(f2) = 1, and each player
has 1/2 unit of flow, we obtained the price of SSL of 1.019. However, in the Pigou’s
Example where ℓ1(f1) = f1, ℓ2(f2) = 1, the leader flow is 3/5 and the follower flow is

43
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2/5, we obtained the different price of SSL of 1.044 (comment 3 in Subsection 2.5.10).
So it raises the following questions that lead us to the problem studied in this chapter:

• How to choose coefficients in linear latency functions and a fraction of player flows
that have maximised the price of SSL?

• How much worse can the price of SSL be for some networks that have more general
latency functions? e.g. quadratic etc.

In this chapter, we look at the problem of optimising the price of SSL with respect to
the coefficients and the fraction of player flows of simple networks with different forms of
latency functions. Our focus is on simple networks of various network configurations. We
consider both symmetric and asymmetric networks. A symmetric network is a network
in which every players have access to all the links, while an asymmetric network is a
network in which each player does not have an access to all the links. We consider
the simplest network of its kind—that is we study a network of two parallel links for
a symmetric network, and a network with one shared link and two private links for
an asymmetric network. We assume throughout this chapter that there are two selfish
players; player 1 and player 2, each with a splittable flow to be routed through the
networks. Player 1 (the leader in the SSL setting) controls a fixed flow of one unit while
player 2 controls f2 > 0 units of flow (as can be assumed by re-scaling).

We study networks with four different forms of latency function. For the symmetric
network, we consider the networks with latency functions that are linear, quadratic,
cubic and quartic. For the asymmetric network, we consider the network with linear
latency functions. Given coefficients of latency functions and player 2’s flow of each
network configuration, we optimise the price of SSL. This can be described by a simple
example as follows. Suppose we are given a network of two nodes connecting by two
parallel links with the latencies ℓ1(f1) = a1 · (f1) and ℓ2(f2) = b2 for some a1, b2 > 0. In
the network, there are two players in which player 1’s flow is fixed at one and player 2’s
flow is f2 > 0. The aim is to try to find a set of constants a1, b2 and f2 such that the
price of SSL is maximised.

To solve the optimisation problem, we use an adapted Hill climbing technique (see
for example [RN03] for more details). Hill climbing technique is appealing for several
reasons. The most important one is that it is relatively simple to implement. Although
there are other more advanced algorithms that may be more efficient, in our situations
hill climbing works reasonably well. We discuss the main algorithm which uses the
adapted Hill climbing in Section 3.2.1.

Aside from the optimisation technique, another important problem to consider is the
computation of the price of SSL for a network of two players. That is, given a specific
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network model with a set of coefficients and a fraction of player flows, we determine
the price of SSL. By Definition 2.4.3, the computation of the price of SSL is essentially
the problem of computing the social costs of a Nash flow and that of a SSL flow. We
describe how to obtain player strategies at Nash equilibrium and SSL equilibrium in
Section 3.3. Algorithm for finding the price of SSL is discussed in Subsection 3.2.2.

The maximal price of SSL we obtained for each network configuration can be sum-
marised as follows (Table 3.1 at the end of the chapter provides the summation in a
table form). In Section 3.3.1, we consider a symmetric network of two nodes, two paral-
lel links shown in Figure 3.1. We study the network with affine linear latency functions
of which the highest price of SSL we obtained, which is shown in Example 3.3.1, is
approximately 1.071. We study the network where the latency of the one of the link is
quadratic and that of the other link is constant. The maximal price of SSL we obtained
is a multiplication factor 1.14 which is shown in Example 3.3.2. For the network where
one of the link has a cubic latency function and the other link has a constant latency
function, we obtained the price of SSL of approximately 1.177. For the network in
which one of the link has a quartic latency function and the other one has a constant
latency function, we obtained the price of SSL of 1.323. In Subsection 3.3.2, we consider
an asymmetric network of two nodes three parallel links where each link has a linear
latency function shown in Figure 3.4. The network has two private links each of which
is used exclusively by the assigned player, and one shared link. We obtain the price of
SSL of approximately 1.074 which is shown in Example 3.3.5.

Remark 3.1.1. Since the networks with quadratic, cubic and quartic latency functions
we consider have some restrictions, the maximal price of SSL obtained for them are not
necessary the maximal for the network with general latency functions in each setting.
However, we have noticed from some simple examples and from the network with linear
latency functions that in a network of two parallel links, the price of SSL tends to be
higher if one of the link has a constant latency function which is the reason why in our
set-ups for the networks with quadratic, cubic and quartic latency functions, we have
one of the link be a constant latency function link.

Remark 3.1.2. The price of SSL of 1.071 obtained in Example 3.3.1 corresponds to
an upper bound of 1.322 given in Section 4.4.

3.2 Algorithm Detail

Let G be a parallel-link network in which each link has a general latency function form
of ℓj(fj) = aj,d(fj)d + aj,d−1(fj)d−1 + . . . + aj,1(fj) + aj,0 where d is nonnegative integer
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Figure 3.1: A simple symmetric network of two nodes, two directed links.

and aj,0, . . . , aj,d are constant coefficients. Let σ denote a vector of constants (aj,d, f
2)

for all d of all j, and f2 corresponds to the player 2’s flow. Recall that by rescaling
we can assume player 1’s flow fixed at 1. The basic idea of the algorithm is to perform
a local search for σ until we find the maximal price of SSL or a higher price of SSL
can be found from our set-up. The program are separated into two main parts. One
is to control a local search, and the other is to compute the price of SSL. The former
is managed in the main algorithm shown in Figure 3.2, and the later is achieved in the
POS algorithms shown in Figure 3.3.

3.2.1 The Main Algorithm

The objective of the main algorithm is to alter parameters, i.e. coefficients of latency
functions and player 2’s flow (recall that player 1’s flow is fixed at 1), that initially
generated at random, such that we move toward a set of parameters that produces a
higher price of SSL.

Initially, we randomly generate σ (thus probably a bad one). We compute the price
of SSL of every neighbours of σ. A neighbour of σ is σ with one of the constants changed
by the value step given from the input. If k is the number of constants in σ, we compute
the price of SSL of 2k neighbours of σ. The computation of the price of SSL is handle
with the function POS(). Subsequently, we move to the neighbour with the highest
price of SSL if it is greater than that of σ. By repeating this process, we are essentially
improving the solution a little bit each time.

Unfortunately, similar to Hill climbing, there are a few disadvantages on the main
algorithm that we have to overcome. One of the commonly known disadvantage is that
sometimes we reach a point where no better neighbour can be found even though it is
not an optimal point. This is known in the field of optimisation algorithm as a plateau
which occurs when we reach a “flat” part of a search space, i.e. a part where the quality
of all the solutions are all very close together. To get out of this flat point we consider
different neighbours that can be further away from a current σ and neighbours that
have more changes to its constants. That is, instead of considering neighbours that



3.2. ALGORITHM DETAIL 47

Input: step, loop.

Repeatedly, do the following for the number loop times:

1. Randomly generate σ = (aj,d, f
2).

2. σ∗ = 0.

3. Let k be the number of members in σ.

4. Repeatedly do the following:

(a) A neighbour of σ is σ that has one of the constants added
or subtracted with step.

(b) Let N be an array of size 2k for all neighbours of σ.
(c) Let S be an array of size 2k.
(d) From i = 0 to 2k − 1

S[i] = POS(N [i]).
(e) Let σ′ = max(S).
(f) If σ′ > σ, σ = σ′.
(g) Else, repeat the following steps for loop times or until σ′,

defined below, is found:
• Let σ′ be σ which has all constants, each is added

with a random value in the range of [−2step, 2step].
• If POS(σ′) > POS(σ), σ = σ′ then return to step 4a.

5. If σ′ > σ∗, σ∗ = σ′.

Return σ∗.

Figure 3.2: A main algorithm for optimising the price of SSL.

have only one constant changed with fixed value step, we consider neighbours that each
has every constants change by a random value in the range [−2step, 2step]. This process
is repeated for the number of loop. If still no neighbour with a higher price of SSL is
found, we restart with a new initial σ.

step indicates how much difference the neighbours of σ we consider. It is also used
in the process of trying to get out of a flat point. Hence, step is an important parameter
to try to avoid the plateau problem. If the step is set too small, we are more likely to
experience the plateau problem and the algorithm can take a very long time to run. If
the step is too big, we could miss out on paths that might lead to an optimal solution.
For each network configuration, we test three different values of step—0.001, 0.01 and
0.1.

Another disadvantage to the main algorithm is that there is no guarantee that the



48 CHAPTER 3. LOWER BOUNDS ON THE PRICE OF SSL

solution we obtain is the global optimum. To try to overcome this problem, we repeat
the algorithm as many times as possible. By repeating the algorithm, we increase the
chance of reaching an optimal point. The input variable loop is used to indicate how
many times we run the algorithm. We use loop = 10, 000 for symmetric networks with
linear and quadratic latency functions, and an asymmetric network with linear latency
functions. We use loop = 1000 for the network with cubic and quartic latency functions.

The value of the initial random σ is also very important. Intuitively, we want to
start with values σ as close to an optimal solution as possible. The constants aj,d and
f2 in σ are initialised randomly from a reasonable range. For example, for aj,d of a
link that has only a fixed cost, aj,d should not be initialised with such a high value that
both players only route their flow on the other link at both Nash equilibrium and SSL
equilibrium.

3.2.2 Algorithm for Finding the Price of SSL for Two-player Games

Recall that, for a network of two links, the strategy of player 1 f1 = (f1
1 , f2

1 ), and the
strategy of player 2 f2 = (f2

1 , f2
2 ), can be decreased to f1

1 and f2
1 respectively since f1

2

and f2
2 can be obtained with f1 − f1

1 and f2 − f2
1 .

1. Computing Player strategies at Nash equilibrium.

We formulate the expressions of player strategies at Nash equilibrium in terms
of the constants of σ. As mentioned in the previous chapter, finding the Nash
equilibrium of two-player games is equivalent to finding the optimal strategies
for each player while holding the other player’s strategy fixed. By solving the
problems, ∂C1/∂f1

1 = 0 and ∂C2/∂f2
1 = 0 we obtained the optimal strategies. Let

us denote for the rest of this chapter the optimal strategies for player 1 and player 2
that are computed using the derivatives with (f1

1 )NE and (f2
1 )NE respectively.

This means that the flow
(
(f1

1 )NE, (f2
1 )NE

)
is at Nash equilibrium. In addition,

by solving ∂C1/∂f1
1 = 0 and ∂C2/∂f2

1 = 0 individually, we obtain the optimal
strategies for each player with respect to the other player’s strategy. Let us denote
for the rest of this chapter the optimal strategy of player 1 with respect to any
given f2

1 with (f1
1 ). Similarly, let (f2

1 ) denote the optimal strategy of player 2 with
respect to any f1

1 .

2. Computing Player strategies at SSL equilibrium.

We wish to find the strategies (f1
1 )SSL and (f2

1 )SSL such that the cost of player 1
is minimal and (f2

1 )SSL is the strategy for player 2 that optimises its cost with
respect to (f1

1 )SSL (see Section 2.4). Since (f2
1 )SSL depends on (f1

1 )SSL, the
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Given σ = (aj,d, f
2),

1. Compute (f1
1 )NE and (f2

1 )NE using the expressions shown later in this chapter.

(a) If 0 ≤ (f1
1 )NE ≤ 1 and 0 ≤ (f2

1 )NE ≤ f2,

i. Let CNE = C
(
(f1

1 )NE, (f2
2 )NE

)
(b) Else if

(
(f1

1 )NE < 0 or (f1
1 )NE > 1

)
and

(
(f2

1 )NE < 0 or (f2
1 )NE > f2

)
,

i. Let CNE = CSSL.

(c) Else,

• If (f1
1 )NE > 1, (f1

1 )′ = 1 or if (f1
1 )NE < 0, (f1

1 )′ = 0.

• Let (f1
1 ) = (f1

1 )NE.

• Let (f1
1 )∗ = (f1

1 ).

• If (f2
1 )NE > f2, (f2

1 )′ = f2 or if (f2
1 )NE < 0, (f2

1 )′ = 0.

• Let (f2
1 ) = (f2

1 )NE.

• Let (f2
1 )∗ = (f2

1 ).
• Repeatedly do the following until (f1

1 )′ = (f1
1 )∗ and (f2

1 )′ = (f2
1 )∗,

i. If (f1
1 )′ ≠ (f1

1 )∗,

A. Compute (f2
1 ) with respect to (f1

1 )′.

B. If (f2
1 ) > f2, (f2

1 )′ = f2, or if (f2
1 ) < 0, (f2

1 )′ = 0.

C. Let (f1
1 )∗ = (f1

1 )′ and (f2
1 )∗ = (f2

1 ).
ii. Else if (f2

1 )′ ̸= (f2
1 )∗,

A. Compute (f1
1 ) with respect to (f2

1 )′.

B. If (f1
1 ) > 1, (f1

1 )′ = 1, or if (f1
1 ) < 0, (f1

1 )′ = 0.

C. Let (f1
1 )∗ = (f1

1 ) and (f2
1 )∗ = (f2

1 )′.
• Let CNE = C((f1

1 )′, (f2
1 )′).

2. Let (C1)∗ be a high number, and (f1
1 )SSL = 0 and (f2

1 )SSL = 0.

3. For f1
1 = 0 to 1, f1

1 = f1
1 + 0.01 :

(a) Compute (f2
1 ) with respect to f1

1 .

(b) If (f2
1 ) > f2, (f2

1 ) = f2, or if (f2
1 ) < 0, (f2

1 ) = 0.

(c) Let (C1)′ = C1
(
f1
1 , (f2

1 )
)
.

(d) If (C1)′ < (C1)∗, (C1)∗ = (C1)′, (f1
1 )SSL = f1

1 and (f2
1 )SSL = (f2

1 ).

4. Let CSSL = C
(
(f1

1 )SSL, (f2
1 )SSL

)
.

Return CSSL/CNE.

Figure 3.3: The POS algorithm computes the price of SSL for a given σ.
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problem becomes one variable problem. It is unnecessary (and can be quite com-
plicated) to formulate the explicit expressions for SSL equilibrium similar to Nash
equilibrium. The only expression required is the optimal strategy of player 2 with
respect to any given f1

1 , i.e. (f2
1 ) which we will already obtain in the process of

computing Nash equilibrium.

POS algorithm

POS algorithm depicted in Figure 3.2.2 compute a price of SSL for any given set of
parameters. The computation is done via two steps, first is to compute the social cost
of SSL flow and then the social cost of NE flow. The detail description of POS() is as
follows.

Firstly, POS() computes a social cost at Nash equilibrium. As mentioned above, if
both (f1

1 )NE and (f2
1 )NE are feasible, it simply computes C((f1

1 )NE, (f2
1 )NE) for the

social cost at Nash equilibrium. If both (f1
1 )NE and (f2

1 )NE are infeasible, we return
the price of SSL of 1.

If one of the strategies is infeasible, we readjust the strategies as follows. For
i = {1, 2}, if f i

1 > f i then set f i
1 to f i, and if f i

1 < 0 then set f i
1 to 0. Step 1c reas-

sures that we obtain the feasible strategies (f1
1 )′ and (f2

1 )′, such that C1((f1
1 )′, (f2

1 )′) ≤
C1(f1

1 , (f2
1 )′) and C2((f1

1 )′, (f2
1 )′) ≤ C1((f1

1 )′, f2
1 ) which, by Definition 2.3.3, guarantees

that ((f1
1 )′, (f2

1 )′) is at Nash equilibrium.
Secondly, POS() computes the social cost at SSL equilibrium. We use a brute force

search for feasible strategies (f1
1 )SSL and (f2

1 )SSL, such that C1((f1
1 )SSL, (f2

1 )SSL)
where (f2

1 )SSL is computed from the expression (f2
1 ), which implies that (f2

1 )SSL is the
strategy of player 2 which optimises its cost with respect to (f1

1 )SSL.

3.3 The Computation of the Price of SSL

As mentioned earlier, we find four expressions; (f1
1 )NE, (f2

1 )NE, (f1
1 ) and (f2

1 ), for each
network configurations.

3.3.1 Symmetric Networks

In this section, we focus on the symmetric networks of one single source node and one
single destination node connected by two parallel links, shown in Figure 3.1.

Affine Linear Latency Functions

We consider the network with a non-decreasing linear latency function of the form
ℓj(fj) = ajfj +bj where aj , bj ≥ 0. Since the price of SSL is 1 in a network, where every
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link has homogeneous latency function (as we will show in Section 4.5), our focus here
is on a scenario where at least one latency function is a nonhomogeneous linear, i.e. at
least one of the links has bj > 0.

Firstly, we obtain player strategies (f1
1 )NE and (f2

1 )NE by solving the equations
∂C1/∂f1

1 = 0 and ∂C2/∂f2
1 = 0. We consider the cost experienced by player 1:

C1(f1) =
∑
j∈E

f1
j (aj(f1

j + f2
j ) + bj)

which (for two links) can be explicitly written as

f1
1

(
a1(f1

1 + f2
1 ) + b1

)
+ (1 − f1

1 )
(
a2(1 − f1

1 + f2 − f2
1 ) + b2

)
where we substitute f1

2 and f2
2 with 1− f1

1 and f2 − f2
1 respectively. Differentiating C1

with respect to f1
1 , we obtain

∂C1

∂f1
1

= 2(a1 + a2)f1
1 + (a1 + a2)f2

1 + b1 − b2 − (2 + f2)a2.

Equating the derivative to zero then solving for (f1
1 ) we have

(f1
1 ) =

−b1 + b2 − a1 · f2
1 + a2(2 − f2

1 + f2)
2(a1 + a2)

. (3.1)

Next we consider the cost of player 2:

C2(f2) =
∑
j∈E

f2
j (aj(f1

j + f2
j ) + bj)

which can be explicitly written as

f2
1

(
a1(f1

1 + f2
1 ) + b1

)
+ (f2 − f2

1 )
(
a2(1 − f1

1 + f2 − f2
1 ) + b2

)
where similarly we substitute f1

2 and f2
2 with 1− f1

1 and f2 − f2
1 respectively. Differen-

tiating C2, we get

∂C2

∂f2
1

= b1 − b2 + a1f
1
1 + 2a1 · f2

1 + a2(−1 + f1
1 + 2f2

1 1 − 2f2)

Setting the derivative to zero then solving for (f2
1 ) we have

(f2
1 ) =

a2 − b1 + b2 − a1 · f1
1 − a2f

1
1 + 2a2f

2

2(a1 + a2)
(3.2)



52 CHAPTER 3. LOWER BOUNDS ON THE PRICE OF SSL

Solving the pair of (3.1) and (3.2), we obtain the strategies for a flow at Nash equilibrium
as

(f1
1 )NE =

3a2 − b1 + b2

3(a1 + a2)
and (f2

1 )NE =
3a2 · f2 − b1 + b2

3(a1 + a2)
.

The following example shows a lower bound on the price of SSL in a network with
linear latency functions.

Example 3.3.1. Consider the network of two nodes and two parallel links shown in
Figure 3.1. Let us suppose that the latency of the upper link is ℓ1(f1) = 2.46f1 + 0.01
and the latency of the lower link is ℓ2(f2) = 4.92. Player 1 controls a flow of one unit
while player 2 controls a flow of 0.59 unit. The flow at Nash equilibrium is (0.70, 0.59))
with the social cost of approximately 5.58. The flow at SSL equilibrium is (1.00, 0.50))
with the social cost of approximately 6.00. Hence the price of SSL in this example is
≈ 1.075.

Quadratic Latency Functions

We consider the network model for the following configuration. From Figure 3.1, the
latency of the upper link is ℓ1(f1) = (f1)2 + a(f1) where a ≥ 0 and the latency of the
lower link is ℓ2(f2) = c where c > 0. This is generally achieved by rescaling. The
assumption that some link has only a fixed cost means that the result may not be
optimal for general quadratic functions.

The cost experienced by player 1 in this case is

C1(f1) = f1
1 ((f1

1 + f2
1 )2 + a(f1

1 + f2
1 )) + (1 − f1

1 )c.

Taking the derivative of C1 with respect to f1
1 we get

−c + a(f1
1 + f2

1 ) + (f1
1 + f2

1 )2 + f1
1 (a + 2(f1

1 + f2
1 )). (3.3)

Setting the result to zero then solving for f1
1 , we get

f1
1 =

1
3

(
−a − 2f2

1 ±
√

a2 + 3c + af2
1 + (f2

1 )2
)

.

Since f1
1 must be positive, thus the only feasible (f1

1 ) is

(f1
1 ) =

1
3

(
−a − 2f2

1 +
√

a2 + 3c + af2
1 + (f2

1 )2
)

.
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Next, we consider the cost of player 2,

C2(f2) = f2
1 ((f1

1 + f2
1 )2 + a(f1

1 + f2
1 )) + (f2 − f2

1 )c.

Taking the derivative of C2 with respect to f2
1 , we get

−c + a(f1
1 + f2

1 ) + (f1
1 + f2

1 )2 + f2
1 (a + 2(f1

1 + f2
1 )). (3.4)

Setting the result to zero, then solving for f2
1 , we get

(f2
1 ) =

1
3

(
−a − 2f1

1 ±
√

a2 + 3c + af1
1 + (f1

1 )2
)

.

Similarly, since f2
1 must be positive, the only valid result from the above equation is

(f2
1 ) =

1
3

(
−a − 2f1

1 +
√

a2 + 3c + af1
1 + (f1

1 )2
)

.

Setting (3.3) and (3.4) to zero then solving for f1
1 and f2

1 , we get

f1
1 = f2

1 =
1
16

(
−3a ±

√
9a2 + 32c

)
.

Since a, c ≥ 0, the only feasible solution is

(f1
1 )NE = (f2

1 )NE =
1
16

(
−3a +

√
9a2 + 32c

)
.

Example 3.3.2. Modifying the network from Example 3.3.1, let us suppose that the
latency of the upper link is ℓ1(f1) = f2

1 + 0.01f1 and the latency of the lower link is
ℓ2(f2) = 1.38. Player 1 controls a flow of one unit while player 2 controls a flow of
0.35 unit. The flow at Nash equilibrium is fNE = (0.45, 0.35)) with the social cost
of approximately 1.277. The flow at SSL equilibrium is fSSL = (0.65, 0.28)) with the
social cost of approximately 1.393. Hence the price of SSL in this example is ≈ 1.091.

Cubic Latency Functions

Let us modify the network Figure 3.1 by letting the upper link have a latency ℓ1(f1) =
(f1)3 + a(f1)2 for a ≥ 0, and the lower link to have a latency ℓ2(f2) = c for c > 0.

Now we obtain the Nash flow by solving the problems ∂C1/∂f1
1 = 0 and ∂C2/∂f2

1 =
0, for f1

1 and f2
1 . The cost of player 1 is

C1 = f1
1 ((f1

1 + f2
1 )3 + a(f1

1 + f2
1 )) + (1 − f1

1 )c.



54 CHAPTER 3. LOWER BOUNDS ON THE PRICE OF SSL

Differentiating and equating the result to zero, we get

−c + a(f1
1 + f2

1 ) + (f1
1 + f2

1 )3 + f1
1

(
a + 3(f1

1 + f2
1 )2
)

= 0. (3.5)

Solving (3.5), we obtain (f1
1 ) as

(f1
1 ) =

−24a + 9(f2
1 )2

622/3

(
432c + 216af2

1 + 54(f2
1 )3 + 2

√(
24a − 9(f2

1 )2
)3 + 729

(
8c + 4af2

1 + (f2
1 )3
)2)1/3

+

(
432c + 216af2

1 + 54(f2
1 )3 + 2

√(
24a − 9(f2

1 )2
)3 + 729

(
8c + 4af2

1 + (f2
1 )3
)2)1/3

1221/3

− 3f2
1

4

Next, we consider the cost experienced by player 2:

C2 = f2
1 ((f1

1 + f2
1 )3 + a(f1

1 + f2
1 )) + (f2 − f2

1 )c

Differentiating and equating the result to zero, we get

−c + a(f1
1 + f2

1 ) + (f1
1 + f2

1 )3 + f2
1

(
a + 3(f1

1 + f2
1 )2
)

= 0 (3.6)

Solving (3.6), we obtain

(f2
1 ) =

−24a + 9(f1
1 )2

622/3

(
432c + 216af1

1 + 54(f1
1 )3 + 2

√(
24a − 9(f1

1 )2
)3 + 729

(
8c + 4af1

1 + (f1
1 )3
)2)1/3

+

(
432c + 216af1

1 + 54(f1
1 )3 + 2

√(
24a − 9(f1

1 )2
)3 + 729

(
8c + 4af1

1 + (f1
1 )3
)2)1/3

1221/3

− 3f1
1

4

Solving (3.5) and (3.6), we obtain the expressions for (f1
1 )NE and (f2

1 )NE as

(f1
1 )NE = (f2

1 )NE =
52/3a − 3

√
5(
√

5 +
√

a3 + 5c2 − 5c)2/3

10 3
√√

5
√

a3 + 5c2 − 5c
.

Example 3.3.3. Consider the modification of Example 3.3.2 by replacing the latency
function of the upper bound from the quadratic function to the cubic function ℓ1(f1) =
(f1)3 and the latency of the lower link to ℓ2(f2) = 4.95. Again, player 1 has one unit of
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flow while player 2 has 0.628 units. At Nash equilibrium, player 2 puts all of his flow on
the upper link. Player 1 routes the same amount on the upper link. At SSL equilibrium,
player 1 routes all of his flow on the upper link, pushing player 2 to put 0.39 unit of his
flow on the lower link. As a result, the social cost of Nash and at SSL equilibrium are
≈ 4.323 and ≈ 4.913 respectively. Hence the price of SSL is at least 1.135.

Quartic Latency Functions

Our final result for a symmetric network is the network with a latency function of a
degree of, at most, four. Let us suppose that, in the network shown in Figure 3.1, the
upper link has a latency ℓ1(f1) = (f1)4 + a(f1)3 where a ≥ 0 and the lower link has a
latency ℓ2(f2) = c. First we obtain the expression f1

1 and f2
1 at the Nash equilibrium

by solving the two equations ∂C1/∂f1
1 = 0 and ∂C2/∂f2

1 = 0. The cost experienced by
player 1 is

C1 = f1
1 ((f1

1 + f2
1 )4 + a(f1

1 + f2
1 ) + (1 − f1

1 )c.

Differentiating C1 and then equating the result to zero, we get

−c + (f1
1 + f2

1 )2
(
5(f1

1 )2 + 6f1
1 f2

1 + (f2
1 )2 + a(4f1

1 + f2
1 )
)

= 0. (3.7)

Solving (3.7) for (f1
1 ), we obtain

(f1
1 ) =

1
5
(−a − 4f2

1 ) − 1
10

√
3
(
√

(−90f2
1 (a + 2f2

1 ) + 12(a + 4f2
1 )2 − (532/3(20c

− 3a2(f2
1 )2))/g + 531/3g)) +

1
2
√

(−12
5

f2
1 (a + 2f2

1 ) +
8
25

(a + 4f2
1 )2 + (20c

− 3a2(f2
1 )2)/(531/3g) − 1

532/3
g + (4

√
3(4a3 + 3a2f2

1 − 3a(f2
1 )2 − 4(f2

1 )3))

/(25
√

(−90f2
1 (a + 2f2

1 ) + 12(a + 4f2
1 )2 − (532/3(20c − 3a2(f2

1 )2))/g + 531/3g)))

where

g = (−72a2c − 36acf2
1 − 72c(f2

1 )2 − 9a3(f2
1 )3 + 2

√
3(c(72a2c(f2

1 )2 + 108a5(f2
1 )3

+ 432ac(f2
1 )3 + 27a4(16c + 7(f2

1 )4) + 16c(125c + 27(f2
1 )4)

+ 108a3(4cf2
1 + (f2

1 )5)))1/2)1/3.

Next, we consider the cost of player 2

C2 = f2
1 ((f1

1 + f2
1 )4 + a(f1

1 + f2
1 )) + (f2 − f2

1 )c.
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Taking the derivative of C2 with respect to f2
1 and set the result to zero, we obtain

−c + (f1
1 + f2

1 )2
(
(f1

1 )2 + 6f1
1 f2

1 + 5(f2
1 )2 + a(f1

1 + 4f2
1 )
)

= 0. (3.8)

Solving 3.8 for (f2
1 ), we get

(f2
1 ) =

1
5
(−a − 4f1

1 ) − 1
10

√
3
(
√

(−90f1
1 (a + 2f1

1 ) + 12(a + 4f1
1 )2 − (532/3(20c

− 3a2(f1
1 )2))/g + 531/3g)) +

1
2
√

(−12
5

f1
1 (a + 2f1

1 ) +
8
25

(a + 4f1
1 )2 + (20c

− 3a2(f1
1 )2)/(531/3g) − 1

532/3
g + (4

√
3(4a3 + 3a2f1

1 − 3a(f1
1 )2 − 4(f1

1 )3))

/(25
√

(−90f1
1 (a + 2f1

1 ) + 12(a + 4f1
1 )2 − (532/3(20c − 3a2(f1

1 )2))/g + 531/3g)))

where

g = (−72a2c − 36acf1
1 − 72c(f1

1 )2 − 9a3(f1
1 )3 + 2

√
3(c(72a2c(f1

1 )2 + 108a5(f1
1 )3

+ 432ac(f1
1 )3 + 27a4(16c + 7(f1

1 )4) + 16c(125c + 27(f1
1 )4)

+ 108a3(4cf1
1 + (f1

1 )5)))1/2)1/3.

Then, solving (3.7) and (3.8) yields the expressions (f1
1 )NE and (f2

1 )NE of which
both are equal to

1
48

(−5a − (25a2 + (24(−16c + (−25a2c +
√

c2(625a4 + 4096c))2/3))/(−25a2c

+
√

c2(625a4 + 4096c))1/3)1/2 + 24((25a2)/288 + (2c)/(3(−25a2c

+
√

c2(625a4 + 4096c))1/3) − 1/24(−25a2c +
√

c2(625a4 + 4096c))(1/3) + (125a3)/

(6912((25a2)/576 + (−16c + (−25a2c +
√

c2(625a4 + 4096c))2/3)/(24(−25a2c

+
√

c2(625a4 + 4096c))1/3))1/2))1/2).

Example 3.3.4. Consider a network from Example 3.3.2 where we change the upper
link’s latency function and the lower link’s latency to ℓ1(f1) = (f1)4 + 0.17f1 and
ℓ2(f2) = 1.96, respectively. Player 1 as usual controls a flow of one unit, while player 2
controls a flow of 0.33 unit. At Nash equilibrium, player 2 puts all of his flow on the
upper link and player 1 puts 0.43 of its flow on the upper link and the rest of the flow
on the lower link. At SSL equilibrium, player 1 put 0.71 of its flow on the upper link,
pushing player 2 to route 0.09 unit of its flow on the lower link. As a result, the social
cost at the Nash equilibrium and at the SSL equilibrium are approximately 1.427 and
1.657 respectively. The price of SSL is approximately 1.161.
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3.3.2 Asymmetric Network

1

3

s t22

Figure 3.4: A simple three-link asymmetric network in which 1 and 3 are private links,
and 2 is a shared link.

We now consider the asymmetric network in Figure 3.4 in which two nodes are
connected with three parallel links. Each link has a linear latency function in the form
ℓj(fj) = aj(fj) + bj for j ∈ {1, 2, 3} where aj , bj ≥ 0. Again player 1 is assumed to
control one unit of flow and player 2 is assumed to control f2 > 0 unit of flow. We wish
to determine the player strategies (f1

1 )NE , (f2
3 )NE, (f1

1 ) and (f2
3 ). The cost experienced

by player 1 is

C1 = f1
1 (a1(f1

1 ) + b1) + (1 − f1
1 )(a2(1 − f1

1 + f2 − f2
3 ) + b2).

where we substitute f1
2 and f2

2 with 1− f1 and f2 − f2
3 respectively. Differentiating C1

with respect to f1
1 and setting the result to zero, we get

b1 − b2 + 2a1f
1
1 + a2(−2 + 2f1

1 − f2 + f2
3 ) = 0. (3.9)

Solving (3.9) for (f1
1 ), we get

(f1
1 ) =

−b1 + b2 + a2(2 + f2 − f2
3 )

2(a1 + a2)
.

The cost of player 2 is given by

C2 = (f2 − f2
3 )(a2(1 − f1

1 + f2 − f2
3 ) + b2) + f2

3 (a3(f2
3 ) + b3).

Differentiating C2 with respect to f2
1 and setting the result to zero, we get

−b2 + b3 + 2a3f
2
3 + a2(−1 + f1

1 − 2f2 + 2f2
3 ) = 0. (3.10)
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Solving (3.10) for (f2
3 ), we have

(f2
3 ) =

a2 + b2 − b3 − a2f
1
1 + 2a2f

2

2(a2 + a3)
.

Solving (3.9) and (3.10) for (f1
1 )NE and (f2

3 )NE, we obtain

(f1
1 )NE =

3a2
2 + 2a3(−b1 + b2) + a2(−2b1 + b2 + b3 + 2a3(2 + f2))

4a1(a2 + a3) + a2(3a2 + 4a3)

and

(f2
1 )NE =

2a1(a2 + b2 − b3 + 2a2f
2) + a2(b1 + b2 − 2b3 + 3a2f

2)
4a1(a2 + a3) + a2(3a2 + 4a3)

.

Example 3.3.5. Consider a network in Figure 3.4 in which the top link, middle link and
bottom link have a latency of ℓ1(f1) = 2.75, ℓ2(f2) = f2 and ℓ3(f3) = 3.5 respectively.
Player 1 controls a one unit flow, while player 2 controls a 1.42 unit of flow. At Nash
equilibrium, player 1 routes a 0.33 fraction of its flow on link 1, while player 2 routes
all of its flow on link 2. The social cost at Nash equilibrium is approximately 5.27. At
SSL equilibrium, player 1 routes all of its flow in link 2 and player 2 routes 1.25 units
of flow on link 2. The social cost at the SSL equilibrium is approximately 5.66, which
results in the price of SSL of approximately 1.074.

Remark 3.3.6. We show in the next chapter that there is no price of SSL if a parallel-
link network only has homogeneous linear latency functions. However, for asymmetric
networks, the leader can take advantage even in a network where the all latency functions
are homogeneous linear, as we show in the next example.

Example 3.3.7. Consider a network in Figure 3.4 in which ℓ1(f1) = f1, ℓ2(f2) = 2f2

and ℓ3(f3) = f3. Player 1 and player 2 each have one unit of flow. We find a flow (f1
1 , f2

3 )
at Nash equilibrium and SSL equilibrium Using the expressions formulated above, we
have a Nash flow of (0.75,0.75) and SSL flow of (0.76, 0.71). The social cost of the Nash
flow is 1.625 and the social cost of the SSL flow is 1.644. Hence we have the price of
SSL of 1.012.

3.4 Discussion

In Table 3.1, we have summarised the maximal price of SSL we obtained for each of the
network configurations studied. Our results show some lower bounds for the price of
SSL. The multiplication factor 1.075 for the network with linear latency functions offers
a lower bound corresponding with an upper bound of 1.322, as we will show in the next
chapter.
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Description ℓ1(f1) ℓ2(f2) ℓ3(f3) Price of SSL
(approximately)

Affine linear a1f1 + b1 a2f2 + b2 - 1.075

Quadratic (f1)2 + af1 c - 1.091

Cubic (f1)3 + a(f1)2 c - 1.135

Quartic (f1)4 + a(f1)3 c - 1.161

Asymmetric with linear a1f1 + b1 a2f2 + b2 a3f3 + b3 1.074

Table 3.1: The results of the price of SSL for networks with various latency function
forms with some restrictions. All coefficients are assume to be non-negative.

So far, we have not found any examples of a parallel network for the case of two
players, which would suggest that the price of SSL is unbounded. In contrast to the
price of anarchy of a network of two players where one player is atomic and the other is
nonatomic, Roughgarden showed that the price of anarchy can be arbitrarily large, even
for a simple two parallel links model for general latency functions. In that particular
example the price of SSL is not unbounded.

It can be seen from the results that, as we allow a more general class of latency
functions, the price of SSL increases. This suggests that the price of SSL depends
crucially on the “steepness” of the network cost functions. An interesting open problem
on this subject would be how big can the price of SSL be, for unrestricted convex latency
functions?





Chapter 4

Upper Bounding the Price of

Selfish Stackelberg Leadership

So far, we have demonstrated in several examples in Chapters 2 and 3 that there can
be an additional social cost if there exists a player with Stackelberg leadership when
compared to the standard Nash setting, even in a simple two parallel links model with
linear latency functions.

In this chapter, we investigate upper bounds on the price of selfish Stackelberg
leadership (price of SSL), namely the worst possible ratio of the social cost that occurs
when one of the players is a selfish leader to that of the Nash equilibrium. In particular,
we focus on the model of two atomic players each with a splittable flow in a parallel-link
network with linear latency functions. We consider both when latency functions are
general linear and when latency functions are restricted to homogeneous linear.

4.1 Overview

The main objective of this chapter is to prove upper bounds on the price of SSL. That
is, we prove the bounds on the worst ratio between a social cost of a SSL flow and
that of a Nash flow. We concentrate on a simple model of two atomic splittable players
in a network with n parallel links each of which has a latency function of the form
ℓj(fj) = ajfj + bj where aj , bj ≥ 0. We assume that both players are selfish and want
to minimise their individual costs. Furthermore, we assume that the total amount of
flow in the network is one. We prove that there are constant upper bounds that are
independent of the number of links in the network. Note that all of the notations and
the definitions used in this chapter are previously described in Chapter 2.

Our main approach to obtain the upper bounds is to bound the social cost of a SSL
flow with a combination of upper bounds on player individual costs, while the social
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cost of a Nash flow is lower bounded by an optimal cost. To prove the upper bounds on
player individual costs, we have to know what players’ strategies are in the SSL flow.
Finding optimal strategies for players are difficult, especially for a leader, we analyse
two simple strategies, one for each player, that guarantee some upper bounds. That is, if
the leader plays with the proposed strategy then regardless of what the follower will do,
the leader’s cost is at most the upper bound, and vice versa. We describes the strategies
in Section 4.2. Theses strategies are not necessary optimal for corresponding players,
but the upper bounds for player costs obtained when they are used can guarantee the
upper bounds for the costs when optimal strategies are used.

In Section 4.2, we prove an upper bound on the price of SSL of 2. In Section 4.3, with
a slightly more careful analysis on the upper bounds on player costs, we show an upper
bound on the price of SSL of 4/3. In Section 4.4, we present our main result showing
an upper bound of slightly less than 4/3, or 1.322 to be precise, by dint of a more
complicated analysis and also by considering the aloof strategy of Roughgarden [Rou04].
This upper bound together with the lower bound of 1.075 shown in Example 3.3.1 in a
network of two parallel links, demonstrates that the price of SSL is in a narrow range
of [1.075, 1.322].

In Section 4.5, we consider the model with homogeneous linear functions, namely
linear functions where every bj is zero (or all bj are identical by normalising). We prove
that a SSL flow is unique and identical to a Nash flow, consequently, the price of SSL
is 1 in such a model. Finally, we conclude the chapter with a conclusion and some open
problems in Section 4.6.

4.2 Two Strategies.

In this section, we consider two strategies, one for each player in a Stackelberg game,
that provide a suboptimal performance guarantee. The first strategy is for a leader
(or as we normally refer to as player 1). It was used by Korilis et al. [KLO97a] for
a benevolent leader as a routing strategy in the same model where there is a single
follower. They proved that a leader using this strategy can always enforce an optimal
flow.

Strategy 1:

Strategy 1, depicted in Figure 4.1, is for player 1. The general idea is that player 1 acting
like a benevolent leader, tries to enforce an optimal flow (fSE). Provided that player 1
can achieve this, it follows immediately that player 1’s cost is, at most, the optimal cost,
which is the total cost for both players. We describe the strategy as follows.
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1. Compute an optimal flow fSE.

2. Let n̂ ≤ n be the maximal with fSE
bn > 0.

3. Compute an optimal flow (fSE)2 where (fSE)2 = f2.

4. Let j∗ ≤ n̂ be the maximal with (fSE)2j∗ > 0.

5. For j = j∗ + 1 to n̂, set f1
j = fSE

j .

6. For j = 1 to j∗, set f1
j =

(
f1 −

∑
bn
j=j∗+1 f1

j

)
/
(
aj
∑j∗

j=1 1/aj

)
.

Figure 4.1: Strategy 1 for player 1

The first step of the strategy is for player 1 to compute fSE. The second step is to
divide the links used in fSE into two subgroups; one is the group of links that will be
used by both player 1 and 2 in the SSL flow, and the other is the group of links that will
be used only by player 1. The list of links that will be used by player 2 can be obtained
by computing the optimal flow relative to f2, in other words, computing player 2’s
strategy as if player 1 is not present in the system. Recall that links are indexed in
increasing order of bj and an optimal flow preserves the order of links (Corollary 2.2.6).
Let j∗ be the maximal indexed link that player 2 will use and n̂ be the maximal indexed
link used in fSE, then we claim that {1, . . . , j∗} represents the group of links that will
be used by both players and {j∗ + 1, . . . , n̂} represents the group of links that will be
used only by player 1.

For links in {j∗ + 1, . . . , n̂}, player 1 fills the latencies to the level that should occur
in fSE. Then, for links in {1, . . . , j∗}, player 1 ensures that the difference between the
latencies of every pairs of links after it has played stay the same. That is, player 1 splits
the rest of its flow to all the links in this group such that every link is increased with the
same amount of latency. The fraction of flow player 1 routes to link j ∈ {1, . . . , j∗} can
be computed as follows. After allocating flow to links in {j∗ + 1, . . . , n̂}, the remaining
flow of player 1 is f1 −

∑
bn
j=j∗+1 f1

j . Player 1 aims to increase every link with equal
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latency, i.e. aif
1
i = ajf

1
j for all i, j ∈ {1, . . . , j∗}. We compute f1

j where j ∈ {1, . . . , j∗},

f1 −
bn∑

j=j∗+1

f1
j =

j∗∑
j=1

ajf
1
j

aj

=
a1f

1
1

a1
+ . . . +

ajf
1
j

aj
+ . . . +

aj∗f
1
j∗

aj∗

=
akf

1
k

a1
+ . . . +

ajf
1
j

aj
+ . . . +

ajf
1
j

aj∗
(4.1)

f1
j =

1

ak
∑j∗

j=1 1/aj

f1 −
bn∑

j=j∗+1

f1
j

 ,

where 4.1 comes from the fact that every link is increased with equal latency, i.e. ajf
1
j

are equal for every j in {1, . . . , j∗}. By increasing latencies equally, player 1 ensures
that player 2 routes its flow like fSE for {1, . . . , j∗}. Hence the differences between links
after player 2 has played are the same as that in fSE. In summary, f1

j + f2
j = fSE

j for
every j in {1, . . . , j∗} and f1

j = fSE
j for every j in {j∗ + 1, . . . , n̂}.

Lemma 4.2.1. Given a flow of two players in a parallel-link network with linear latency
functions, if player 1 uses Strategy 1 then player 1’s cost in SSL equilibria is at most
the cost of the optimal flow, i.e. C1 ≤ CSE.

Strategy 2 :

We consider Strategy 2 for a follower (or as we normally refer to as player 2) depicted
in Figure 4.2. The aim of Strategy 2 is for player 2 to try to create an optimal flow by
acting similarly to a UE flow. The strategy can be described as follows.

Player 2 first computes an optimal flow. Let n̂ be the maximal indexed link that
is used in fSE. Knowing how much flow player 1 has allocated on each link, form link
1 to link n̂, player 2 gradually distributes its flow to the the minimal latency link, i.e.
link j with minimal ℓj(f1

j + f2
j ), but not to exceed the level of latencies in the optimal

flow, i.e. f1
j + f2

j ≤ fSE
j .

Clearly, if player 2 routes its flow with Strategy 2, its cost is, at most, the optimal
cost. This is because if player 1 does not allocate its flow more than the level that occurs
in the optimal flow, then, using Strategy 2, player 2 will ensure that the combined flow
is optimal. If there are some links that player 1 routes more than the optimal flow then
there is enough room on the remaining links for player 2 to use those without making
their flow more than the optimal flow.
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1. Compute an optimal flow fSE.

2. Let n̂ ≤ n be the maximal with fSE
bn > 0. in fSE and still have

f1
j < fSE

j such that ℓ1(f1
1 ) ≤ . . . ≤ ℓn(f1

n).

3. For j = 1 to n̂, set f2
j such that ℓj(f2

j + f1
j ) ≤ ℓj(f2

j+1 + f1
j+1) and

f2
j + f1

j ≤ fSE
j .

Figure 4.2: Strategy 2 for player 2

Lemma 4.2.2. Given a flow of two players in a parallel-link network with linear latency
functions, if player 2 uses Strategy 2 then the cost of player 2 at SSL equilibria is at
most the cost of the optimal flow, i.e. C2 ≤ CSE.

Theorem 4.2.3. Given a flow of two players in a parallel-link network with linear
latency functions, the price of selfish Stackelberg leadership is at most 2.

Proof. Recall that the price of SSL is the worst ratio of a social cost in a Stackelberg
game and that in Nash equilibria. By using Lemma 4.2.1 and Lemma 4.2.2, the social
cost in a Stackelberg game is at most 2CSE. The social cost in Nash equilibria is at
least CSE, consequently, the price of SSL is at most 2CSE/CSE ≤ 2.

Remark 4.2.4. It can simply be seen that, in two-player Stackelberg games in a
parallel-link network, player 1 can always enforce an optimal flow by using Strategy 1.
Although we assume here that the total flow is 1, Strategy 1 works with any posi-
tive total flow and with any fraction of flow a leader controls as Korilis et al. proved
in [KLO97a]. This is clearly not necessary true for Strategy 2 for player 2.

4.3 Quick Upper Bound of 4/3

In the previous section, we oversimplify the upper bounds on players cost by using the
costs of the combined flow as the bounds on individual costs. In fact, to get closer to
true bounds, each player upper bound should be the cost of the combined flow minuses
the minimal of the other player’s cost, or the cost where that player routing all its flow
on maximal latency links. Using this approach, we determine improved upper bounds
for player 1 and player 2 in Lemma 4.3.2 and Lemma 4.3.3 respectively. Again using the
combination of upper bounds on player costs, we prove the upper bound on the price
of SSL of 4/3 in Theorem 4.3.4. Note that we still assume that player 1 uses Strategy 1
and player 2 uses Strategy 2.
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Remark 4.3.1. We shall denote the minimal latency of links used in fSE by ℓmin, and
the maximal by ℓmax. Since the total flow is always assumed to be one, we have that
ℓmin ≤ CSE ≤ ℓmax. Obviously this also applies to the cost of player 1 and 2, i.e.
ℓ1
min ≤ C1 ≤ ℓ1

max and ℓ2
min ≤ C2 ≤ ℓ2

max if ℓ1 and ℓ2 denote links used by player 1 and
2 respectively.

Lemma 4.3.2. Given a parallel-link network with linear latency functions. In a Stack-
elberg game, player 1’s cost is at most min{2f1ℓmin, CSE − (1 − f1)ℓmin}.

Proof. Applying Strategy 1, player 1 ensures that the combined flow is socially optimal.
Thus, player 1’s cost is the optimal cost minus player 2’s cost which is at least all of
player 2’s flow multiplied by the minimal latency, i.e. (1− f1)ℓmin (recall that the total
flow is one unit). Hence player 1’s cost is at most CSE − (1 − f1)ℓmin.

Alternatively, player 1’s cost cannot be any higher than the cost of it putting all of
its flow on the maximal latency links. Furthermore, from Corollary 2.2.4, the maximal
latency of an optimal flow ℓmax is at most twice the minimal latency ℓmin for links that
get used. Hence player 1’s cost is at most 2f1ℓmin.

Combining those two results, we have player 1’s cost is at most min{2f1ℓmin, CSE−
(1 − f1)ℓmin}.

Lemma 4.3.3. Given a parallel-link network with linear latency functions. In a Stack-
elberg game, player 2’s cost is at most min{CSE − f1ℓmin, 2(1 − f1)ℓmin}.

Proof. In a Stackelberg game, we assume that player 2 uses Strategy 2. This implies that
every link used by player 2 is at most ℓmax which is at most 2ℓmin by Corollary 2.2.4.
The cost of player 2 is maximised when all of player 2’s flow is routed on maximal
latency links, i.e. C2 ≤ (1 − f1)2ℓmin.

Alternatively, player 2’s cost is at most the optimal cost minus player 1’s cost. There
are two cases to be considered.

Case 1: Player 2 can ensure that the minimum latency of the combined flow of all
the links is at least ℓmin. Hence we can pessimistically assume that player 1’s cost is at
least f1ℓmin which means that player 2’s cost is at most CSE − f1ℓmin.

Case 2: Player 2 cannot ensure that the minimum latency of the combined flow is
at least ℓmin. Then it uses links that all have latency less than ℓmin. Thus its cost is
less than (1 − f1)ℓmin which is less than the above bounding 2(1 − f1)ℓmin.

Combining those results, player 2’s cost is at most min{CSE−f1ℓmin, 2(1−f1)ℓmin}.

We are now ready to show the upper bound of 4/3 on the price of SSL.
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Theorem 4.3.4. In a two-player, n parallel-link network with linear latency functions,
the price of SSL is at most 4/3.

Proof. Suppose we are given a two-player, parallel-link network with linear latency
functions. In a Stackelberg game, we assume that player 1 uses Strategy 1, and player 2
uses Strategy 2. Recall that an optimal cost is in the range between between ℓmin and
2ℓmin (from Remark 4.3.1 and Corollary 2.2.4). There are two cases to be considered.

• The optimal cost is at least (3/2)ℓmin. In this case, from Lemma 4.3.2 and
4.3.3, the social cost in a Stackelberg game is upper bounded by 2f1ℓmin +
2(1−f1)ℓmin = 2ℓmin. Hence the price of SSL is at most (2ℓmin)/ ((3/2)ℓmin) ≤ 4/3.

• The optimal cost is less than (3/2)ℓmin. Then, similarly from Lemma 4.3.2 and
4.3.3, the social cost in a Stackelberg game is upper bounded by CSE − (1 −
f1)ℓmin + CSE − f1ℓmin = 2CSE − f1ℓmin. Hence the price of SSL is upper
bounded by (2CSE − ℓmin)/(CSE) ≤ 4/3.

The combination of the above results proves the theorem.

4.4 Upper Bound of Less than 4/3

In this section, we prove that there is an upper bound on the price of SSL of less than
4/3. To do that, we improve the upper bound of player 1’s cost in Lemma 4.3.2, in
which the cost is bounded under the pessimistic assumption so that, in a situation
where it creates an optimal flow, it is possible for all of player 1’s flow to be routed on
the maximal latency link and all of player 2’s flow to be routed on the minimal latency
link.

The outline of the proof of the main theorem in this section is as follows. We define
the diverse latency property that an optimal flow may or may not have, depending on
the latency functions of the links. We prove the upper bound in the case that the
optimal flow has the diverse latency property, then we use an alternative proof in the
case that it does not have the property. When the optimal flow has the property, we
insist that player 1 uses the strategy called the aloof strategy [Rou04] that corresponds
more with what selfish player 1 would do instead of Strategy 1.

Up to this point, we have shown that the price of SSL is at most 4/3 by pessimistically
assuming that player 1 and 2 use the suboptimal Strategy 1 and 2 respectively in a
Stackelberg game to enforce an optimal flow. With this approach, player costs depend
on the optimal cost and the minimum latency of links used in the optimal flow. In
addition, we know that the optimal cost is in the range between ℓmin and 2ℓmin, hence,
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in Lemma 4.4.1 by assuming player 1 and 2 use Strategy 1 and 2 respectively, we show
upper bounds on the price of SSL as CSE changes in the range [ℓmin, 2ℓmin]. Similarly,
with this approach, upper bounds on the price of SSL depend on the fraction of player 1.
As the fraction of player 1 changes, we show in Lemma 4.4.3 bounds on the price of SSL.
Figure 4.3 depicts the basic ideas by demonstrating upper bounds on the social cost of
SSL equilibria as CSE and f1 vary. The lemmas will be useful in the next section when
we prove that the price of SSL is at most 4/3.

Lemma 4.4.1. In a two-player, parallel-link network with linear latency functions, let
CSE = γℓmin where 1 ≤ γ ≤ 2. Then

• if γ ≥ 3
2 then the price of selfish Stackelberg leadership ≤ 2

γ ;

• if γ < 3
2 then the price of selfish Stackelberg leadership ≤ 2γ−1

γ .

Proof. When the optimal cost is at least (3/2)ℓmin, the social cost in the SSL setting is
bounded by 2ℓmin (Figure 4.3(b) and Corollary 2.2.4). Hence the price of SSL is upper
bounded by

2ℓmin

CSE ≤ 2ℓmin

γℓmin
≤ 2

γ
.

If the optimal cost is less than (3/2)ℓmin then the social cost in the SSL setting is
bounded by 2CSE − ℓmin (Figure 4.3(c)) in which the social cost is player 1’s cost of
CSE − (1 − f1)ℓmin plus player 2’s cost of CSE − f1ℓmin. Hence the upper bound of
the price of SSL is given by

2CSE − ℓmin

CSE ≤ 2 − ℓmin

γℓmin
≤ 2γ − 1

γ
.

Remark 4.4.2. As suggested in Figure 4.3, the ratio between the upper bound for the
social cost and the optimal cost is maximised when the optimal cost is (3/2)ℓmin.

Lemma 4.4.3. Suppose we have a two-player, parallel-link network. Let f1 = α where
0 ≤ α ≤ 1 then:

• if α ≥ 1
2 then the price of selfish Stackelberg leadership ≤ 1 + 2(1−α)

3 ;

• if α < 1
2 then the price of selfish Stackelberg leadership ≤ 1 + 2α

3 .

Proof. As mentioned above (Remark 4.4.2), the ratio between CSSL and CSE is max-
imised when CSE = (3/2)ℓmin. Firstly, we consider the case when α ≥ 1/2. In this case,
player 1’s cost and player 2’s cost in the SSL setting are bounded by CSE− (1−f1)ℓmin
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(a) Graph of the upper bound of CSSL when
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(b) Graph of the upper bound of CSSL when

CSE > (3/2)ℓmin
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(c) Graph of the upper bound of CSSL when

CSE < (3/2)ℓmin

Figure 4.3: Assuming that player 1 and 2 route flow with Strategy 1 and 2, the graphs
show the upper bound on CSSL as CSE and f1 of the corresponding flows vary. The
graphs depict the basic ideas for Lemma 4.4.1 and Lemma 4.4.3. Dashed lines denote
player costs as follows: for C1, l1 = f1ℓmax and l2 = CSE − (1 − f1)ℓmin; for C2,
l3 = CSE − f1ℓmin and l4 = (1 − f1)ℓmax. Solid lines denote the minimal upper bound
of C1. Dot dashed lines denote the minimal upper bound of C2. Thick solid lines denote
the upper bound for CSSL which is min{l1, l2} + min{l3, l4}.
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and (1 − f1)ℓmax respectively (using Lemma 4.3.2 and 4.3.3). Then the social cost is
bounded by CSE + (1 − f1)ℓmin (using Corollary 2.2.4 for ℓmax ≤ 2ℓmin). Thus, the
price of SSL is, at most,

CSE + (1 − f1)ℓmin

CSE
≤ 1 +

(1 − α)ℓmin

(3/2)ℓmin
≤ 1 +

2(1 − α)
3

.

Next, we consider α < 1/2. In this case, player 1’s cost and player 2’s have minimal
upper bounds of CSE − f1ℓmin and 2f1ℓmin respectively. Consequently, the social cost
is bounded by CSE + f1ℓmin. Hence, the price of SSL in this case is upper bounded by

CSE + f1ℓmin

CSE
≤ 1 +

αℓmin

(3/2)ℓmin
≤ 1 +

2α

3
.

Using Lemma 4.4.1 and 4.4.3, we narrow the scope of the values of the optimal
cost and player 1’s flow needs to be considered. Finally, we prove the main result by
conducting a case analysis of the value of CSE and f1.

Definition 4.4.4. Let ℓmin and ℓmax respectively denote the minimal and maximal la-
tency in an optimal flow. We say that an optimal flow fSE has the diverse latency
property (DLP) if at least 1/4 of the flow gets a latency of at most, 1.16ℓmin and at
least 1/4 of the flow gets a latency of at least 1.84ℓmin.

Definition 4.4.5. Aloof strategy: (Roughgarden [Rou04]): in a two-player model, player 1
routes f1, optimising its cost in player 2’s absence: compute the optimal flow for a total
flow volume of f1.

Lemma 4.4.6. Given a two-player, parallel-link network with linear latency functions.
If the DLP is satisfied by an optimal flow, then player 1’s cost is at most 1.915f1ℓmin.

Proof. Let Smin and Smax be the sets of links whose latencies in the optimal flow are
at most 1.16ℓmin and at least 1.84ℓmin respectively. We will assume in this proof that
player 1 uses the aloof strategy. We exploit the fact that, when the DLP holds, player
1 gets a better performance using the aloof strategy instead of Strategy 1, as described
earlier.

First, we consider the optimal flow. Using the DLP assumption and Lemma 2.2.5,
the difference between the constant cost ℓj(0) (i.e. the marginal costs of the links when
the flow is zero) of links in Smax and those in Smin is at least twice the difference
between the minimal latency in Smax and the maximal latency in Smin, i.e. 2(1.84ℓmin−
1.16ℓmin) = 1.36ℓmin.
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Next, we consider the SSL setting. With the aloof strategy, if player 1 uses links in
Smax, after player 1 has played, the latency difference between Smax and Smin is at least
half the difference between the value ℓj(0) in Smax and that in Smin, which is at least
(1.36ℓmin)/2 = 0.68ℓmin. And if player 1 does not use links in Smax then the difference
is higher than 0.68ℓmin. Essentially, this implies that, from player 2’s perspective the
constant cost in Smax is at least 0.68ℓmin more than that in Smin.

By Corollary 2.2.4 and Lemma 2.2.5, there is not enough flow in total for the latency
in the Smax of links used by either player to be more than 2ℓmin. Therefore, the latency
in Smin after player 2 has played is at most 2ℓmin − (0.68ℓmin)/2 = 1.66ℓmin.

With the DLP assumption, because there is at least 1/4 of the total flow in Smin,
player 1 is guaranteed to have at least 1/4 of its flow in Smin. Hence, player 1’s cost is,
at most, (f1/4)(1.66ℓmin) + (3f1/4)2ℓmin = 1.915f1ℓmin.

For the case when the DLP is not satisfied, we prove the following upper bound on
player 1’s cost.

Lemma 4.4.7. If, in an optimal flow, at most 1/4 of the flow gets a latency of at most
1.16ℓmin or at most 1/4 of the flow gets a latency of at least 1.84ℓmin, then player 1’s
cost is at most max{CSE− ℓmin/4−1.16ℓmin(3/4− f1), ℓmin/2+(f1 −1/4)(1.84ℓmin)}.

Proof. In this proof, we assume that player 1 uses Strategy 1 to ensure that the combined
flow is an optimal flow. Then, from Lemma 4.3.2, player 1’s cost is at most the optimal
cost minus player 2’s cost which is lowest when all of player 2’s flow f2 achieves a
latency of ℓmin. However, noting the first alternative of the given assumption, suppose
1/4 of the total flow achieves a latency of ℓmin, and the rest gets at least 1.16ℓmin, then
player 1’s cost is, at most, CSE − ℓmin/4 − 1.16ℓmin(3/4 − f1).

Alternatively, player 1’s cost is maximised when all of f1 is on the maximal latency
links. However, from the second alternative of the given assumption, only 1/4 of the flow
achieves a latency of more than 1.84ℓmin and the rest of the flow achieves a latency of at
most 1.84ℓmin. Hence player 1’s cost can be at most (1/4)(2ℓmin)+(f1−1/4)(1.84ℓmin) =
ℓmin/2 + (f1 − 1/4)(1.84ℓmin).

Theorem 4.4.8. In a two-player, n-parallel-link model with non-decreasing linear la-
tency functions, the price of selfish Stackelberg leadership is in the range [1.075, 1.322].

Proof. In regard to a lower bound, we have obtained a price of SSL of 1.075 in Exam-
ple 3.3.1.

In regard to an upper bound, we start the proof by first identify the scope of an
optimal cost and player 1’s flow, to which we should restrict our attention. From
Lemma 4.4.3, we note that we only consider player 1’s flow in the range [0.483, 0.517]
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since any scenario in which player 1’s flow is outside this range gives the price of SSL of
less than 1.322. Similarly, because of Lemma 4.4.1, we only consider the optimal cost
in the range [1.474ℓmin, 1.513ℓmin].

We will use the upper bound of player 2’s cost from Lemma 4.3.3. For player 1’s
cost, we have two upper bounds, one for when the DLP holds and the other for when
it does not hold.

First, when the DLP is satisfied, we have an upper bound on player 1’s cost of
1.915f1ℓmin from Lemma 4.4.6. Combined with player 2’s cost, the price of SSL is
upper bounded by

1.915f1ℓmin + min{CSE − f1ℓmin, 2(1 − f1)ℓmin}
CSE ≤ 1.915f1ℓmin + CSE − f1ℓmin

CSE

≤ 1 +
0.915f1ℓmin

CSE

≤ 1 +
0.915(0.517)ℓmin

1.474ℓmin

≤ 1.321

Secondly, when the DLP is not satisfied, player 1’s cost is upper bounded by
max{CSE − ℓmin/4 − 1.16ℓmin(3/4 − f1), ℓmin/2 + (f1 − 1/4)(1.84ℓmin)}. Within this
proof, we will use (1) and (2) to denote the expression CSE−ℓmin/4−1.16ℓmin(3/4−f1)
and ℓmin/2+(f1−1/4)(1.84ℓmin) respectively. Thus the upper bound for player 1’s cost
can be represented by max{(1), (2)}. We prove the upper bound by an exhaustive case
analysis as follows:

1. Suppose CSE ≥ (3/2)ℓmin, we consider f1.

• Suppose f1 < 1/2, then max{(1), (2)} = (1). Hence the price of SSL is upper
bounded by

(1) + min{CSE − f1ℓmin, 2(1 − f1)ℓmin}
CSE

≤ CSE − ℓmin/4 − 1.16ℓmin(3/4 − f1) + 2(1 − f1)ℓmin

CSE

≤ 1 +
(0.88 − 0.84f1)ℓmin

CSE

≤ 1 +
(0.88 − 0.84(0.483))ℓmin

(3/2)ℓmin

≤ 1.317
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• Suppose f1 ≥ 1/2, we have player 2’s cost ≤ 2(1 − f1)ℓmin, but player 1’s
cost is still bounded by max{(1), (2)}. The upper bound on the price of SSL
can be considered in two cases.

(a) When max{(1), (2)} = (1) the price is at most ((1)+2(1−f1)ℓmin)/CSE.
Thus we have

(1) + 2(1 − f1)ℓmin

CSE ≤ CSE − ℓmin/4 − 1.16ℓmin(3/4 − f1) + 2(1 − f1)ℓmin

CSE

≤ 1 +
(0.88 − 0.84f1)ℓmin

CSE

≤ 1 +
(0.88 − 0.84(0.5))ℓmin

(3/2)ℓmin

≤ 1.307

(b) When max{(1), (2)} = (2) the price is at most ((2)+2(1−f1)ℓmin)/CSE.
Thus we have

(2) + 2(1 − f1)ℓmin

CSE ≤ ℓmin/2 + (f1 − 1/4)(1.84ℓmin) + 2(1 − f1)ℓmin

CSE

≤ (2.04 − 0.16f1)ℓmin

CSE

≤ (2.04 − 0.16(0.5))ℓmin

(3/2)ℓmin

≤ 1.307

2. Suppose CSE < (3/2)ℓmin, we consider f1

• Suppose f1 < 1/2 then player 2’s cost is at most CSE − f1ℓmin. Hence, the
upper bound of the price of SSL can be considered in two cases.

(a) When max{(1), (2)} = (1), the price is at most ((1)+CSE−f1ℓmin)/CSE.
We have

(1) + CSE − f1ℓmin

CSE ≤ CSE − ℓmin/4 − 1.16ℓmin(3/4 − f1) + CSE − f1ℓmin

CSE

≤ 2 +
(−1.12 + 0.16f1)ℓmin

CSE

≤ 2 +
(−1.12 + 0.16(0.5))ℓmin

(3/2)ℓmin

≤ 1.307
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(b) When max{(1), (2)} = (2), the price is at most ((2)+CSE−f1ℓmin)/CSE.
So we have

(2) + CSE − f1ℓmin

CSE ≤ ℓmin/2 + (f1 − 1/4)(1.84ℓmin) + CSE − f1ℓmin

CSE

≤ 1 +
(0.04 + 0.84f1)ℓmin

CSE

≤ 1 +
(0.04 + 0.84(0.5))ℓmin

1.474ℓmin

≤ 1.313

• Suppose f1 ≥ 1/2 then max{(1), (2)} = (2), then the price of SSL is upper
bounded by

(2) + min{CSE − f1ℓmin, 2(1 − f1)ℓmin}
CSE

≤ (2) + CSE − f1ℓmin

CSE

≤ ℓmin2 + (f1 − 1/4)(1.84ℓmin) + CSE − f1ℓmin

CSE

≤ 1 +
(0.025 + 0.9f1)ℓmin

CSE

≤ 1 +
(0.04 + 0.84(0.517))ℓmin

1.474ℓmin

≤ 1.322

In conclusion, when the DLP is not satisfied, we have shown that the price of SSL
is less than 1.322.

4.5 Homogeneous Linear Latency Functions

In this section, we consider the model with homogeneous linear latency functions—
linear functions of the form ℓ(x) = ax where a > 0. It was shown by Hayrapetyan et
al. [HTW06] that, for parallel-link networks with convex latency functions, every link
has the same latency in both a Nash flow and a UE flow, which implies that the social
costs of a Nash flow and a UE flow are equal. The main result in this section partially
extends the result of Hayrapetyan et al. in a sense that we further show that not only
will every link in the Nash flow ends up with the same latency, but also the ratios of the
flows on the links are the same for all players. Furthermore, we prove that a SSL flow
is identical to a Nash flow in this case, which shows that having Stackelberg leadership,
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in this setting, is not beneficial.

The main result in this section is that the price of SSL is 1 which will be proved via
the following steps. Essentially, we prove the main result (Theorem 4.5.9) by showing
that a Nash flow and a SSL flow in this setting are unique and identical. We define
a term equal shared flow (fES) for a flow in which every players split their flow in a
uniform way as described below in Definition 4.5.1. We show that a Nash flow and a
SSL flow are fES in Lemma 4.5.3 and Lemma 4.5.8 respectively. To show that a SSL
flow is fES , we first prove that the leader must split its flow such that every links are
increased with an equal latency (Lemma 4.5.7), which then would force the follower to
do the same (Lemma 4.5.6).

Definition 4.5.1. Given a two-player, parallel-link network with homogeneous linear
latency functions, a flow is the equal share flow if both players allocate their flow such
that they increase the latency of every link equally, i.e., for player i, ajf

i
j = akf

i
k for

every pair of links j and k. We shall denote the equal share flow of mathbff with fES.

Clearly, in an equal share flow, every links have an equal latency.

Corollary 4.5.2. For a parallel-link network with homogeneous linear latency functions,
all of the latencies of the links in fES are equal.

Lemma 4.5.3. Let f be a flow of two players in a parallel-link network with homoge-
neous linear latency functions. At Nash equilibrium, every link will be used, i.e. fj > 0
for every link j in the network.

Proof. Recall from Lemma 2.3.4 that, at Nash equilibrium, for all links j and k and for
all players i that have f i

j > 0, if the following inequality holds,

ℓj(fj) + f i
j · ℓ′j(fj) ≤ ℓk(fk) + f i

k · ℓ′k(fk).

Let us suppose that link k is unused, i.e. fk = 0. The right-hand side of the inequality
is akfk + f1

k (ak) = 0. Then, at least one and possibly both, of the players will want to
move some of its flow to k.

Lemma 4.5.4. A flow f of two players in a parallel-link network with homogeneous
linear latency functions is at Nash equilibrium if f is fES.

Proof. From Lemma 2.3.4, a flow is at Nash equilibrium for all links j and k and for all
players i that have f i

j > 0, if the following inequality holds,

ℓj(fj) + f1
j · ℓ′j(fj) ≤ ℓk(fk) + f1

k · ℓ′k(fk).
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Let f be a flow of two players in a parallel-link network with homogeneous linear latency
functions. We show that if f = fES then f satisfies the above inequality. And let us
suppose f = fES, namely ajf

i
j = akf

i
k for i = {1, 2} and for every pair of links j and

k in the network. From Lemma 4.5.3, since all the links are used, the above inequality
becomes

ℓj(fj) + f1
j · ℓ′j(fj) = ℓk(fk) + f1

k · ℓ′k(fk)

ℓj(fj) + f1
j · aj = ℓk(fk) + f1

k · ak

which is satisfied by f from Corollary 4.5.2, and the assumption ajf
i
j = akf

i
k.

Next, we consider a Stackelberg game in this setting. We show that, to optimise
its cost, the first player must route its flow such that every link has an equal latency.
To achieve that, we first show the following lemma. The Lemma states that, assuming
player 2 optimises its cost relative to player 1’s strategy, if player 1 transfers a small
amount of its flow t from one link to another, then player 2 transfers its flow t/2 back
in the opposite direction. Then, we show that, in the SSL setting, if player 1 routes its
flow such that every link is increased with equal latency, then player 2 will do the same.

Lemma 4.5.5. Let f be a flow of two players in a parallel-link network with homo-
geneous linear latency functions, and f1 and f2 be player 1’s strategy and player 2‘s
strategy respectively in the SSL setting. If player 1 transfers a small fraction of its flow
t > 0 from link j to link k, then player 2 reacts by transferring at most t/2 of its flow
back from link k to link j.

Proof. Let us suppose that t > 0 is the small fraction of player 1’s flow on link j that
will be transferred, and let t′ > 0 be the fraction of player 2’s flow on link k that will be
transferred back to link j. Before the transfer, the flow on link j and link k are fj and fk

respectively. If the strategy of player 1 is f1 = (. . . , f1
j , f1

k , . . .), then, while holding f1

fixed we can apply Proposition 2.4.5 to optimise player 2’s cost. Let ℓ̃j(x) = ℓj(x + f1
j )

for every link j in the network, and we have the following property hold when the cost
of player 2 is optimised,

ℓ̃′j(f
2
j ) = ℓ̃′k(f

2
k )

a1(f1
j + f2

j ) + f2
j · aj = ak(f1

k + f2
k ) + f2

k · ak. (4.2)

After player 1 has transferred the flow, player 2 reacts by transferring back t′ from
link k to link j. Again, optimising player 2’s cost while holding player 1’ strategy fixed,
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we have

aj(f1
j + f2

j − t + t′) + (f2
j + t′)aj = ak(f1

k + f2
k + t − t′) + (f2

k − t′)ak

aj(f1
j + f2

j ) + aj(−t + t′) + f2
j · aj + t′ · aj = ak(f1

k + f2
k ) + ak(t − t′) + f2

k · ak − t′ · ak

aj(−t + t′) + t′ · aj = ak(t − t′) − t′ · ak (4.3)

t′ =
t

2

where (4.3) is obtained from using (4.2). Therefore, player 2 can transfer back
min (f2

k , t/2) of its flow on link k, which gives us the stated result.

Lemma 4.5.6. Let f be a flow of two players in a parallel-link network with homoge-
neous linear latency functions. In a Stackelberg game, if player 1 distributes its flow
such that every link is increased with equal latency, then player 2 will do the same.

Proof. a flow of two players in a parallel-link network with homogeneous linear latency
functions. Let us suppose that player 1 routes its flow such that every link is increased
with equal latency, i.e. ajf

1
j = akf

1
k for every pair of links j and k in the network. Let

ℓ̃j(x) = ℓj(x + f1
j ) for every link j in the network. While holding player 1’s strategy

fixed, we apply Proposition 2.4.5 to optimise player 2’s cost. For all links j and k, we
have

ℓ̃′j(f
2
j ) = ℓ̃′k(f

2
k )

aj(f1
j + f2

j ) + f2
j · aj = ak(f1

k + f2
k ) + f2

k · ak

2aj · f2
j = 2ak · f2

k .

This gives us the stated result.

Lemma 4.5.7. Let f be a flow of two players in a parallel-link network with homoge-
neous linear latency functions. In the SSL setting, the first player routes its flow such
that every link has equal latency.

Proof. Given a flow f of two players in a parallel-link network with homogeneous linear
latency functions. Let us suppose that player 1 routes its flow such that every link is
increased with equal latency, i.e. ajf

1
j = akf

1
k for every pair of links j and k in the

network. Let us suppose that player 1 can still decrease its cost by transferring a small
amount of flow t > 0 from link 1 to link 2. Let f1 and f2 be the flow on link 1 and link 2
respectively before the transfer. By using Lemma 4.5.6, we know that ℓ1(f1) = ℓ2(f2).
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Before the transfer, the cost of player 1 is

f1
1 ℓ1(f1) + f1

2 ℓ2(f2) +
∑

j ̸=1 or 2

f1
j ℓj(fj). (4.4)

After the flow transfer of player 1, player 2 reacts by transferring some of its flow
on link 2 back to link 1, Lemma 4.5.5. Let t′ > 0 be the flow of player 2 on link 2 that
will be transferred back. The cost of player 1 after the transfers is

(f1
1 − t)ℓ1(f1 − t + t′) + (f1

2 + t)ℓ2(f2 + t − t′) +
∑

j ̸=1 or 2

f1
j ℓj(fj). (4.5)

The potential gain, (4.4) - (4.5), must be positive for player 1 to have any incentive
to transfer. We have

f1
1 ℓ1(f1) + f1

2 ℓ2(f2) − (f1
1 − t)ℓ1(f1 − t + t′) − (f1

2 + t)ℓ2(f2 + t − t′) > 0

f1
1 · a1 · f1 + f1

2 · a2 · f2 − (f1
1 − t)a1(f1 − t + t′) − (f1

2 + t)a2(f2 + t − t′) > 0

f1
1 · a1(t − t′) + t · a1(f1 − t + t′) − f1

2 · a2(t − t′) − t · a2(f2 + t − t′) > 0

t · a1(f1 − t + t′) − t · a2(f2 + t − t′) > 0 (4.6)

t · a1 · f1 − t · a1(t − t′) − t · a2 · f2 − t · a2(t − t′) > 0

−t(t − t′)(a1 + a2) > 0, (4.7)

note that (4.6) is obtained by using the assumption ajf
1
j = akf

1
k for all links j and k,

(4.7) is obtained from the fact that ℓ1(f1) = ℓ2(f2).
On the left-hand side of (4.7), −t(t − t′)(a1 + a2) is always negative because t > 0

and t′ is at most t/2, Lemma 4.5.5. Consequently, player 1 cannot transfer any more
flow to decrease its cost. Hence, we have the stated result.

Lemma 4.5.8. Let f be a flow of two players in a parallel-link network with homoge-
neous linear latency functions. f is at SSL equilibrium if f is the equal share flow.

Proof. By using Lemma 4.5.7 and Lemma 4.5.6, in the SSL setting, both players split
its flow such that every link is increased with equal latency, i.e. f is the equal share
flow.

Theorem 4.5.9. Let f be a flow of two players in a parallel-link network with homo-
geneous linear latency functions, so the price of selfish Stackelberg leadership of f is
1.

Proof. From Lemma 4.5.4 and Lemma 4.5.8, the Nash flow and the SSL flow of f are
identical; hence the social cost is the same, i.e. the price of SSL is 1.
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4.6 Conclusions

We have shown that the upper bound of the price of selfish Stackelberg leadership
is a multiplicative constant of 1.322 that is independent of the number of links in a
parallel-links network with linear latency functions. It is possible that for parallel links,
the worst-case arises for a 2-link network (by analogy to [Rou02]) which we obtain the
lower bound of 1.075. In conclusion, we obtain quite a narrow bound of [1.075, 1.322]
for the price of SSL.

In the case where latency functions are restricted to homogeneous linear, we show
that a Nash flow and a SSL flow are not only identical but also unique. As a result, we
have proved that the price of SSL in this setting is one.

Perhaps the main question to ask is whether there is a more dramatic cost (perhaps
depending on the size of the network) in the setting of more general networks.

One alternative line of work is investigating the price of SSL in a model of one selfish
splittable leader and the rest of the players, each with a negligible fraction of the flow
(a Wardrop flow). We believe that there is no price of SSL in this setting since the SSL
solution is essentially the same as Nash equilibrium.





Chapter 5

Bounds for the Convergence Rate

of a Randomised Local Search in

a Load-balancing Game with

Variable-capacity Resources

Up until now, we have been investigating the problem of the quality of a Nash equilib-
rium, setting aside the issue of the computation of a Nash equilibrium. In this chap-
ter, we study a simple algorithm for finding Nash equilibria called “Randomised Local
Search” (RLS) that can simulate a network of selfish players. In particular, our main
result shows upper bounds for the convergence rate of RLS in a simple load-balancing
game with variable-capacity resources.

5.1 Overview

We consider a load-balancing game which essentially is a parallel-link network with
homogeneous linear latency functions that we studied in the previous chapters. In
particular, we study the problem of constructing Nash equilibrium by a simple algorithm
called Randomised Local Search (RLS) that (as we will show) can be realised by a simple
distributed network of selfish users that have no central control and only interact via
the effect they have on the latency functions.

RLS can be informally described as follows. Initially, each player is assigned a
link, and then, at each step, a player and a link are selected uniformly at random.
The selected player moves its flow to that resource if its resulting cost is lower. That
move is called “self-improving”, as recent works in this field showed that an algorithm

81



82 CHAPTER 5. BOUNDS FOR THE CONVERGENCE RATE OF RLS

that repeatedly makes this kind of moves will eventually reach Nash equilibrium. Our
contribution here is to investigate the question of how long does RLS takes to reach
Nash equilibrium in a special case where player flows are an integer?

In Section 5.2, we start by introducing the load-balancing model and note some of its
similarities and differences to the parallel-link network models studied in the previous
chapters. In Section 5.3, we present a distributed version of RLS that has been shown
previously by Goldberg [Gol04]. In Section 5.4, we show the first result of this chapter.
We prove that there is an upper bound on the expected time for RLS to reach Nash
equilibrium. We exhibit a bound on the convergence rate that is polynomial in terms of
the number of players, the number of links and the maximum player flow in the network.
In Section 5.5, through a more careful analysis, we place a better upper bound on the
convergence rate in a sense that the number of players has been decreased to quadratic
power. This can be useful because in a distributed setting, the number of player in the
expected number of attempts becomes linear. We close the chapter with the conclusions
in Section 5.6.

5.2 The Load-balancing Model

We continue to use most of the definitions and notations defined earlier in Section 2.1.
The main difference between the model in this chapter and those in earlier chapters is
that, here, we focus on a pure strategy; namely every player selects exactly one link to
route its flow. In other words, for player i ∈ M , a strategy Si of player i is a link j where
j ∈ E. Another difference is that there are m players in the network in this chapter,
while we usually assume the case of two players in the previous chapters. Furthermore,
we will assume the player flows to be a positive integer.

Recall that a flow f denotes a vector of strategies, one for each player. We redefine a
flow f as follows. If we are given an initial flow f , let λ0(f) = f , and λh+1(f) is obtained
from λh(f) at step h by performing a single transfer of one player flow from one link
to another. The total quantity of a flow f is a positive integer number f , that is not
necessarily one unit, as previously assumed. As regards the strategies of the players,
Si(λh) denotes a strategy of player i in a flow λh at step h.

Following from typical load-balancing games, we assume that each link j ∈ E has
an associated capacity cj ∈ Z+. Without a loss of generality, we will assume that the
minimal capacity is 1 and an integer cmax denotes the maximal capacity. Let fj(λh)
denote the fraction of the total flow assigned to link j ∈ E in λh. Each player i ∈ M

controls a positive integer flow f i ∈ Z+. Similar to the capacity of the links, we will
assume that the minimum flow of player is 1 and an integer fmax denotes the maximum
flow of the player. The latency of using link j at λh is defined to be the total of flow
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loaded onto j at λh divided by the capacity of j , i.e. ℓj(λh) = fj(λh)/cj . This is similar
to the homogeneous linear latencies in which 1/cj is the coefficient. The cost of a player
at a flow λh, in this chapter, is now defined as the cost of link ℓj(λh), where j is the link
used by that player. That is, every players that use link j receives the common cost
equal to the latency of the link that they share.

Note that, often we drop the notation f and λh if they are obvious from the content
or do not need to be denoted.

Definition 5.2.1. The cost experienced by a player that routes its flow on link j ∈ E

with respect to a flow λh is the latency of link j; that is, the sum of all player flows that
are routed on link j, divided by the capacity of j. For every player i

Ci(λh) =
fj(λh)

cj
, (5.1)

provided that Si(λh) = j.

We borrow the potential function from [EDKM07] that will map a flow onto a real
value. It was shown in Lemma 4.1 in that paper that, when a player makes a self-
improving move, the potential in the following definition decreases.

Definition 5.2.2. [EDKM07] The potential function of a flow λh is defined as the
real-value function P :

P (λh) =
∑
j∈E

(fj(λh))2

cj
+
∑
i∈M

(f i)2

cSi(λh)
(5.2)

To set a minimal value of the potential function to 0, we subtract the function with
the minimal possible value P ∗ of potential function for any flow.

Definition 5.2.3. For a flow λh, the potential function of λh is

P (λh) =
∑
j∈E

(fj(λh))2

cj
+
∑
i∈M

(f i)2

cSi(λh)
− P ∗ (5.3)

where P ∗ is the smallest value for any flow λh that can be taken by
∑

j∈E(fj(λh))2/cj +∑
i∈M (f i)2/cSi(λh).

We consider the Randomised Local Search algorithm presented in Figure 5.1. Basi-
cally, the algorithm at any one time makes an attempt by randomly choosing a single
player and a single link, an attempt is successful when the chosen player reduce the
potential value, defined in Definition 5.2.3, of the resulting flow by reallocating its flow
to the selected link. We call a successful attempt a move. We define the h-th move
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Given an initial flow f ,

Repeatedly do the following:

1. Choose a player i ∈ M from a uniform distribution.

2. Choose a link j ∈ E from a uniform distribution.

3. Assign link j to the strategy of player i if and only if the
potential value of the resulting flow is lower.

Figure 5.1: Randomised Local Search algorithm

to be a move of one player’s flow from λh to λh+1. We use Definition 2.3.3 for Nash
equilibrium which implies that the model is said to reach pure Nash equilibrium if there
is no more move available. We study the number of attempts that RLS takes to reach
Nash equilibrium in this load-balancing game setting.

5.3 A Distributed version of Randomised Local Search

Given an initial flow f , let j be the link player i uses.

Repeatedly do the following:

1. Generate a delay δ from an exponential distribution P (δ) =
exp(−δ); wait δ time units.

2. Generate a link k from a uniform distribution.

3. Evaluate the cost of using k instead of j; if it is lower, replace
j with k.

Figure 5.2: A Distributed version of Randomised Local Search (Goldberg [Gol04]); used
by each player.

In this section, we present the results proved by Goldberg in [Gol04] to show that
RLS can be realised as a distributed network, i.e. RLS simulates the network of selfish
users without central authority to regulate the network. The distributed model is as
follows. Each player in the network independently makes a sequence of attempts, using
its own copy of the distributed algorithm depicted in Figure 5.2. We assume that the
model runs in “continuous time”—that is, only one player is allowed to reallocate its
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flow at each specific time. Then, this process generates a sequence of events in which a
single player updates its strategy (changing the link to the route) which might change
the cost that other players experience. We assume that the costs are updated without
delay.

Remark 5.3.1. Because all of the players are using the distributed algorithm, they
behave similarly. Note that the flow of players does not effect on their behaviours.
Players only interact through the effects they have on the latency of the links. If a
player selects the minimal-latency link rather than a random link (as the standard
“best response”), then the process of selecting a link would become a Θ(m) operations
(recall that there are m links in a model). Moreover, as mentioned above, we consider a
continuous time model to avoid the issue of a link’s latency being changed (by a different
player) in between being tested and being selected.

In the following theorem borrowed from Theorem 1.1 by Goldberg’s [Gol04], we
show that the distributed algorithm is a distributed version of the RLS algorithm.

Theorem 5.3.2. [Gol04] If we are given a network of n parallel links and m players,
then

• Let f be an initial flow, and fNE be the Nash flow with respect to f . If fNE is
reached with the probability p(fNE) by the distributed algorithm then p(fNE) is
also the probability that the RLS algorithm will find fNE.

• Let t be the expected number of attempts taken for the RLS algorithm to find Nash
equilibrium. Then, the expected time taken for the distributed algorithm to reach
Nash equilibrium is t/m.

Proof. First, we prove the first part of the theorem. In the distributed algorithm, the
significance of the exponential distribution used in the distributed algorithm is that it
is “forgetful” in the sense that if the exponential distribution P (t) = exp(−t) then, for
any positive t0:

P (t | t ≥ t0) = exp(t − t0) for t ≥ t0.

As a result, at any point in time, if all of the players use the distributed algorithm
then the next player to make an attempted move will be selected uniformly at random,
regardless of previous events.

For λ0(f) and λ1(f), let p(λ0, λ1) be the probability of using the distributed algorithm
on λ0 such that, after a move, λ0 is replaced by λ1. Similarly, let p′(λ0, λ1) be the
probability of using the RLS algorithm on λ1 such that after a move, λ0 is replaced by
λ1.



86 CHAPTER 5. BOUNDS FOR THE CONVERGENCE RATE OF RLS

Given any initial flow λ0, if we use the distributed algorithm, then the first player
is selected from the uniform distribution, and then that player selects a link from a
uniform distribution. This is similar to RLS; consequently, for any λ0 and λ1, we have
p(λ0, λ1) = p′(λ0, λ1).

For flow λh, let Dα(λh) and D′
α(λh) be the probability distribution over flows after

α attempts by the distributed algorithm and the RLS algorithm respectively. Hence for
a positive number k < h, we have Dα+1(λh) =

∑
λk

Dα(λk)p(λk, λh), and D′
α+1(λh) =∑

λk
D′

α(λk)p′(λk, λh). By induction, Dα(λh) = D′
α(λh), we proved the first statement

of the theorem.

Regarding the second statement of the theorem, the expected value of the exponen-
tial random variable δ in the distributed algorithm is 1. Hence, during a time interval of
length t, the expected number of attempts moves made by a player using the distributed
algorithm is t. Thus, the expected number of attempts made by m players is m · t. This
gives the ratio of m between its expected time and the expected number of steps in the
RLS algorithm.

5.4 A Quick Upper Bound for the Convergence Time

In this section, we show the first upper bound on the expected number of attempts that
RLS uses to construct Nash equilibrium in a load-balancing game. The outline of the
proof is as follows. First, we show in Lemma 5.4.1 that the potential value is lower if a
player makes a move such that its individual cost is lower. Then, in Lemma 5.4.2, we
show the upper bound of the potential of an initial flow. After that we prove a lower
bound on the loss of potential caused by a single move. Combining the upper bound of
the initial potential and the lower bound of the loss of potential, we prove the bound
on the number of attempts for Nash convergence in Theorem 5.4.4.

As pointed out by Even-dar et al. [EDKM07], the following lemma shows the fact
that the game is a “weighted potential game”, as we described earlier in the Previous
Works section.

Lemma 5.4.1. [EDKM07] For a flow λh, if, at the h-th move, player i reallocates its
flow f i from link j to k, such that the cost of i decreases then the corresponding potential
decreases, by a positive value of 2f i (ℓj(λh) − ℓk(λh+1)).

Proof. Suppose that, at the h-th move, the given flow is changed from λh to λh+1 as
a result of player i rerouting f i from j to k such that the cost of i is lower. From
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Definition 5.2.3, the loss of potential from λh to λh+1 is:

P (λh) − P (λh+1) =
∑
j∈E

(fj(λh))2

cj
+
∑
i∈M

(f i)2

cSi(λh)
+ P ∗(λh) −

∑
j∈E

(fj(λh+1))2

cj

−
∑
i∈M

(f i)2

cSi(λh+1)
− P ∗(λh+1)

=
(fj(λh))2

cj
+

(fk(λh))2

ck
+

(f i)2

cj
− (fj(λh+1))2

cj

− (fk(λh+1))2

ck
− (f i)2

ck
(5.4)

=
(fj(λh))2 − (fj(λh) − f i)2 + (f i)2

cj
+

(fk(λh+1) − f i)2 − (fk(λh+1))2 − (f i)2

ck
(5.5)

=
2f i · fj(λh)

cj
− 2f i · fk(λh+1)

ck

= 2f i
(fj(λh)

cj
− fk(λh+1)

ck

)
= 2f i (ℓj(λh) − ℓk(λh+1))

where (5.4) comes from the fact that only the loads of link j and k, and fj(λh) change
due to the move, and cSi(λh) = j and cSi(λh+1) = k; (5.5) follows from the fact that
fj(λh+1) = fj(λh) − f i and fk(λh+1) = fk(λh) + f i.

Note that for player i to benefit from the transfer the latency difference between
links j and k must be more than the latency gain that player i would add to link k.
That is

fj(λh)
cj

− fk(λh)
ck

>
f i

ck

fj(λh)
cj

− fk(λh)
ck

− f i

ck
> 0

ℓj(λh) − ℓk(λh+1) > 0

which shows that the corresponding loss of potential is positive.

Lemma 5.4.2. For a parallel-link network model of m players and n links, assume that
each player i possesses a positive flow f i in the range {1, . . . , fmax} and each link has a
positive capacity cj in the range {1, . . . , cmax}. The potential of the model is bounded by
O((mfmax)2).

Proof. For a parallel-link network, the potential is maximised when every player controls
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a flow of the fmax unit, and uses the same link whose capacity is minimal, i.e. cj = 1.
The potential of the network, from Definition 5.2.3, of that flow is

P =
∑
j∈E

(fj(λh))2

cj
+
∑
i∈M

(f i)2

cSi(λh)
− P ∗

≤ (mfmax)2 + m(fmax)2 − P ∗

≤ 2m2(fmax)2,

which gives us the stated result.

Lemma 5.4.3. For a parallel-link network model, assume that the link capacities and
player flows are in the range {1, . . . , cmax} and {1, . . . , fmax} respectively. A move lowers
the potential by at least 2/(cmax)2.

Proof. From Lemma 5.4.1, after a move, the potential decreases by

2f i (ℓj(λh) − ℓk(λh+1)) = 2f i

(
fj(λh)

cj
− fk(λh+1)

ck

)
= 2f i

(
ckfj(λh) − cjfk(λh+1)

cjck

)
Since all player flows and link capacities are integers and the loss of potential must

be positive, the expression ckfj(λh) − cjfk(λh+1) is an integer greater than or equal to
one. Therefore, we have the above equation satisfying

2f i

(
ckfj(λh) − cjfk(λh+1)

cjck

)
≥ 2

cjck
≥ 2

(cmax)2
.

Theorem 5.4.4. For a parallel-link network of n links, whose capacities are in the range
{1, . . . , cmax}, and m players whose flow are in the range {1, . . . , fmax}, the expected
number of attempts that RLS takes to reach Nash equilibrium is at most O(m3n(fmax)2(cmax)2).

Proof. From Lemma 5.4.2 the initial potential is bounded by m2(fmax)2, and, from
Lemma 5.4.3, the loss of potential after a move is at least 2/(cmax)2. Hence, the number
of moves required for Nash convergence is at most m2(fmax)2(cmax)2/2.

Given m players and n links, the probability of RLS selecting an attempt that
is a move is at least 1/mn. Therefore, the expected number of attempts for Nash
convergence by RLS is at most m3n(fmax)2(cmax)2/2 which give us the stated result.
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5.5 A Better Upper Bound

In this section, through a more careful analysis, we provide a better upper bound for
the number of attempts that RLS uses to construct Nash equilibrium. We still use the
potential function from Definition 5.2.3.

Lemma 5.5.1. For a parallel-link network with m players, each with a flow in the
range {1, . . . , fmax}, and n links each with a capacity in the range {1, . . . , cmax}, if
P (λh) > 2τmnfmax + m(fmax)2 where τ ∈ R+ then there is at least one pair of links j

and k, such that ℓj(λh) − ℓk(λh) > τ .

Proof. Given a flow λh, let us suppose that j′ is a maximal latency link and k′ is a
minimal latency link. Suppose for a contradiction proof, that P (λh) > 2τmnfmax +
m(fmax)2, but ℓj′(λh) − ℓk′(λh) < τ . From Definition 5.2.3, the potential of λh is

P (λh) =
∑
j∈E

(fj(λh))2

cj
+
∑
i∈M

(f i)2

cSi(λh)
− P ∗

≤
∑
j∈E

(fj)2

cj
+
∑
i∈M

(f i)2

cSi

− P̃ ,

where we substitute a smaller real value P̃ , for P ∗. Let P̃ =
∑

j∈E (f̃j)2/cj+
∑

i∈M (f i)2/cmax

where for j ∈ E, f̃j is chosen such that the latency of link each j with respect to f̃j is
equal to the latency of link k′, i.e. the minimal latency. So we have

P (λh) ≤
∑
j∈E

(fj)2

cj
+
∑
i∈M

(f i)2

cSi

−
∑
j∈E

(f̃j)2

cj
−
∑
i∈M

(f i)2

cmax

≤
∑
j∈E

(
(fj)2

cj
− (f̃j)2

cj

)
+
∑
i∈M

(
(f i)2

cSi

− (f i)2

cmax

)
≤
∑
j∈E

(
cj(ℓj)2 − cj(ℓ̃j)2

)
+
∑
i∈M

(f i)2,

which comes from the fact that, for each link j, ℓj = fj/cj . Then we have

P (λh) ≤
∑
j∈E

(
cj(ℓj − ℓ̃j)(ℓj + ℓ̃j)

)
+ m(fmax)2

≤
∑

(ℓj − ℓ̃j)(fj + f̃j) + m(fmax)2.

Since a latency difference between a pair of links is at most τ , and a link can have
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at most mfmax of flow, we have

P (λh) ≤
∑
j∈E

(τ2mfmax) + m(fmax)2

≤ 2τmnfmax + m(fmax)2.

This contradicts the earlier assumption, and hence we prove the stated result.

Observation 5.5.2. For a parallel-link network of m players and n links, assume that
each player controls a flow in the range {1, . . . , fmax} and that each link has a capacity
in the range {1, . . . , cmax}. If there exist a pair of links j and k such that ℓj −ℓk > fmax,
then every players on j can make a move to k.

Proof. For i ∈ M ; Si = j, player i wants to make a move to link k if the move results in
a reduction in its cost. That is ℓj(λh) > ℓk(λh) + f i/ck which implies ℓj(λh)− ℓk(λh) >

fmax.

Lemma 5.5.3. For a parallel-link network of n links and m players, assume that the link
capacities are in the range {1, . . . , cmax} and player flows are in the range {1, . . . , fmax}.
If a flow λh satisfies P (λh) ≥ 4mn(fmax)2 + m(fmax)2, then the probability that an
attempt by RLS on λh is a move is at least 1/(2ncmaxfmax).

Proof. From Lemma 5.5.1, if P (λh) ≥ 4mn(fmax)2 + m(fmax)2 then there exist links j′

and k′ such that ℓj′(λh)− ℓk′(λh) > 2fmax. Let us suppose that j′ is a maximal latency
link and that k′ is a minimal latency link. There are two cases to be considered; the
first case is when at least half of all the links have a latency of more than ℓj′ − fmax

and the second case is when fewer than half of the links have a latency of more than
ℓj′ − fmax.

Case 1 : There are at least n/2 links whose latencies are more than ℓj′ − fmax which,
by Observation 5.5.2, means that there exists a move that every player can
make on those links. The assumption also implies that at least half of the to-
tal cost of the players is on those links (if we pick n/2 links with the highest
latency). That is, at least (1/2)

∑
i∈M f i/cSi of the total cost is on those links.

Since (1/2)
∑

i∈M f i/cSi ≥ 1/2
∑

i∈M f i/cmax ≥ (1/2)(m/cmax), there are at least
m/(2cmaxfmax) players whose flows can be moved on those links. Hence, an at-
tempt by RLS has a probability of 1/2cmaxfmax of selecting a player whose flow
can be moved, and a probability of 1/n of selecting link k′ to which that player
may move, so the probability of an attempt by RLS being a move is at least
1/2ncmaxfmax.
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Case 2 : There are less than n/2 links whose latencies are more than ℓj′ − fmax. Since
j′ is a maximal latency link, the latency on link j′ is at least (

∑
i∈M f i/cSi)/n ≥

(
∑

i∈M f i/cmax)/n ≥ m/ncmax. Hence, there are at least m/ncmaxfmax players
on link j′ whose flows can be moved to links that have a latency of less than
ℓj′ − fmax (by Observation 5.5.2). We have the probability of 1/ncmaxfmax of
selecting a player on link j′ whose flow can be moved, and the probability of 1/2
of selecting a link to which those players may move its flow. Hence, in this case,
RLS has the probability of at least 1/(2ncmaxfmax) that an attempt will be a
move.

Combining the results from Case 1 and Case 2, we proved the stated result.

We are now prepared to prove the main theorem.

Theorem 5.5.4. For a parallel-link network with m players and n links, assume that
the player flows are in the range {1, . . . , fmax} and that the link capacities are in the
range {1, . . . , cmax}. The expected number of attempts taken by RLS to construct Nash
equilibrium is at most O

(
n(mcmaxfmax)2(n + cmaxfmax)

)
.

Proof. Suppose we are given an initial flow f . Let S = (λ0, λ1, λ2, ..., λN ) be a sequence
of flows in which λ0 = f and λh+1, for h ≥ 1, is obtained by RLS making an attempt
on λh. N is chosen such that λN is the first occurrence in S of Nash equilibrium. We
are interested in the expected value of N , i.e. E(N) = E(|S|). We break S down
into the concatenation of two subsequences, S = S1S2. S1 is a sequence of flows λh,
such that P (λh) > 4mn(fmax)2 + m(fmax)2 and S2 is a sequence of flows λh, such that
4mn(fmax)2 + m(fmax)2 ≥ P (λh). We obtain bounds on the expected lengths of these
subsequences that add up to the bound on the expected length of S.

1. Bounding the expected length of S1.

Recall that the initial potential is bounded by O((mfmax)2).

In this case, we have P (λh) > 4mn(fmax)2+m(fmax)2 which, by using Lemma 5.5.3,
we find that the probability of an attempt by RLS on λh being a move is at least
1/(2ncmaxfmax). By Lemma 5.4.3, the lower bound on the loss of potential by a
move is at least 2/(cmax)2. So the expected loss of potential by an attempt is at
least 1/nfmax(cmax)3. Hence, the expected number of attempts of RLS to reduce
the potential from (mfmax)2 to 4mn(fmax)2 + m(fmax)2 is at most

(mfmax)2

1/nfmax(cmax)3
≤ nm2(cmaxfmax)3.
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2. Bounding the expected length of S2.

We have P (λh) ≤ 4mn(fmax)2 + m(fmax)2. In general, the probability that an
attempt results in a move is at least 1/mn for any flow that is not at Nash
equilibrium. From Lemma 5.4.3, any move lowers the potential by at least 2/c2

max,
so the expected loss of potential due to an attempt is at least 2/mnc2

max. Hence
the expected number of attempts during S2 before a Nash equilibrium is reached
is at most

4mn(fmax)2 + m(fmax)2

2/mnc2
max

≤ 4(mncmaxfmax)2 + m2n(cmaxfmax)2

2
.

Combining the results of the expected length of each of S1 and S2 we obtain a
bound of O(n(mcmaxfmax)2(n + cmaxfmax)). Hence, an upper bound on the length of S
is O(n(mcmaxfmax)2(n + cmaxfmax)) .

5.6 Conclusions

We have shown that RLS can be realised by a simple distributed network of players that
act selfishly, have no central control and only interact via the effect they have on the
latency functions. As Goldberg [Gol04] pointed out, that this property is important for
an algorithm in the study of the “coordination ratio” for this particular situation (for
example [BGGM06, CV02, FKK+02, KP99, GLM+05, MS07, RT02, CKV02, FGL+03]),
which is typically discussed as being a price that is paid for not having any central control
over the players.

We exhibit two upper bounds on the expected number of attempts that RLS needs to
reach Nash equilibrium. Both bounds are polynomial in term of the number of players,
the number of links, the maximum flow of players and the maximum capacity of the
links. However, one of the bounds shows a slightly better bound in term of number of
players, i.e. m3 to m2, even though it comes with prices in term of number of links, the
maximum flow of players and the maximum capacity of the links, i.e. n to n2, f2

max to
f3
max and f2

max to f3
max.

A few obvious questions have been raised by the work in this chapter. Firstly,
what is the convergence rate bounds of RLS for unrestricted flow and capacity? Gold-
berg [Gol04] showed an upper bound for unrestricted flow, but with identical links.
He proved the expected number of attempts of RLS to be polynomial in terms of the
number of players and the number of links. Secondly, what is the lower bound of RLS?
Goldberg [Gol04] showed that the lower bound for unrestricted flow in a network with
identical links is Θ(m2).
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Another open problem that is in the same direction as this thesis is what is the
convergence rate of RLS for splittable flow. RLS would be modified as follows. Initially,
each player split its flow randomly among the available links. At each step, a source link
and a player that has a flow on that link, and a destination link are randomly selected.
The player moves its flow as much as it can to reduce its cost from the source link to
its destination link.





Chapter 6

Conclusions and Discussion

In this chapter, we will summarise the results presented in this thesis. We also examine
the significance of these results and try to put them into the context of related works.
We will then answer the main questions stated in the introduction—namely, how much
is the additional social cost due to selfish leader? And does the randomised local search
converge quickly to Nash equilibrium? Finally, we suggest some open problems.

6.1 Summary of the Results

In Chapter 2, we demonstrated Pigou’s example—a simple network of two nodes, two
parallel links—that is used to demonstrate the additional social cost that could arise
when there exists a selfish Stackelberg leader even with the simplest network. Not only
that, but we also demonstrated the other network set-ups that the other related works
have studied, such as a set-up where a benign leader with a UE follower, a malicious
leader with an atomic follower.

In Chapter 3, we provided several more examples that demonstrate the lower bounds
on the price of selfish Stackelberg leadership. We consider both symmetric networks
and an asymmetric network. For symmetric networks, we provided examples of cases
in which the latency functions are linear, quadratic, cubic and quartic in a two-parallel
link network. For an asymmetric network, we considered a network of three links, one
that each player privately uses, and one shared between the players. All the links have
linear latency functions. In summary, we showed the price of SSL of 1.075, 1.091, 1.135
and 1.161 for the networks with linear, quadratic, cubic and quartic latency functions
respectively. We obtained the price of SSL of 1.074 for the asymmetric network.

In Chapter 4, we presented our main results. For a parallel-link network with affine
linear latency functions, we proved a constant upper bound for the price of SSL that
is independent of the number of links in the network. In particular, we first obtained
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a quick upper bound for the price of SSL of 2. Then, through a sightly more careful
analysis, we obtained a better upper bound of 4/3, and, with a deeper analysis, we were
able to show an upper bound for the price of less than 4/3. At the end of the chapter,
we investigate the network with homogeneous linear latency functions. We proved that
the price of SSL in this case is one and showed a unique Nash and SSL equilibria.

In Chapter 5, we considered the problem of selfish routing from another perspec-
tive. We focused more on the convergence time of an algorithm that construct Nash
equilibria, rather than the quality of Nash equilibria. A simple algorithm called the
Randomised Local Search is investigated since it can simulate selfish behaviour in un-
regulated congestion networks. We consider a more general setting than [Gol04] who
studied a network of identical links. We showed the distributed version of the algo-
rithm. The main results in this chapter are that the upper bounds of the number of
attempts the RLS needs to achieve Nash convergence which is polynomial for both
the number of players and the number of links. We first shoed the upper bound for
O(m3n(fmax)2(cmax)2). Then, through a more careful analysis, we showed another up-
per bound of O

(
n(mcmaxfmax)2(n + cmaxfmax)

)
.

6.2 Discussion

We have answered some of the questions in the problem statement. We have bounds on
the price of SSL for the two players case, which usually is a foundation on analysing any
game, on a parallel-link network, which is one of the most studied in network routing
problems. In particular, we have obtained a narrow bound on the price of SSL for linear
latency functions. These results should be a stepping-stone towards a more detailed
analysis of Stackelberg games.

Roughgarden showed in [RT02] that the price of anarchy for a network with infinitely
many players is unbounded. We only study the price of SSL for two players, and it seems
that the price of SSL has a constant bound even for a network with a general latency
function. Moreover, we suspect that the price of SSL is 1, if there are infinitely many
followers as Nash flow and SSL flow are identical. Perhaps the main question to ask is
whether there is a more dramatic cost (perhaps depending on the size of the network)
for the setting up of more general networks. We have obtained a lower bound for the
price of SSL of a network with latency functions up to quartic. It would be interesting
to see the price of SSL for more general latency functions.

Another interesting question worth investigation is whether a social cost of SSL flow
can be less than Nash flow. It seems obvious for the two players case since a leader will
at improve its cost in SSL flow, or at least will not do worse than Nash flow, on the
other hand a follower receives a minimal cost in SSL flow if the leader plays with the
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same strategy as in the Nash flow. This is unclear when there are more players.
One extension to this thesis is to consider more than one follower, or in an extreme

case of infinite number of followers. That is, a leader chooses a strategy before the rest of
the players simultaneously compete to optimise their cost. As Pigou’s example suggests,
it may be better for a leader to have an atomic follower than a UE follower. Thus, we
can imagine that the price of SSL decreases as the number of followers increases. We
should note that in the case where every players simultaneously routing its flow, the
more players does not necessary mean the higher social cost in the Nash equilibrium as
it was shown by Catoni and Pallottino [CP91].

With regard to the convergence rate of the randomised local search in load-balancing
games, Nash equilibrium can be reached rapidly. One obvious extension along the line
of the problems studied in this thesis is would be to consider the splittable flow. That
is, can a variant of RLS reach Nash equilibrium quickly in this setting?

Another open problem would be to consider a unrestricted flow model. In the case
of integer flow, we have a nice drop in potential of 2/c2

max. For the network with
identical links, but general latency functions, Goldberg showed an upper bound that is
polynomial in terms of the number of players and the number of links.
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