
Modular Multi-Agent Design

Michael Fisher, Louise Dennis and Anthony Hepple

Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
EMAIL: {MFisher,L.A.Dennis,A.J.Hepple}@liverpool.ac.uk

Abstract
In this paper our aim is to bring together formal specification, automated verification, dynamic agent

organisations, and visual modelling in order to provide a simple, but semantically coherent, framework
for designing and developing multi-agent systems.

1 Introduction

We are here concerned with providing a formal design method for multi-agent systems that is, if pos-
sible, simple, graphical and flexible. But why do we need another design method? There already
exist many (general) formal design approaches [35, 28, 29, 42, 33, 31], agent design methodolo-
gies [45, 46, 3, 24, 37] , design approaches for software architectures [43, 1] and graphical design
methods [27]. However, none of these are entirely satisfactory for the design of reliable multi-agent
systems [10, 11, 32, 9].:

• many agent design methods do not explicitly model the structural relationship between agents and
those that do tend to represent a static, initial view of the system, that does not support adaptive
multi-agent organisations [11];

• they rarely allow modular or compositional view of individual agents, in a way that guarantees
adherence to specification statements;

• while the history of formal methods has provided us with many useful, formally based, design
methods none of these take into account all the fundamental aspects of agents such as goals,
beliefs, actions, teams, norms, roles, etc;

• similarly, software architectures although being more flexible, do not incorporate core concepts
that we see as being central to autonomous agents and multi-agent systems;

• and, finally, general methodologies go not have the graphical design notations to support agent/multi-
agent concepts and the agent-oriented methodologies that do, often have no direct formal seman-
tics.

Further, in [9], Cabri et. al suggest some criteria that a useful multi-agent design methodology should
fulfil. These criteria call for an emphasis on the domain (and hence agent) structure, normative inter-
actions (to facilitate adaptation to change), communication and verification support. So, we here aim to
address these difficulties by providing a design approach that solves many of these problems and aims
to satisfy the criteria mentioned.

We will begin, in Section 2, by considering a simple view of agents, each having an underlying formal
specification. We will briefly consider what logics we can use for such specifications. In Section 3, we
look at the uses of such individual agent specifications. These include deductive proof, execution,
algorithmic checking, refinement, etc., all of which we aim to do automatically where possible.

In Section 4, we turn to multi-agent systems and, in particular, their organisational aspects. In
our model, a multi-agent system is itself an agent and so we consider the way in which an agent can
contain other agents, and the way in which the multi-agent system behaviour is defined by its constituent
agents. In particular, the uses of agent specifications given in Section 3 naturally carry over to multi-
agent systems. This viewpoint on multi-agent systems provides a naturally modular approach to the
design of such systems.

1

We next move on to consider what happens when agents occurring within an agent effectively get
behaviour from that agent, as well as providing behaviour for the overall system. So, in Section 5, we
modify our notation to incorporate this important aspect, and provide semantics for for the interaction
between an agent and its contents. In Section 6 we consider what happens when agents move in/out
of contexts and, in particular, how this dynamically affects the formal specification of the multi-agent
system.

Finally, in Section 7 we consider concluding remarks, outstanding problems and future directions.

Overall, this work brings together our work on a number of aspects of agents, including: formal speci-
fication (time, belief, goals, probability, etc); agent verification via deductive methods; agent verification
via model checking; direct execution of formal agent specifications; and abstractions for programming
agent organizations. We here bring some of these together to try to provide a simple, but semantically
coherent, mechanism for designing and developing multi-agent systems. Ideally, this should be: flexible;
dynamic; tractable; modular; intuitive; and visualizable!

2 Formal Specification

We are interested in the formal specification of agents. A formal specification exactly describes the
agent’s behaviour, and our graphical representation of this is:

Formal SPEC

AGENT

The formal specification is typically a logical formula describing the dynamic, informational and mo-
tivational behaviour of the agent. In the BDI approach [40, 39], and in other works on formal agent
theory [44, 14, 20], a wide variety of logics have been developed and have been used to represent
different aspects of agent behaviour. These include modal logics of belief (B), goals (G), wishes (W),
desires (D), intentions (I), actions ([α]), abilities (A), knowledge (K), etc, all with an underlying temporal
(♦) and/or probabilistic (P 0.3) basis. So, given some combination of these logics we can specify the
behaviour of the agent formally, e.g:

(Bi♦ϕ ∧ Ai
hϕ) ⇒ P 0.7♦ϕ

which has intended meaning

if agent i believes that eventually ϕ will be satisfied, and agent i is able to satisfy ϕ in its next
state, then there is a 70% probability that agent i will satisfy ϕ eventually.

There is much work on the use of different logics, and specifically on different combinations of logics,
though we will not discuss the different logical aspects just yet. However, we just note that the formal
specification describes the exact behaviour of the agent, with respect to the aspects specified. For
example, a specification combining temporal and goal descriptions exactly describes the agent’s goals,
its temporal development, and the temporal aspects of its goals. It does not directly say anything about
the agent’s beliefs, its probabilistic aspects, or anything else not related to the specification.

So, to begin with, we assume that a specification SPEC_A for an agent A is provided in an appropriate
logic, L. Thus, SPEC_A ∈ WFF(L). Importantly, we must also be sure that the specification is not
inherently inconsistent. Thus we also require that SPEC_A is satisfiable, i.e.:

∃M.M |=L SPEC_A .

We now consider what we might do with such agent specifications.

2

3 Uses of Agent Specifications

3.1 Proof

A typical use for formal specifications is as an unambiguous description of the agent’s behaviour. As
such, we can assess what properties hold of the agent behaviour by attempting proof.

SPEC_A

AGENT A

PROVE

Formal PROPERTY φ

For example, if we can establish that ‘SPEC_A ⇒ ϕ’, where ϕ is some logical property, then we know
that any behaviour of the system satisfies ϕ. As this is typically assessed deductively then we will need
to establish

`L SPEC_A ⇒ ϕ .

3.2 Implementation and Verification

There is a strong relationship between the formal specification of the agent and the code that imple-
ments this specification.

 SPEC_A

 A CODE

IMPLEMENT

VERIFY

If some executable code is produced that is intended to implement the agent, then the formal specifica-
tion should provide a semantics (at least a partial one) for that code. In general we require

τ(CODE) |=L SPEC_A

where ‘τ ’ translates CODE to a corresponding semantic model for L.
There are a number of ways in which code can be developed from such a formal specification,

including refinement (which we will consider later), synthesis, and exploratory (or extreme/agile) pro-
gramming.

Program synthesis is the automatic generation of executable programs from high-level specifica-
tions [34]. Specifically, deductive program synthesis is the derivation of a program from a logical speci-
fication, by following deductively correct transformation rules. Much work has been undertaken over the
last 20 years on the synthesis of distributed systems from logical specifications, using both deductive
and algorithmic methods [13, 30]. Although synthesis procedures have not yet been developed for full

3

agent specifications (incorporating all the temporal, doxastic, probabilistic, goal-related, etc, details we
might require), synthesis techniques for cooperative processes are now being developed [41].

Exploratory programming (or extreme/agile techniques in general) takes a more ad hoc route to-
wards implementation. However, with many agile development techniques we can expect to identify
parts of the specification with the design as it evolves. For example, we would envisage that, at some
point most (if not all) of the safety formulae in the specification would be satisfied by the (partial) im-
plementation, while few of the liveness formulae in the specification would be satisfied before the later
stages of development1.

While the above techniques, notably refinement and synthesis, guarantee that the executable code
produced will match the formal specification of the agent, it is also vital to be able to verify that arbitrary
code (for example, produced by a third party) matches the specification. Thus, if we are provided with
executable code, for example in Java, or in an agent-oriented language such as AgentSpeak [38, 8],
and also with a logical property to compare the code against, then we can utilise formal verification
techniques in order to assess whether or not the code satisfies the required property. The behavioural
requirements we have of complex agents can be specified using formulae from an appropriate formal
logic. As above, the formal logic used can incorporate a wide range of concepts matching the view of
the system being described, for example time for dynamic/evolving systems, probability for systems in-
corporating uncertainty, goals for autonomous systems, etc. This gives great flexibility in the descriptive
language that can be used. Given such a specification, we can check this against models/views of the
system under consideration in a number of ways. The most popular is that of model checking [12]. In
such approach, the specification is checked against all possible executions of the system; if there is a
finite number of such executions, then this check can often be carried out automatically. Indeed, the ver-
ification, via model checking, of both hardware systems (such as chip designs) and software systems
(such as Microsoft device drivers) has been very successful in industry as well as academia [2, 4].

In recent years, increasingly sophisticated techniques for the verification of multi-agent systems have
been developed [6, 7, 5, 16]. The agents involved are rational and are represented in one of a number
of a high-level agent languages describing their beliefs, intentions, etc [15]. In particular, verification
has been applied to BDI languages, such as GOAL, AgentSpeak and Jason [38, 8].

3.3 Refinement

The traditional mechanism for utilizing formal specifications in the development of correct systems is
to use refinement. Here, given a formal agent specification, we devise a second specification typically
describing similar behaviours to the original but with a more deterministic and detailed approach.

 SPEC_A

AGENT A

REFINE

REFINEMENT PROOF

 SPEC_B

AGENT B

The basic idea here is that any agent that conforms to the new specification (‘SPEC_B’) should also con-
form to the original specification (‘SPEC_A’). In traditional formal methods there are many approaches
to refinement, but the key aspect is that we must establish (either implicitly or explicitly through a re-
finement proof) that any acceptable behaviour of SPEC_B is also an acceptable behaviour of SPEC_A.
Specifically, we must establish

`L SPEC_B ⇒ SPEC_A .

The obvious advantage of this is that if a property holds of SPEC_A, e.g. ‘SPEC_A ⇒ ϕ’ then the above
implies that ‘SPEC_B ⇒ ϕ’.

Again, since the specifications are potentially given using complex combinations of logics, then such
proofs can be non-trivial.

1Safety formulae typically characterize “bad things that should never happen” (in temporal logic, �¬bad , where ‘�’ is the
“always in the future” operator) while liveness formulae typically characterize “good things that should eventually happen” (in
temporal logic, ♦good , where ‘♦’ is the “sometime in the future” operator) [36].

4

3.4 Direct Execution

There is one further way that an agent’s formal specification can be used in implementation. Rather
than, as in synthesis, attempting to build a program that follows the specification in all possible sce-
narios, we can treat the specification as a program itself and directly execute the logical specification.
One can think of the distinction between synthesis and direct execution as being similar to that between
compilation and interpretation within programming language implementations.

Formal SPEC

AGENT

EXECUTE

Execution Trace

Logically, the execution mechanism can be characterised by a function ‘execute’ such that

(∃M.M = execute(SPEC)) ⇒ M |=L SPEC

Direct execution of logical agent specification has been explored over a number of years, leading to the
stage where logical specifications of goals, beliefs and temporal aspects can be executed [21]. The
advantage of direct execution is that it is much quicker than synthesis and can often be applied where
automatic synthesis is not even possible; the disadvantage is that, while synthesized code is guaranteed
to work in any situation, executable specifications may reach unsatisfiable states (although much work
has been done on developing heuristics to try to avoid this).

4 Multi-Agent Systems

Now that we have single agents, can specify them, manipulate them, verify them and implement them,
we consider multiple such agents interacting together.

4.1 The Computational Model

We take a very simple, and logically coherent, model of multi-agent computation, based on [23, 22, 17].
Agents are independent and interact with each other purely by message-passing. Indeed, we essen-
tially use broadcast message passing. Thus, agents broadcast messages within their environment. In
this formalism, such an environment is itself described by an agent and we refer to this as a context.
Broadcast is in fact implemented by sending a message to the context (this ‘environmental’ agent) which
in turn forwards it to the other agents in that context:

5

Sender

From the above we can see two other important aspects of our multi-agent model. Firstly, an agent
can contain other agents; secondly, contexts themselves are also treated as agents. In fact there is
no distinction between agents and any agent can contain others. Correspondingly, one agent can be
within several other agents. Thus, our agent description is no longer just a logical specification of the
agent’s behaviour, SPEC, but also comprises descriptions of the agent’s content and context [23]:

Agent ::= SPEC
Content : P(Agent)
Context : P(Agent)

where ‘P ’ is the powerset operator.
When an agent broadcasts a message, the message by default goes to all agents within the same

context. If an agent is within several contexts, then the agent can select which contexts to broadcast
throughout. As can be seen from the diagram above, the containing agent only affects the behaviours
of agents within it through message-passing.

As we can see, the key notions are not only that each agent has a formal specification, but that
each agent also has a (possibly empty) set of other agents within it, and a (possibly empty) set of
agents it is within. We will see that these abstractions of behaviour, content and context are vital to
our modelling of complex multi-agent organisations. In particular, the notion of context is very useful
for representing many different multi-agent abstractions, such as locations, roles, teams, etc. With this
simple content/context approach we are able to represent a variety of agent architectures, some simple
examples being characterized as follows.

6

4.2 Decomposition

Once we move to a multi-agent scenario, we can introduce another use for agent specifications. As
opposed to the form of refinement described above, where one agent is refined into another agent, we
can now refine one agent into a multi-agent system. We call this decomposition:

DECOMPOSITION PROOF

 Formal SPEC

Agent

Formal SPEC2

SPEC_A

A

SPEC_B

B

SPEC_C

C

DECOMPOSE

Just as we required a refinement proof to establish the correctness of refinement, so we also need a
decomposition proof to establish the correctness of decomposition. However, the proof corresponding
to decomposition is typically different to that required for ‘normal’ refinement. Recall that we still wish to
prove

SPEC2 ⇒ SPEC

So, ideally, we would like to prove something like

(SPEC_A ∧ SPEC_B ∧ SPEC_C) ⇒ SPEC

However, the enclosing agent may well impose some additional behaviour on those agents within it. A
simple example of this is communication:

(SPEC_A ∧ SPEC_B ∧ SPEC_C ∧ (send⇒♦receive)) ⇒ SPEC

7

Here, “ (send⇒♦receive)” is an example of an environmental constraint/formula provided by the
context agent. Essentially this guarantees that any message sent (i.e., broadcast) from an agent within
this context will eventually be received by every other agent in the context2.

DECOMPOSITION PROOF

 Formal SPEC

Agent

Formal SPEC2

SPEC_A

A

SPEC_B

B

SPEC_C

C

DECOMPOSE

While, in the above diagram, communication appears to be directly between the agents within the
context, we see from the decomposition formula that communication actually occurs via the formal
specification of the context; recall:

Sender

The specification of communication, as given within the context’s specification, defines the communica-
tion within that context. As we will see below, such communications formulae are just simple examples
of additional formulae imposed by the context [19].

Aside. In the above we have assumed a simple form of concurrency where agents execute con-
currently, but synchronously. Though it is clearly more complex, we can describe the asynchronous
composition of agents, following the use of more sophisticated, dense, temporal logics as in [18].

4.2.1 Modular Design

If we are using decomposition as part of a modular design process, possibly following a refinement
methodology, then we may already have a proof that

SPEC2 ⇒ SPEC
2Note that we have simplified this formula slightly for illustrative purposes.

8

and instead of proving
(SPEC_A ∧ SPEC_B ∧ SPEC_C) ⇒ SPEC

we will prove that
(SPEC_A ∧ SPEC_B ∧ SPEC_C) ⇒ SPEC2

Once we incorporate constraints from the context, we get

(SPEC_A ∧ SPEC_B ∧ SPEC_C ∧ Υ) ⇒ SPEC2

where Υ is the behaviour/formula provided by the context. In Section 5, we will see how Υ can be
represented in a more explicit way.

4.2.2 Transformation-Based Decomposition

In some cases decomposition proofs can be simplified, or even avoided all together. Rather than carry-
ing out arbitrary decompositions (or, refinements in general), we might provide a set of decomposition
‘patterns’ to the developer. Each such pattern not only gives an abstract view of a way in which an
agent can be decomposed into several others, but also comes with a proof template. Once the ab-
stract pattern is instantiated with specific agents, so the template is also instantiated providing either an
automatic decomposition proof, or at least a simpler and clearer route to the full decomposition proof.

A simple example is

 Formal SPEC

Agent

Formal SPEC2

SPEC_A

A

SPEC_B

B

SPEC_C

C

DECOMPOSE

Here, the pattern is that SPEC is of the form “ψ ⇒ ♦ϕ” and the single agent is decomposed into three
agents which chain together to eventually generate the required result. Typically:

SPEC_A = ψ ⇒♦m1

SPEC_B = m1 ⇒♦m2

SPEC_C = m2 ⇒♦ϕ
Another obvious pattern is to have a specific manager agent sub-contracting sub-tasks:

9

 Formal SPEC

Agent

Formal SPEC2

SPEC_A

A

SPEC_B

B

SPEC_C

C

DECOMPOSE

Manager

And so on.

5 Behaviours

We now wish to represent different, and more expressive, behaviours often derived from contexts and
even multiple overlapping contexts.

5.1 Visual Notation

We now also change our visual representation of an agent to:

 CODE/SPEC

Agent

N_SPEC

X_SPEC

This will allow us to distinguish the specification of the agent from (a) the (current) externally visible
behaviour of the agent, and (b) the (current) constraints imposed on agents within its context. An agent
has a specification as normal, and (initially) extracted from this specification is a distinct specification
of behaviour relevant/visible to its context and another relevant/visible to its content. But crucially, the
X_SPEC is likely to be comprised of properties (such as “abilities”) that a context can expect to be
exhibited by the agent, whilst the N_SPEC is likely to be comprised of less concrete behaviour relating
to communication, goals, norms.

• CODE/SPEC is the description of the agent’s behaviour, which could be a formal specification, or
could be concrete code;

• X_SPEC is the specification of the current guaranteed behaviour of this agent visible within the
agent’s context; and

10

• N_SPEC is the specification of the current constraints of the agent, as viewed by the agent’s
content.

Initially, at least, both N_SPEC and X_SPEC are just partial views representing aspects of the overall
agent specification, SPEC. Importantly, the behaviour of the agent, as visible by its context may depend
upon the agent’s content and context. For instance an agent may offer an ability to its context based
on the abilities of its content agents. Similarly an agent may gain an ability due to one context it is a
member of and so be able to offer that ability to other contexts.

Thus we require the properties below, capturing the satisfiability of the specifications and the fact
that any advertised behaviour of an agent must be implied by the agent, its contents or its context:

∃M.M |=L
∧

i∈Content

X_SPECi

∧
i∈Context

N_SPECi ∧ SPEC (1)

and
`L

∧
i∈Content

X_SPECi

∧
i∈Context

N_SPECi ∧ SPEC⇒ X_SPEC (2)

Where X_SPECi is the X_SPEC of agent i and similarly N_SPECi is the N_SPEC of agent i. We require,
for the present at least, that the formulae contained in X_SPEC and N_SPEC are Horn clauses to limit
the possibilities for contents and contexts contradicting each other.

Meanwhile an agent’s internal constraints can also be derived from its specification but may also be
affected by its context (for instance an agent may wish to pass on a goal from its context to its contents)
so we also require:

`L
∧

i∈Context

N_SPECi ∧ SPEC⇒ N_SPEC (3)

If we have CODE rather than a formal specification, then we must simply check

τ(CODE) |=L

((∧
i∈Content

X_SPECi

∧
i∈Context

N_SPECi

)
⇒ X_SPEC

)
τ(CODE) |=L

∧
i∈Context

N_SPECi ⇒ N_SPEC

A consequence of our system is that an agent’s overall visible behaviour may depend upon its context,
for instance it may receive a goal from its context. We write XB for the overall behaviour of an agent
given its current content and context and define this as:

XBa ≡
∧

x∈Context(a)

N_SPECx ∧ X_SPECa

XB describes the behaviour of an agent that we can deduce knowing only its ‘advertised’ behaviour and
the contexts in which it is placed. This allows us to reason about agent behaviour in differing contexts
without, necessarily, being aware of the agent’s internal specification or composition.

So, for instance the overall visible behaviour of the agent D in the diagram below is

XBD ≡ N_SPEC_P ∧ N_SPEC_Q ∧ N_SPEC_R ∧ X_SPEC_D

 X_SPEC_D

D

 N_SPEC_P

 N_SPEC_R
 N_SPEC_Q

11

Similarly we define the internal behaviour, IB, of an agent as

IBa ≡
∧

x∈Content(a)

X_SPECx ∧ N_SPECa

So, for instance the overall internal behaviour of the agent D in the diagram below is

IBD ≡ X_SPEC_P ∧ X_SPEC_Q ∧ X_SPEC_R ∧ N_SPEC_D

 CODE/SPEC

N_SPEC_D

X_SPEC_R

X_SPEC_P

X_SPEC_Q

D

R

Q

P

5.2 Autonomy

In the above, we have assumed that any agent’s behaviour is directly affected by the N_SPEC formula
of any context in which it resides. However, ‘real’ agents are autonomous and need not permit external
agents to have direct control over them. Inevitably the need to reason about groups of agents must
reduce their autonomy. Our formalisation requires that we can prove the following.

SPEC `L ∀x ∈ Context. N_SPECx (4)

i.e., that the agent is specified in such a way that, whatever context it finds itself in, it can guarantee that
the formulae in that context will govern its behaviour.

However it is not necessary for agents to give up all autonomy. For instance we typically envisage
that N_SPEC may contain a joint goal for an agent’s content. The individual agent’s are required to adopt
the goal but there are no constraints imposed on how actively they pursue the goal, nor how they go
about achieving the goal. Similarly formulae in N_SPEC may be expressed using the sometime operator
♦φ leaving agents autonomy about when to fulfill the formula or may be expressed probabilistically and
so forth if the logic allows. Lastly agents retain the autonomy to enter and leave contexts and thus agree
autonomously to accept or reject the constraints of any given N_SPEC. (See Section 7 for further work
in this area.)

5.3 Simple Examples

5.3.1 Example 1

We next consider a number of simple examples. First, we provide N_SPEC with a simple communi-
cations formula which guarantees messages broadcast within the system will eventually reach their
recipients;

∀x∈context. ∀ag∈contentx
. send(ψ)⇒♦receiveag(ψ)

12

We then show how the temporal behaviour of the multi-agent system is affected by this. Later, we turn
to examples concerning formulae in N_SPEC that capture joint goals, joint beliefs, etc.

 CODE/SPEC

N_SPEC

X_SPEC_B

X_SPEC_A

X_SPEC_C

Here:

• X_SPEC_A is start⇒ talk

• X_SPEC_B is (hear ⇒♦snore)

• X_SPEC_C is (annoy ⇒ hshout)

• N_SPEC is[
talk ⇒ ♦hear

snore ⇒ ♦annoy

]

The combined internal behaviour, IB, of the multi-agent system is then

start ⇒ talk ∧
(hear ⇒ ♦snore) ∧

(annoy ⇒ hshout) ∧
(talk ⇒ ♦hear) ∧

(snore ⇒ ♦annoy)

which implies
start⇒♦shout .

Thus, effectively, the agents interact together, via the context, in order to eventually make shout true.
Note, however, that if the same agents described by X_SPEC_A, X_SPEC_B, and X_SPEC_C, move
to a different context without the communications formulae provided by N_SPEC, then we can not prove
♦shout .

Furthermore, in the diagram above, ♦shout , could validly appear in the X_SPEC of the whole multi-
agent system as the system can achieve this.

5.3.2 Example 2

Next we consider an example where the specifications are given in terms of agent beliefs as well as
time.

 CODE/SPEC

N_SPEC

X_SPEC_B

X_SPEC_A

X_SPEC_C

Here we ignore communication aspects (assuming that
communication will occur as required, in particular that
agents communicate their beliefs to each other) and
specify the agents by:

• X_SPEC_A is start⇒ Bψ

• X_SPEC_B is ((Bϕ ∧ Bψ)⇒ Bξ)

• X_SPEC_C is

• N_SPEC is persistent shared belief Bϕ

Again the agents combine together and, utilising the shared belief provided by the context, eventually
produce Bξ.

13

5.3.3 Example 3

If we use a logic characterising goals we can also use contexts to represent shared goals, as follows.

 CODE/SPEC

N_SPEC

X_SPEC_B

X_SPEC_A

X_SPEC_C Again (ignore communications aspects):

• X_SPEC_A is Gψ ⇒ Gϕ.

• X_SPEC_B is....

• X_SPEC_C is....

• N_SPEC is shared goal Gψ.

Here the combined behaviour is Gϕ as the shared goal combines with SPEC_A to generate this. Note
that we might also carry out a form of goal decomposition here. If SPEC_B is (α ⇒ ψ) then we can
decompose the goal Gϕ deriving the new (sub) goal Gα.

5.3.4 Example 4

We will now consider two examples which look at the use of internal and external specifications in the
modular decomposition of agents. Consider designing a football team agent. We might start with a
simple design in which the Team contains Defender, Attacker and GoalKeeper agents which each offer
certain abilities to the team.

 Football Team

GoalKeeper

Defender

Attacker

For example (where ‘A’ is the “ability” operator)

X_SPECDefender = A defend

X_SPECAttacker = A attack

X_SPECGoalKeeper = A gkeep

while SPECFootball Team should contain the formula

[A defend ∧ A attack ∧ A gkeep] ⇒ A play_football

14

and
X_SPECFootball Team = A play_football

If the content agents behave as required then we can use the Football Team agent as expected
without worrying about the internal make-up of the team. Specifically, X_SPECFootball Team characterises
the externally visible behaviours. Moreover, assuming the content agent have the right abilities then

X_SPECDefender ∧ X_SPECAttacker ∧ X_SPECGoalKeeper ∧ SPECFootball Team

⇒ X_SPECFootball Team

So (2) holds as required.

5.3.5 Example 5

We conclude this example to show how the formalisation allows reuse of modular components and
organisations in the maintenance phase of a project.

Let us consider an example from [32] of a conference system. In this design a PC_ Chair acts
in the role of a Review_Catcher who assigns papers to reviewers and ensures there are no conflicts
of interest. The PC_ Chair agent contains a number of PC Member agents who review the papers
assigned to them

 ReviewCatcher

Reviewer

PCChair

 SPEC_ReviewCatcher

 X_SPEC_ReviewCatcher

 N_SPEC_ReviewCatcher

X_SPEC_Reviewer

X_SPEC_PCChair

N_SPEC_PCChair

The X_SPEC and N_SPECs of these agents are defined as follows

X_SPEC_ReviewCatcher = receive(paper , CONF)⇒♦review(paper)∧
B reviewed(a, paper)⇒ B¬author(a, paper)

where CONF is the name of the conference. So the ReviewCatcher role guarantees that it will eventually
review all papers and that it will not believe a paper has been reviewed by its own author.

N_SPEC_ReviewCatcher = B reviewed(a, paper)⇒ B ¬author(a, paper)∧
G (reviewed(a, paper)⇒ ¬author(a, paper))

This contains the additional constraint, useful internally, that it never generates a goal for an author to
review their own paper.

X_SPEC_PCChair = received(paper , conf)⇒♦review(paper)
N_SPEC_PCChair = received(paper , conf)⇒♦∃a ∈ Content . G reviewed(a, paper)

15

So the PCChair advertises that it will eventually review any paper and internally it assigns papers to
reviewers by generating an appropriate goal.

X_SPEC_Reviewer =
(name(NAME) ∧ G reviewed(NAME , paper))⇒♦review(paper)∧
G (reviewed(NAME , paper)⇒♦B reviewed(NAME , paper))

The reviewer advertises its name and guarantees to review papers it receives.
As the conference grows the designer decides to add a new layer to the organisation. (S)he intro-

duces the role of ReviewPartitioner who assigns papers to areas. These papers are then assigned to a
number of agents who are enacting the ReviewCatcher role.

N_SPEC_Conference

 X_SPEC_ReviewCatcher

 X_SPEC_ReviewCatcher

 X_SPEC_ReviewCatcher

X_SPEC_ReviewPartitioner

X_SPEC_Conference

The X_SPEC and internal composition of the ReviewCatchers are as above, except that instead of being
initialised with the name of the conference, CONF above, they are initialised with the name of an area.
The agent system is reused in its entirety. At this point, therefore, the designer needs only worry about
the additional structure required and designs new X_SPECs and N_SPECs as follows:

X_SPEC_CONF = receive(paper , CONF)⇒♦review(paper)∧
Breviewed(a, paper)⇒ B¬author(a, paper)

N_SPEC_CONF = receive(paper , CONF)⇒ Bhave(paper)∧
send(paper , AREA)⇒♦receive(paper , AREA)

X_SPEC_ReviewPartitioner = B have(paper)⇒♦send(paper , AREA)

Together with the existing agents and roles this continues to guarantee the overall desired behaviour of
the system.

5.4 Contexts Adding Behaviours

We now return to the use of contexts. While, in the Football Team example, we might implement the
Defender, Attacker, etc, agents directly, we can alternatively utilise other contexts:

16

GoalKeeper

X_SPEC_Defender

Attacker

 Defensive_Abilities

A defend

Football Team

Defender

Here, the agent D might not be capable of defending by itself but, when in the Defensive_Abilities
context, it can utilise that context’s beliefs, abilities, etc. Thus, SPECDefender might not explicitly con-
tain “A defend ”. However, N_SPECDefensive_Abilities contains A defend . So, (4) guarantees that Defender
satisfies

SPECDefender `L ∀x ∈ Context. N_SPECx

So
SPECDefender ∧ Defensive Abilities ∈ Context→ A defend

This allows Defender to validly advertise A defend in its X_SPEC which can then be utilised by the
football team.

Note that, once in the Defensive_Abilities context, the Defender always has the defend ability but,
unless that is advertised in its X_SPEC the Football team can not reason about nor make use, explicitly,
of that ability.

Agents can have many contexts:

17

 Football Team

Defender

 Kicking Abilities

 Catching Abilities

Attacker
Defender

GoalKeeper

As long as the agent, defined within overlapping contexts, behaves as expected then other agents it
interacts with do not care how its behaviour is constructed.

In the previous example, contexts were represented as conferring abilities. It is more likely that
plans offered by the context would enable the content agent to offer an ability. However, contexts can
represent many different aspects, e.g:

• locations, providing sensory input;

• themes/styles, providing preferences;

• organizations, providing goals and beliefs;

• institutions, providing beliefs and norms; or

• locations, proving neighbourhood information.

5.5 Contexts Constraining Behaviours

Our final example in this section demonstrates how a context agent can be a normative influence on
its contents, by applying constraints on their behaviour. The intuition of agents adapting their behaviour
according to the changing context of their actions is central not only to our proposed architecture but
also to the multi-agent paradigm in general.

The example concerns a restaurant, its head chef, a sous chef and a customer. Clearly all agents
involved would like to be assured that this particular restaurant satisfied (eventually) all customer orders.
However, restaurant customers can be fussy about their food, and head chefs are equally particular
about their menus. The relationships between agents in our restaurant system are depicted in the
following diagram

18

Head_Chef

Restaurant N_SPEC_Restaurant

N_SPEC_Head_Chef

N_SPEC_Diner

Diner

Sous_Chef

The initial design provides the restaurant with a content specification that ensures all orders are even-
tually served, i.e.

N_SPECRestaurant = G order ⇒♦serve(meal).

This, is adopted by the Head_Chef — and subsequently the sous chef — who fulfills their role by provid-
ing a menu of meals to which its content agent, the Sous_Chef, must adhere. (We assume that there is
some appropriate, but different, mechanism that makes the menu available to the Diner.)

N_SPECHead_Chef = G order ⇒ h(serve(pizza) ∨ serve(risotto) ∨ serve(steak)
)

A Diner expresses their constraints in their N_SPEC, in this case the vegetarian constraint;

N_SPECDiner =
(
contains(x,meat)⇒ ¬serve(x)

)
We are now able to verify that, not only will the restaurant satisfy all orders, but it will do so whilst
adhering to the requirements of each diner.

∀diner ∈ contextRestaurant. XBRestaurant ⇒ N_SPECDiner

We envisage that preferences (see Section 7) would be communicated in a similar way.

6 Dynamic Specifications for Dynamic Agents

So far we have discussed our notation as a static, design-time system. The proof obligations we have
identified are used to ensure that complex, modular multi-agent systems with many contexts and con-
tents still fulfil their advertised specifications. However the existence of the identified proof obligations
also allows dynamic reasoning about agents in a changing environment. We consider this primarily
in the context of an executable system where agents freely move between contexts and modify their
X_SPEC and N_SPEC accordingly. However similar reasoning could be used within a design tool where
the system could automatically update parts of the specification as the design changed.

So far we have considered the formal specification of multiple agents embedded within agent con-
texts. However a vital aspect concerns the behaviour that becomes available to agents as they enter
and leave contexts.

19

6.1 Leaving Contexts

Consider the following example of a tea making agent which is composed of three sub-agents who gain
vital skills from their over-lapping contexts.

 CODE/SPEC

G make_tea

♢ make_tea

A

C

B

A boil_water

A get_water A get_tea

We assume that the agent’s SPEC includes the formula

[A get_water ∧ A boil_water ∧ A get_tea]⇒ ♦make_tea
We also assume that the internal agents are exporting the abilities from their role contexts to their
X_SPECs.

What happens if agent ‘A’ leaves this agent’s content? At the point when ‘A’ leaves, and if there is
no other agent that can fulfill A’s get_water role, then the tea making agent can no longer prove

X_SPECB ∧ X_SPECC ∧ SPEC⇒ ♦make_tea
and so can no longer advertise X_SPEC = ♦make_tea. However, we can prove

X_SPECB ∧ X_SPECC ∧ SPEC⇒ (A get_water ⇒♦make_tea)

It could therefore dynamically modify it’s X_SPEC to A get_water ⇒♦make_tea
Thus, this agent system, if provided with the ability to get_water, will then be able to make_tea.
Without a goal to make tea, G make_tea, the agent specification remains as above. However, with

the goal G make_tea the agent must actively look to find ways to achieve the goal, e.g. by first tackling
a sub-goal of

G (A get_water).

This could involve communicating with other agents to recruit a new content agent.
It seems probable that, given the formulae appearing in X_SPEC and N_SPEC are restricted to Horn

clauses, if the contents of SPEC are kept simple and avoid, for instance, appeal to recursion, then
only simple procedures could be required to maintain the validity of X_SPEC with respect to changing
content. Indeed within the right logical framework it should be possible to maintain the validity of X_SPEC
without the need to redo proofs.

These mechanisms would also be useful in agent organisations with roles. Typically an organisation
defines its roles and then seeks agents to enact them. Returning to the example of the football team.
The Defender, Attacker and Goal Keeper agents might all be represented as roles enacted by identical
Player agents such that

X_SPECPlayer =
G defend ⇒ A defend ∧
G attack ⇒ Aattack ∧
G gkeep ⇒ Agkeep

20

The Defender Role, for instance, would have an N_SPEC

N_SPECDefender Role = G defend

In a dynamic situation a Player agent, on enacting the Defender Role would modify its X_SPEC to
include Adefend.

6.2 Entering Contexts

Consider a context that provides a specific ability or plan:

 CODE/SPEC

A cook

TRUE

Any agent entering into this context will be able to access the ability to cook within its computations.
Furthermore an agent, a, could, if it so chose, add A cook to its X_SPEC. Since

`L N_SPEC⇒ Acook

now holds for a. In practice heuristics will be used to decide exactly which deductions are placed in an
agent’s external specification as it enters and leaves contexts.

Similarly, a context might provide a particular goal to its members:

 CODE/SPEC

G eat

TRUE

Suppose an agent, a, enters this context and reasons dynamically about the specifications. Firstly we
require that the modified behaviour of a is consistent. Assuming, for the moment, that this is a’s only
context, a needs to check that

∃M.M |=L G eat ∧ X_SPECa

If a model could not be found then a could be prevented from entering the context.
Finally to go back to the tea making example from the previous section. Suppose the “tea making”

agent currently advertises Aget_water ⇒♦make_tea in its X_SPEC. An agent enters its context which
offers Aget_water in its own X_SPEC. This would allow the tea making agent to validly alter its own
X_SPEC so that it could once again offer♦make_tea.

21

7 Concluding Remarks

7.1 Summary

In this paper we have brought together formal specification, automated verification, dynamic agent
organisations, and visual modelling in order to provide a simple, but semantically coherent, modu-
lar framework for designing and developing multi-agent systems. We believe this to be particularly
useful in areas that are difficult for contemporary design methods to handle, namely: multiple overlap-
ping/evolving contexts, dynamically evolving behaviours, and fault tolerance. The approach has a clear
semantic basis and, in principle, allows a wide range of tools (such as proof checkers, theorem-provers,
execution methods, synthesis procedures, etc.) to be applied. The fact that everything (including organ-
isations and teams) is an agent means that these techniques can also be applied directly to complex
organisations and teams themselves.

7.2 Future Work

Extensions, Application and Evaluation. Obviously, there are still many areas to be explored. For
example, is the approach truly useful as a graphical design/development process? And, if it is, to what
extent can proofs/checking be carried out in background? Or is it more appropriate as an approach
to visual programming for multi-agent systems? Or are the visual aspects actually not very useful in
practice?

We have advocated this view as a flexible design method for multi-agent systems, but clearly need to
apply this in larger case studies and to evaluate its effectiveness. Will it turn out to just be another static
design method for multi-agent systems? Or will the dynamic aspects really be useful? And, although
we have in mind using executable agents specification, how far can we go beyond this? To general BDI
languages? Or even general agent languages?

Tool Development. We already have tools for many parts of this framework: deductive verification
tools for temporal and modal specifications; direct execution tools for agent specified using time and
belief; a graphical representation of the content/context hierarchy; etc. However, all these need to be
combined into a coherent and consistent toolset, especially before application to larger case studies.

Preferences. We have seen how contexts not only provides beliefs, goals, etc., to agents within it.
In addition, context can provide preferences, in the form of prefer constraints. These do not have any
direct logical meaning, but are used within the agent’s deliberation process in order to select the most
preferred option. Thus, if an agent has several options it can take (say a or b) and prefer(b,a) is present,
then (assuming there are no other constraints) the agent will choose to do b. If an agent occurs within
multiple contexts, then it is under the influence of multiple preferences. These aspects can be very
useful in complex areas such as dynamic deliberation and dynamic reconfiguration [26, 25], and we
aim to incorporate these within the design framework.

Flexible Autonomy. In the above, we have assumed that any agent’s behaviour is directly affected by
the N_SPEC formula of any context in which it resides by ensuring that

SPEC `L ∀x ∈ Context. N_SPECx .

This is quite strong, and requires that the agent “gives away” some of its autonomy to its contexts. We
intend to look at different variations of this, for example where the agent has a choice about whether
to agree to the context behaviour of not, or is given a variety of strengths of agreement from which to
choose.

References

[1] R. Allen, R. Douence, and D. Garlan. Specifying and Analyzing Dynamic Software Architectures. In
Proc. 1st International Conference on Fundamental Approaches to Software Engineering (FASE),
volume 1382 of Lecture Notes in Computer Science, pages 21–37. Springer, 1998.

22

[2] T. Ball and S. K. Rajamani. The SLAM Toolkit. In Proc. 13th International Conference on Computer
Aided Verification (CAV), volume 2102 of LNCS, pages 260–264. Springer, 2001.

[3] B. Bauer, J. P. Müller, and J. Odell. Agent UML: A Formalism for Specifying Multiagent Software
Systems. International Journal of Software Engineering and Knowledge Engineering, 11(3):207–
230, 2001.

[4] S. Berezin, E. M. Clarke, A. Biere, and Y. Zhu. Verification of Out-Of-Order Processor Designs Us-
ing Model Checking and a Light-Weight Completion Function. Formal Methods in System Design,
20(2):159–186, 2002.

[5] R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated Verification of Multi-Agent Pro-
grams. In Proc. 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 69–78, 2008.

[6] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Model Checking Rational Agents. IEEE
Intelligent Systems, 19(5):46–52, September/October 2004.

[7] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying Multi-Agent Programs by Model
Checking. Journal of Autonomous Agents and Multi-Agent Systems, 12(2):239–256, March 2006.

[8] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-agent Systems in AgentSpeak
Using Jason. Wiley, 2007.

[9] G. Cabri, L. Leonardi, and M. Puviani. Methodologies for Designing Agent Societies. In Proc. 2nd
International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pages
529–534. IEEE Computer Society, 2008. http://dx.doi.org/10.1109/CISIS.2008.65.

[10] L. Cernuzzi and F. Zambonelli. Experiencing AUML in the GAIA Methodology. In Proc. 6th Inter-
national Conference on Enterprise Information Systems (ICEIS), pages 283–288, 2004.

[11] L. Cernuzzi and F. Zambonelli. Dealing with Adaptive Multi-agent Organizations in the Gaia
Methodology. In Proc. 6th International Workshop on Agent-Oriented Software Engineering
(AOSE), volume 3950 of Lecture Notes in Computer Science, pages 109–123. Springer, 2006.

[12] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.

[13] E. M. Clarke and E. A. Emerson. Using Branching Time Temporal Logic to Synthesise Synchroni-
sation Skeletons. Science of Computer Programming, 2:241–266, 1982.

[14] P. R. Cohen and H. J. Levesque. Intention Is Choice with Commitment. Artificial Intelligence,
42(2-3):213–261, Mar. 1990.

[15] L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and M. Wooldridge. A Common Semantic Basis
for BDI Languages. In Proc. 7th International Workshop on Programming Multiagent Systems
(ProMAS), volume 4908 of LNAI, pages 124–139. Springer Verlag, 2008.

[16] L. A. Dennis and M. Fisher. Programming Verifiable Heterogeneous Agent Systems. In Proc.
6th International Workshop on Programming in Multi-Agent Systems (ProMAS), volume 5442 of
LNCS, pages 40–55. Springer Verlag, 2008.

[17] L. A. Dennis, A. Hepple, and M. Fisher. Language Constructs for Multi-Agent Programming. In
Proc. 8th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA), volume
5056 of Lecture Notes in Artificial Intelligence, pages 137–156. Springer, 2008.

[18] M. Fisher. A Temporal Semantics for Concurrent METATEM. Journal of Symbolic Computation,
22(5/6), November/December 1996.

[19] M. Fisher. Representing abstract agent architectures. In J. P. Müller, M. P. Singh, and A. S. Rao,
editors, Intelligent Agents V — Proceedings of the Fifth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-98), Lecture Notes in Artificial Intelligence. Springer-Verlag,
Heidelberg, 1999.

23

[20] M. Fisher. Temporal Development Methods for Agent-Based Systems. Journal of Autonomous
Agents and Multi-Agent Systems, 10(1):41–66, Jan. 2005.

[21] M. Fisher. METATEM: The Story so Far. In Proc. Third International Workshop on Programming
Multiagent Systems (ProMAS), volume 3862 of Lecture Notes in Artificial Intelligence, pages 3–22.
Springer Verlag, 2006.

[22] M. Fisher, C. Ghidini, and B. Hirsch. Organising Computation through Dynamic Grouping. In
Objects, Agents and Features, volume 2975 of Lecture Notes in Computer Science, pages 117–
136. Springer-Verlag, 2004.

[23] M. Fisher and T. Kakoudakis. Flexible agent grouping in executable temporal logic. In Gergatsoulis
and Rondogiannis, editors, Intensional Programming II. World Scientific Publishing Co., Mar. 2000.

[24] J. C. García-Ojeda, S. A. DeLoach, Robby, W. H. Oyenan, and J. Valenzuela. O-MaSE: A Cus-
tomizable Approach to Developing Multiagent Development Processes. In Proc. 8th International
Workshop on Agent-Oriented Software Engineering (AOSE), volume 4951 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2008.

[25] A. Hepple, L. A. Dennis, and M. Fisher. A Common Basis for Agent Organisations in BDI Lan-
guages. In Proc. International Workshop on LAnguages, methodologies and Development tools
for multi-agent systemS (LADS), volume 5118 of Lecture Notes in Artificial Intelligence, pages
171–88. Springer-Verlag, 2008.

[26] B. Hirsch, M. Fisher, C. Ghidini, and P. Busetta. Organising Software in Active Environments. In
Computational Logic in Multi-Agent Systems (CLIMA-V), volume 3487 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2005.

[27] J. Howse and S. Schuman. Precise Visual Modeling: A Case-Study. Software and System Mod-
eling, 4(3):310–325, 2005.

[28] C. B. Jones. Tentative Steps Toward a Development Method for Interfering Programs. ACM Trans-
actions on Programming Languages and Systems, 5(4):596–619, 1983.

[29] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall International, Engle-
wood Cliffs, NJ, 1986.

[30] O. Kupferman and M. Y. Vardi. µ-Calculus Synthesis. In Proc. 25th International Symposium
on Mathematical Foundations of Computer Science (MFCS), volume 1893 of Lecture Notes in
Computer Science, pages 497–507. Springer, 2000.

[31] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison Wesley Professional, 2003.

[32] M. Luck and L. Padgham, editors. Agent-Oriented Software Engineering VIII, volume 4951 of
Lecture Notes in Artificial Intelligence, Heidelberg, Germany, 2008. Springer-Verlag.

[33] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, New York, 1992.

[34] Z. Manna and R. J. Waldinger. Toward Automatic Program Synthesis. ACM Communications,
14(3):151–165, 1971.

[35] J. Misra and K. M. Chandy. Proofs of Networks of Processes. IEEE Transactions on Software
Engineering, 7(4):417–426, 1981.

[36] S. Owicki and L. Lamport. Proving Liveness Properties of Concurrent Programs. ACM Transactions
on Programming Languages and Systems, 4(3):455–495, 1982.

[37] L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A Practical Guide. John Wiley
and Sons, 2004.

24

[38] A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In Agents
Breaking Away — Proc. Seventh European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW), volume 1038 of Lecture Notes in Computer Science, pages 42–55.
Springer, 1996.

[39] A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proc. First International
Conference on Multi-Agent Systems (ICMAS), pages 312–319, San Francisco, USA, 1995.

[40] A. S. Rao and M. P. Georgeff. Modeling Agents within a BDI-Architecture. In R. Fikes and E. Sande-
wall, editors, International Conference on Principles of Knowledge Representation and Reasoning
(KR), Cambridge, Massachusetts, Apr. 1991. Morgan Kaufmann.

[41] S. Schewe and B. Finkbeiner. Distributed Synthesis for Alternating-Time Logics. In Proc. 5th
International Symposium on Automated Technology for Verification and Analysis (ATVA), volume
4762 of Lecture Notes in Computer Science, pages 268–283. Springer-Verlag, 2007.

[42] S. Schneider. The B-Method: An Introduction. Palgrave, October 2001.

[43] M. Shaw and D. Garlan. Formulations and Formalisms in Software Architecture. In Computer
Science Today: Recent Trends and Developments, volume 1000 of Lecture Notes in Computer
Science, pages 307–323. Springer, 1995.

[44] B. van Linder, W. van der Hoek, and J.-J. C. Meyer. Formalising Abilities and Opportunities of
Agents. Fundamentae Informaticae, 34(1-2):53–101, 1998.

[45] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational Rules as an Abstraction for the
Analysis and Design of Multi-Agent Systems. International Journal of Software Engineering and
Knowledge Engineering, 11(3):303–328, 2001.

[46] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems: The Gaia
Methodology. ACM Transactions on Software Engineering Methodology, 12(3):317–370, 2003.

25

