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Chapter 1

Introduction

This thesis is on reasoning about multi-agent systems. It provides a logic-based

account of the specification and verification of multi-agent systems, in terms of

time, action and knowledge. This chapter describes the general area of multi-

agent systems, the motivation for this research, the methods chosen, and con-

cludes with an overview of the thesis.

Multi-Agent Systems Research What are Multi-Agent Systems? A Multi-

Agent System (MAS) is a system that consists of multiple interacting agents. An

agent is an entity that could act on its own or on behalf of another entity. We may

call them intelligent agents, or rational agents, if the agents could observe, think

and direct their activities to achieve goals. There are generally four characteristics

of MASs [100]: firstly, each agent has incomplete information or capabilities for

solving the problem; secondly, there is no global system control; thirdly, data

is decentralized; and fourthly, computation is asynchronous. For comprehensive

surveys of MASs, refer to [98, 72, 100].

One could easily associate agents with human beings, and associate a MAS

with a team or community. Human beings are indeed an important source of

our inspiration and motivation. For instance, the ultimate goal of RoboCup,

a successful initiative for the research in Robotics and Artificial Intelligence, is

stated as follows:

By mid-21st century, a team of fully autonomous humanoid robot

soccer players shall win the soccer game, comply with the official rule

of the FIFA, against the winner of the most recent World Cup.

From http://www.robocup.org.

13



14 CHAPTER 1. INTRODUCTION

The robot soccer players are agents. In order for a robot team to actually

play a soccer game, various technologies must be incorporated including: sensor-

fusion, multi-agent communication and collaboration, planning and strategy ac-

quisition, real-time reasoning, robotics, design principles of autonomous agents,

etc [99, 60]. In the broader area of multi-agent systems research, the study also

involves knowledge representation of beliefs, desires and intentions, cooperation

and coordination, organization, communication, negotiation, distributed problem

solving, multi-agent learning, and so on.

This thesis focuses on the specification and verification of multi-agent systems

using a logic-based approach. So, what is the motivation of this research, and

why did we choose a logic-based approach? The first question is addressed in

Section 1.1, and the second question in Section 1.2.

1.1 Time, Action and Knowledge in MAS

In this section, we show that ‘Time’, ‘Action’, and ‘Knowledge’ are three im-

portant aspects for reasoning about multi-agent systems, with several relevant

examples.

Systems Changing Over Time What is time? There are a lot of philosoph-

ical debates on the nature of time. But these debates are not the subjects of this

thesis. We simply take the following view: time is part of a fundamental intellec-

tual structure (together with space) within which humans sequence and compare

events.

In our daily life, we use time to record past activities or events, and to plan

or organize future ones. Similarly, when we study multi-agent systems, we also

want to use time to sequence and compare changes of the systems. Conceptually,

time, like space, may be continuous, and this may even lead to some controversial

debates, such as in Zeno’s Arrow Paradox:

“If everything when it occupies an equal space is at rest, and if that

which is in locomotion is always occupying such a space at any mo-

ment, the flying arrow is therefore motionless. ”

Aristotle, Physics VI:9, 239b5

But here, we adopt the following view: time is discrete and systems change one

step at a time. This view is a pragmatic one, because in practice we usually refer
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to discrete time points when we talk about a system. For example, we say “The

train leaves platform 1 at 5pm” or “The dinner starts at 7pm”. Moreover, in

multi-agent systems research, the agents are usually computational systems, in

which instructions are executed step by step. Therefore this view naturally fits

the modelling of changes in such systems.

We assume that a multi-agent system is in certain state at each discrete time

point. The granularity of the time points may depend on the subjects that we

model. For example, in the University of Liverpool, PhD students and their

supervisors have to complete a progress review on an annual basis, and students

are allowed to be transferred to the next year only after positive feedback, while

the research meetings between students and supervisors are on a monthly or a

weekly basis. Once we fix the granularity of time, the changes of the system then

are modeled as transitions from one time point to another.

Now the questions are how could we represent states of a multi-agent system

and the transitions between them, and how to express the desired properties that

we want such systems to have.

Agents Having Power To Act A multi-agent system evolves over time and

the changes come from the actions made by the agents. So the agents must have

the power to act, and they will typically be interested in how to act effectively,

i.e., in such a way as to achieve their goals. The agents may have conflicting

goals, so their power to act may also depend on how other agents act.

To illustrate these aspects, we introduce the game of Student vs. Teacher [77]

as follows.

Example 1.1 (Student vs. Teacher). There is a student and a teacher. They are

playing a game as shown in the following diagram.

b b

b b

S A

B E

The student is located at position S and wants to reach the position of escape,

E, but the teacher wants to prevent him from escaping. Each line segment is a

link that can be traveled. The teacher starts first and they play in turn. At each

round of the game, the teacher can cut one connection anywhere in the diagram,

while the student can and must travel one link still open to him at his current
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position. The game stops if the student escapes in E (in which case he wins) or

he cannot move anymore (in which case he loses). Question: does the student

have a way to win this game?

The answer is no if the teacher plays smartly. If the teacher first cuts a link

between A and E, then no matter whether the student goes to A or B, the teacher

can then cut the link from E to that position, and in the next round cuts the

last link from E. So there is no link from any other position to E, therefore the

student cannot escape. We can say that the teacher has a strategy to win this

game.

But if the teacher does not play smartly in the first round, then he might lose.

For example, if the teacher first cuts the link between S and A, then the student

has no choice but go to B and subsequently gets a winning strategy. The strategy

can be described as follows: if the teacher cuts any link but the B-E link, then

the student wins through this B-E link; if the teacher cuts the B-E link, then the

student goes to A, and because there are two links between A and E, no matter

which link the teacher cuts in the next round, the student can always reach E.

There are situations in which agents not only compete but also collaborate

with each other. For example, in football, the members of one team compete

with those of the other team; within the same team, members work together to

send the ball into the other team’s goal. In the current global economy, countries

are competing with each other; but to slow down global warming, countries have

to collaborate as well, e.g. cutting greenhouse gas emissions together.

The questions are how can we model the single agent’s strategy as well as the

strategy of a group of agents, and how can agents reason about their coalition

powers.

Agents’ Knowledge Evolving Over Time In many scenarios, agents do not

necessarily have complete information of the whole system. Therefore to represent

and reason about incomplete information is essential too. The term information

is generally understood as “facts provided or learned about something or some-

one”. In this thesis, we assume that the information that agents acquire through

observation and learning is always accurate. For instance, in our earlier example,

if the teacher makes an action ‘cut A-B link’ then the student will observe the

same action. Of course, in general, this assumption does not necessarily hold. For

example, the speedometer on your bicycle may tell you that the current speed is
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25 km per hour, but due to measurement errors, the real speed is probably not

exactly the same number. This relates to a choice of modelling. If the measure-

ment error is negligible, then we could simply treat the measurement reading as

an accurate one; but if it may have a non-trival impact on the system, then we

could add more parameters to describe it.

We refer to accurate or truthful information as knowledge. In particular,

we distinguish two kinds of knowledge: one is about the facts of the system

environment or agents, and the other is about the knowledge of other agents’

knowledge, which is also called higher-order knowledge. For instance, suppose

there are two agents A and B and a lamp in the waiting room; the agent B just

comes out from that room, hence he might know the status of the light. But

agent A only observes that B is coming out and A is not able to peek into the

room. Now we say that agent B knowing whether the lamp is on or off, refers

to the first type of knowledge. Agent A knowing whether agent B knows that

fact, is higher-order knowledge. Sometimes higher-order knowledge can be very

subtle, and plays an important role in agents’ decision making. We illustrate

this by the coordinated attack problem, a well-known problem in the distributed

systems folklore. The problem is described as follows (Page 176, [21]).

Example 1.2 (Coordinated Attack). Two divisions of an army, each commanded

by a general, are camped on two hilltops overlooking a valley. In the valley awaits

the enemy. It is clear that if both divisions attack the enemy simultaneously

they will win the battle, while if only one division attacks it will be defeated. As

a result, neither general will attack unless he is absolutely sure that the other

will attack with him. In particular, a general will not attack if he receives no

messages. The commanding general of the first division wishes to coordinate a

simultaneous attack (at some time the next day). The general can communicate

only by means of messengers. Normally, it takes a messenger one hour to get

from one encampment to the other. However, it is possible that he will get lost in

the dark or, worse yet, be captured by the enemy. Fortunately, on this particular

night, everything goes smoothly. How long will it take them to coordinate an

attack?

So General A must send a messenger to General B with a message like “let

us attack at 6 am”. Suppose General A did so, and the message was indeed

delivered, what should General B do? B did know A’s proposal, but he could

imagine that A had no information so far on whether the message had been
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delivered, therefore; A did not know that B knew this proposal already. Hence,

at that time point, B could not make a decision to attack the enemy, as A would

definitely not attack the enemy. Then B had to send a messenger back to inform

A that the earlier message had been delivered. Suppose B did so and the message

was delivered successfully, should A decide to make an attack? Not really, because

A could imagine that B did not know whether the second message was successfully

delivered, although A knew that B knew the first message already. Therefore, A

must send another messenger to inform B that the second message was received

by A. So it is easy to conclude that no matter how many messages are passed

between A and B, they could not attain enough high-order knowledge to ensure a

simultaneous attack; therefore no successful coordination was possible. In other

words, they need infinitely many successful deliveries of messages to attain the

knowledge for this attack, which is of course not possible in practice.

One may ask why the two generals do not simply make a telephone call? It

is not possible in this example, as they can only rely on the messengers. But

if a telephone call is indeed allowed and the generals could do it without being

noticed by the enemies, then they will be able to coordinate an attack. The

higher-order knowledge they will obtain from the telephone call is called common

knowledge. In this example, common knowledge is essential for two generals to

make life-or-death decisions. Also, the example shows that knowledge can evolve

over time, e.g. via communication among agents.

Now, the questions are how we can represent such different knowledge modali-

ties and actions of communication, and how agents can reason about these knowl-

edge and actions.

So far we have looked at three important aspects of multi-agent systems, and

asked relevant questions. In the next section, we are going to introduce the

methods to address these questions.

1.2 Logic-based Methods and Formal Verifica-

tion

Logic-based Methods We use logic-based methods for reasoning about multi-

agent systems. A logic usually consists of three parts:

• Language (Syntax): well-defined strings of symbols to serve as a language

to express the properties of the systems;
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• Semantics (Model theory): mathematical models which characterise the

system and give meaning to the language.

• Deduction system (Proof theory): a set of formulas and rules to deduce a

specific set of formulas which are called theorems.

There are several advantages of using logic-based methods in multi-agent systems

modelling.

• First, the well-defined logical language is more precise and unambiguous

compared to unstructured natural language.

• Second, by having rigorous mathematical models of multi-agent systems,

the underlying assumptions can be nailed down to precise terms so that

there will be no confusion in studying such systems.

• Third, the well-defined semantics enables us to specify precisely what prop-

erties hold for the models, and may help us understand why some properties

fail in such models.

• Last, by using axiomatic deduction systems, we could single out what are the

principles underlying a particular system, and what are the consequences

of such principles.

In particular, we will study multi-agent systems with two classes of logical

frameworks. The first class is that of temporal logic, and the second class is that

of epistemic logic. A detailed review on these logics is given in Chapter 2.

Formal Verification As with every study or research, we do this research with

some purpose. One important purpose is of course, the theoretical understanding

of multi-agent systems, but ultimately, we would like our study to be practically

useful as well. For that reason, we want to verify multi-agent systems based

on our logical approaches. This leads to the formal verification of multi-agent

systems.

As the designer of a system, one wants to know whether the designed system

behaves as desired. A popular way of doing that is through simulation and

testing, which are standard methods in software engineering. But there are two

main limits for such methods. First, simulation and testing only explore some of

the possible behaviors and scenarios of the system, leaving some bugs unexplored;
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this is not acceptable for mission critical systems, as witnessed in the failure of the

Rocket Ariane 5 Flight 501 in 1996, which was caused by computer software bugs1.

Second, simulation and testing use natural language to describe the specifications

of the system, leaving potential misunderstandings to the test conductors.

To overcome such limits, several approaches to formal verification have been

proposed over the years. There are roughly two classes of approaches. One is

theorem proving, which is related to proof theory mentioned earlier; and the other

is model checking, which is related to the model theory. In this thesis, we focus

solely on model checking.

Pioneering work in model checking of temporal logics was done by Clarke,

Emerson and Sifakis et al. [15, 64] in the 1980s. For that reason, Clarke, Emerson,

and Sifakis shared the 2007 Turing Award.

Model checking is the process of checking whether a given model satisfies a

logical specification, represented as a logic formula, through exhaustive enumer-

ation (explicit or implicit) of all the states reachable from the initial states of

the system and the transitions that connect them. Formally, a model checking

problem can be stated as follows: given a desired property which is expressed as

a logic formula ϕ, and a model M with a state s in M , decide whether M , s |= ϕ.

The model checking process typically involves three main steps:

• Modelling The first step is to translate a specification of a system de-

scribed in natural language into a formalism that is accepted by a model

checking tool. The usual tasks involved are abstracting key components

and eliminating irrelevant details. The judgment of whether some details

are irrelevant or not depends on the design objectives.

• Specification The aim of this step is to produce formal specifications,

normally in the form of logic formulas, to represent the desired properties

that the systems should hold. This also involves logical abstractions, as the

logical language is more rigid than the natural language.

• Verification This step usually does not need human involvement except in

the situation that the model is too large to be handled by the computer. In

that case, one may need rework in the Modelling and Specification steps.

This complete procedure will be shown in the case studies in Chapters 4 and

6 of this thesis.
1URL: http://en.wikipedia.org/wiki/Ariane 5 Flight 501
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Compared with other approaches, there are several clear advantages of the

model checking approach. First, model checking is fully automatic and exhaus-

tive, so the full process will need no human intervention, and no states will be

left out. Second, model checking tools may produce a counterexample when the

design does not satisfy a property, which may lead to great insights on why the

property fails. Third, the model checking process can handle very large state

spaces that cannot be possibly handled by human beings.

However, there is also a major disadvantage in the model checking approach.

As the number of components or agents in a system increases, the number of states

of the system may increase exponentially. This is usually refereed to as the state

explosion problem. There was a breakthrough, when McMillan et al. [12, 52] first

used a symbolic representation for state transition graphs, so that much larger

systems could be handled. The main insight was to use a symbolic representa-

tion based on Bryant’s ordered binary decision diagrams (OBDDs) [11]. OBDDs

provide a canonical form for Boolean formulas that is often substantially more

compact than conjunctive or disjunctive normal form; very efficient algorithms

have been developed for manipulating them. Such techniques are also used in the

model checking tools for multi-agent systems [66, 25].

1.3 Overview

Chapter 2 of this thesis provides a logical background for the work that is going to

be presented. It first introduces temporal logics from a single-agent perspective,

and then from a multi-agent perspective. In the single-agent perspective, we

have Linear-time Temporal Logic (LTL) and Computational Tree Logic (CTL).

The former assumes that a system changes over time deterministically, in the

sense that there is only one possible outcome for a system to transit from one

state to another state; and the latter assumes that a system changes over time

non-deterministically. In the multi-agent perspective, we have Alternating-time

Temporal Logic (ATL), which is a generalization of CTL. In ATL, the changes

of a system are determined by the agents’ actions. The thesis then goes on to

introduce epistemic logics, which are the logical frameworks of knowledge. Epis-

temic Logic (EL) deals with the agents’ knowledge and higher-order knowledge,

including common knowledge. We also present two extensions of EL. One is

Temporal Epistemic Logic (TEL), which models the temporal changes of a sys-

tem in addition to the modelling of the agents’ knowledge. The other is Dynamic
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Epistemic Logic (DEL), which also models the changes of a system but more con-

cretely through actions, compared to the modelling of the changes caused by the

flow of time in TEL. A literature review is provided, along with the definitions of

languages and semantics of these logics, and the computational complexities of

these logics.

The main contributions of this thesis are presented in the next four chapters,

from Chapter 3 to Chapter 6.

Chapter 3 and Chapter 4 are focused on the verification of games in the

Game Description Language (GDL), a declarative language used in General

Game Playing Competition. The aim of the competition is to provide a platform

for researchers to develop general purpose game playing systems, which shall have

more flexibility compared to dedicated game playing systems such as the famous

Chess-playing system Deep Blue. While GDL is specifically designed for describ-

ing games, it can also be seen as a language to describe a class of multi-agent

systems. A practical problem for a designer of games or multi-agent systems

using GDL is to check whether they meets desired specifications. One formalism

for reasoning about games that has attracted much interest is Alternating-time

Temporal Logic (ATL). Chapter 3 investigates the connection between GDL and

ATL. It first demonstrates that GDL can be understood as a specification lan-

guage for ATL models. Subsequently it shows that it is possible to succinctly

characterise GDL game descriptions directly as ATL formulas, and that, as a

corollary, the problem of interpreting ATL formulas over GDL descriptions is

EXPTIME-Complete. Then in Chapter 4, this connection is explored more

practically. In particular, two main contributions are made: firstly, a characteri-

zation of the playability conditions which can be used to express the correctness

of the games specified in GDL, and secondly an automated tool that uses an

ATL model checker to verify the playability conditions for the games described

in GDL. The feasibility of our approach is demonstrated by a case study on the

game called Tic-Tac-Toe.

Chapters 5 and 6 are focused on the modelling of multi-agent systems with

incomplete information. In particular, a study of correspondence between Dy-

namic Epistemic Logic (DEL) and Temporal Epistemic Logic (TEL) is made.

These two logical frameworks are capable of modelling multi-agent systems with

agents’ knowledge and change. However, there is an apparent difference in terms

of model checking: in DEL the interpretation of a dynamic epistemic formula is

over a state model, which represents a static view of a multi-agent system; while
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in TEL, the interpretation of a temporal epistemic formula is over an interpreted

system, in which the full history of a system is unfolded. Chapter 5 tries to

link DEL and TEL, showing that DEL can be embedded into a variation of TEL.

We then proceed in Chapter 6 to give a study of model checking knowledge dy-

namics with three state-of-the-art model checkers for multi-agent systems. We

first discuss the role of protocols in model checking processes, and proceed with

case studies of two problems. With the Russian Cards Problem, we show how

to use model checking tools to specify and verify communication protocols, and

how dynamic epistemic modelling and temporal epistemic modelling compare in

practice. With the Sum And Product Problem, we show an important feature

supported by the dynamic epistemic model checker DEMO, but not by the tem-

poral epistemic model checkers MCK and MCMAS. We also compare the model

checking results of different variants of this problem, and discuss the influence of

model checking time by different representations of a same specification.

Finally Chapter 7 gives a conclusion of this research and provides some ideas

for further research.

Sources of Materials

Chapter 3 and 4 are based on collaborations with Prof. Wiebe van der Hoek and

Prof. Michael Wooldridge. The main work of Chapter 3 was presented in [82]

at the Workshop on Logic, Rationality and Interaction (LORI’07) which took

place at Beijing, in August 2007. Chapter 4 is yet to be published. Chapter

5 is joint work with Dr. Hans van Ditmarsch and Prof. Wiebe van der Hoek; a

preliminary version [90] was presented in the Workshop of Formal Approaches to

Multi-Agent Systems (FAMAS’007), which took place at Durham, in September

2007. Chapter 6 has two main sources: one is a paper [91] published in the Journal

of Logic and Computation jointly with Dr. Hans van Ditmarsch and Prof. Rineke

Verbrugge; the other is a paper [93] published in the proceedings of MoChArt 05

(Model Checking in Artificial Intelligence) jointly with Dr. Hans van Ditmarsch,

Prof. Wiebe van der Hoek and Prof. Ron van der Meyden. The contributions and

collaborations of my co-authors are highly appreciated.
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Chapter 2

Background

This chapter presents the temporal and epistemic frameworks that form the basis

of this thesis. We assume that the readers have a basic knowledge of propositional

logic.

2.1 Temporal Logics

2.1.1 Introduction

Temporal logic is a formalisation of time. It is developed mainly from two tra-

ditions. The first is a philosophical tradition, which is rooted in the analysis of

temporal aspects of natural language; therefore it is sometimes referred to as

tense logic. An important milestone in contemporary temporal logic was first

laid by A. Prior in his book Time and Modality [63] in 1957. Prior’s approach

treated time with modalities, which are expressions broadly associated with no-

tions of possibility and necessity. Suppose we have a proposition “It is sunny”

(call it proposition p); although the meaning of this proposition is constant in

time, the truth value of this proposition may change over time, especially in a

place like Liverpool. With the modalities like ‘always’, ‘eventually’, we can have

such statements: “it is always sunny”, “eventually it is sunny”. They can be

expressed in our logical language as �p and ♦p respectively. The meaning of

these statements depends on their interpretation on the structures that represent

time. More details will be provided in the next section.

The second is a computational tradition. The motivation is to apply formal

tools to the verification of computer programs, or more broadly computer systems.

This area was created by computer scientists, A. Pnueli and Z. Manna et al. [62,

25
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49, 50], and further developed by E. Clarke and E. A. Emerson et al. [15, 13]. In

[62], Pnueli proposed a unified approach to program verification, which applies

to both sequential and parallel programs. The main proof method suggested was

that of temporal reasoning, in which the time dependence of events is the basic

concept. The programs are in a certain state in each time instance, and the

correctness of the programs can be expressed as temporal specifications, such as

“�¬deadlock” meaning the program can never enter a deadlock state. In [15], E.

Clarke and E. A. Emerson invented the method of model checking.

There are many temporal logics proposed since then. We list three categories

that are concerned with this thesis:

• Linear-time Temporal Logics (LTL)

• Computational Tree Logics (CTL) - an example of Branching-time Temporal

Logics

• Alternating-Time Temporal Logics (ATL)

The main difference between LTL and CTL is their view of time flows. LTL

considers a time flow as a chain of time instances, while CTL views a time flow

as a tree branching to the future, i.e., in each time instance, there may be several

future instances. ATL, with multi-agent perspective, is a generalisation over

CTL. We proceed with an introduction of structures of time and then present the

languages and semantics of LTL, CTL and ATL in subsequent sections.

2.1.2 Structures of Time

Basic Temporal Frames and Extra Properties

Time is a basic component of the measuring system. We use it to sequence

events, to compare the duration of events, and more importantly to organise our

activities. One can view a flow of time as an object consisting of separate time

instances and certain structures.

Definition 2.1. A flow of Time is a frame: 〈T,R〉 such that R is binary relation

over T. Here elements in T are called time instances, and R is called precedence

relation; if a pair (s , t) belongs to R, we say that s is earlier than t, written as

sRt.
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This is just a basic frame, which may not meet our intuition about time. For

example, tRt is allowed in the basic temporal frame, but our intuition tells us

that time t should not be earlier than itself. To avoid such problems, we could

add further restrictions on the precedence relation. Here are some first-order

properties1 representing various restrictions:

• Irreflexivity: ∀x (¬(xRx ));

• Transitivity: ∀xyz (xRy ∧ yRz → xRz );

• Linearity: ∀xy(xRy ∨ yRx ∨ x = y);

• Seriality: ∀x∃y(xRy);

• Density: ∀xy(xRy → ∃z (xRz ∧ zRy)).

Irreflexivity says that x cannot precede itself. Transitivity says that if a time

instance x precedes y and y precedes z , then x precedes z . Linearity says that

for two time instances, either one precedes the other, or they are equal. Seriality

says for any time instance, there is always a future time instance. Density says

that for two time instances, there is always a time instance in between.

There are also some properties that can only be defined in second-order, in-

volving quantification over sets of instances in time, such as:

• Continuity: “Every subset with an upper bound has a supremum(i.e. a

lowest upper bound)”.

The combinations of these properties define various temporal frames. For

example, with transitivity and irreflexivity, we can define a temporal frame that

is not circular; with linearity and transitivity, we have a linear temporal frame.

Notice that the natural number frame 〈N, <〉 and real number frame 〈R, <〉 are

linear temporal frames; while the former is discrete, and the latter is continuous.

Temporal Frames from State Machines

Apart from our intuition of what ‘real time’ should be, there is another perspective

from computer science. In a computational perspective, time is not continuous,

but discrete, as computation is made step by step. It is reasonable to assume

that a computer or a machine is in a particular state in each time instance. A

1∀x means “For all x in the domain”, and ∃x means “There exists an x in the domain”.
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Figure 2.1: A deterministic state machine
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Figure 2.2: A non-deterministic state machine

binary relation among these states indicates possible transitions from one state to

another. We require that for every state, there is at least one possible transition.

The reason to ensure this is because we assume that machine time is infinite, i.e.

computations do not stop. This is not to say that we cannot have a stopping

state, in which a machine stops to operate. We can just have such a state that it

only transits to itself.

Definition 2.2 (Finite State Machine). A finite state machine is a frame:

〈S,R〉, where S is a finite set of states of a machine, and R is a binary relation

over S such that for every s ∈ S, there exists s ′ ∈ S with sRs ′, i.e. R is serial.

There are two types of finite state machines: deterministic and non-deterministic.

If for each state, there is exactly one transition either to another state or to itself,

then it is a deterministic state machine; otherwise, it is a non-deterministic state

machine.

Example 2.1. Figure 2.1 represents a deterministic state machine, and Figure

2.2 represents a non-deterministic state machine.

It was mentioned that a main difference between LTL and CTL lies on their

different view on time flow. This difference can be shown by unwinding the

s0 s2s1

bb b b

s2

Figure 2.3: The result of unwinding the state machine in Figure 2.1
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b b bs0 s2s2

Time progress

Figure 2.4: The result of unwinding the state machine in Figure 2.2.

state machines in the above examples. Here ‘unwinding’ is a process to make a

state machine into a linear or branching structure without altering the transition

relations between the states. The result of unwinding the state machine in Figure

2.1 from the state s0 is presented in Figure 2.3, which shows a linear structure.

The result of unwinding the state machine in Figure 2.2 from the state s0 is

presented in Figure 2.4, which shows a branching structure.

For these frames, we define a key concept called computation, which is intu-

itively a linear-time line or a branch in the branching-time tree.

Definition 2.3. Given a temporal frame 〈S,R〉, an s0-computation is an infinite

sequence of states λ = s0, s1, s2, · · · , such that for any i ∈ N, siRsi+1. We denote

si as λ[i ].

It is easy to see that in Figure 2.3, s0, s1, s2, s2, · · · is a computation starting

with s0, and in Figure 2.4, s1, s2, s2, · · · is a computation starting with s1.

Now we give a generic definition of a temporal model.

Definition 2.4. Given a set of atomic propositions P, a temporal model M is a

tuple 〈F ,V〉 where F = 〈S,R〉 is a temporal frame, and V is a function from S to

℘(P), the power set of P.

If F is a linear-time temporal frame, we call M a linear-time temporal model,

and if F is a branching-time temporal frame, we call M a branching-time temporal

model.

Given these models, we need languages to talk about them. In the following

sections, we will present three temporal languages and give their interpretations

to respective temporal models.
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2.1.3 Linear-time Temporal Logic

The language of Linear-time Temporal Logic (LTL) is an extension of proposi-

tional logic with temporal modalities.

Definition 2.5 (LTL Language). The language of Linear-time Temporal Logic in

Backus Naur Form (BNF) is as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | hϕ | ϕU ψ

where, p is a propositional atom.

The abbreviations ⊤,⊥,∨,→ and ↔ are defined as usual. We can define the

following abbreviations for two temporal modalities ♦ϕ ::= ⊤U ϕ and �ϕ ::=

¬♦¬ϕ.

The formulas with temporal modalities have the following intuitive meanings.

• hϕ : in the next time step ϕ will be true;

• ϕU ψ : ϕ will be true from now until ψ;

• �ϕ : always in the future from now, ϕ will be true;

• ♦ϕ : at least once in the future, ϕ will be true.

We now give a formal semantics of this language with respect to linear-time

temporal models.

Definition 2.6 (LTL Semantics). Given a linear-time temporal model M , a state

s, and an s-computation λ, we have:

M , s |= p ::= p ∈ V(s)

M , s |= ¬ϕ ::= not M , s |= ϕ

M , s |= ϕ ∧ ψ ::= M , s |= ϕ and M , s |= ψ

M , s |= hϕ ::= M , λ[1] |= ϕ

M , s |= ϕU ψ ::= ∃j ∈ N(M , λ[j ] |= ψ and ∀0 ≤ i < j , λ[i ] |= ϕ)
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Complexity

Given the language and semantic of a logic, there are two types of problems that

we are interested in: the model checking problems and the satisfiability problems.

A model checking problem is: given a model M , a state s , and a formula ϕ,

determine whether M ,w |= ϕ. A satisfiability problem is: given a formula ϕ,

determine whether there is a model M , a state s , such that M ,w |= ϕ. These

definitions are general, and they can be tailored to LTL case just by restricting

M to be a linear-time model and ϕ to be an LTL formula.

Complexity theory measures the difficulty of problems in terms of the re-

sources required to solve them. Such measure is a function of the size of the

input. The complexity of both the model checking problem and the satisfiability

problem in LTL is PSPACE-Complete [70].

2.1.4 Computational Tree Logic

Computational Tree Logic (CTL) was first introduced by Clarke and Emerson

[15] in 1981. It considers branching-time temporal models, so that there can be

multiple paths starting from one state. The language introduces symbols A and

E with meaning “for all paths”, “for some path” respectively.

Definition 2.7 (CTL Language). The language of CTL in BNF is as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | A hϕ | AϕU ψ | EϕU ψ

where p is a propositional atom.

The abbreviations ⊤,⊥,∨,→ and ↔ are defined as usual. We can define the

following abbreviations for more temporal modalities:

• E hϕ ::= ¬A h¬ϕ;

• E♦ϕ ::= E⊤U ϕ;

• A�ϕ ::= ¬E♦¬ϕ;

• A♦ϕ ::= A⊤U ϕ;

• E�ϕ ::= ¬A♦¬ϕ.
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Figure 2.5: A system of which the starting state satisfies AϕU ψ

Definition 2.8 (CTL Semantics). Given a branching-time temporal model M ,

and a state s, we have:

M , s |= p ::= p ∈ V(s)

M , s |= ¬ϕ ::= not M , s |= ϕ

M , s |= ϕ ∧ ψ ::= M , s |= ϕ and M , s |= ψ

M , s |= A hϕ ::= for all s-computation λ,M , λ[1] |= ϕ

M , s |= AϕU ψ ::= for all s-computation λ, ∃j ∈ N,M , λ[j ] |= ψ and

∀0 ≤ i < j , λ[i ] |= ϕ

M , s |= EϕU ψ ::= for some s-computation λ, ∃j ∈ N,M , λ[j ] |= ψ and

∀0 ≤ i < j , λ[i ] |= ϕ

Intuitively, A hϕ is true in s if ϕ is true in the next state of all the paths

starting from s ; AϕU ψ is true in s if for all the paths starting from s , the formula

ϕU ψ is true in s ; similarly, E is for the existence of one path. We illustrate the

idea for CTL formula AϕU ψ with Figure 2.5.

Complexity

The first algorithm for CTL model checking was presented by Clarke and Emerson

[15] in 1986. Their algorithm was polynomial in both the size of the transition

system and the length of the formula. A survey on model checking temporal logics

including CTL can be found in [16, 14]. The complexity of the model checking
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problem in CTL is PTIME-Complete, and the complexity of the staisfibility

problem in CTL is EXPTIME-Complete [16, 14].

2.1.5 Alternating-time Temporal Logic

Alternating-time Temporal Logic (ATL) was first proposed by R. Alur, T. Hen-

zinger, and O. Kupferman [5, 6]. It generalises two varieties of temporal log-

ics: linear-time temporal logic, which assumes implicit universal quantification

over all paths that are generated by system moves; and branching-time temporal

logic, which allows explicit existential and universal quantification over all paths.

ATL offers selective quantification over those paths that are possible outcomes

of games, such as the game in which the system and the environment alternate

moves.

In [31], V. Goranko and G. van Drimmelen gave a sound and complete ax-

iomatisation of ATL, and shown that when considering formulas over a fixed finite

set of players, the decidability problem is EXPTIME-Complete. ATL in [6] is

only for reasoning about complete information games, while in [85], W. van der

Hoek and M. Wooldridge extended ATL with an epistemic component, which can

deal with incomplete information games.

Language and Semantics

We introduce the language and semantics of the ATL in [6]. The key construct

in ATL is 〈〈C 〉〉Tϕ, where C is a coalition, (a set of agents), and Tϕ a temporal

formula, meaning “coalition C can act in such a way that Tϕ is guaranteed to

be true”. Temporal formulas are built using the modalities h, �, and U , where
hmeans “in the next state”, � means “always”, and U means “until”.

Definition 2.9 (ATL Language). Given a set of agents Ag, and a set of atomic

propositions Φ, the language of ATL is given in BNF as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | 〈〈C 〉〉 hϕ | 〈〈C 〉〉�ϕ | 〈〈C 〉〉ϕU ψ

where p ∈ Φ is a propositional variable and C ⊆ Ag is a set of agents.

ATL has a number of equivalent semantics; since moves, or actions, play such

a prominent role in game playing, we use Action-based Alternating Transition

Systems following [6].
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Definition 2.10 (ATL Model). An Action-based Alternating Transition System

(AATS) is a tuple

A = 〈Q , q0,Ag ,Ac1, . . . ,Acn , ρ, τ,Φ, π〉

where: Q is a finite, non-empty set of states; q0 ∈ Q is the initial state; Ag =

{1, . . . , n} is a finite, non-empty set of agents; Aci is a finite, non-empty set of

actions, for each i ∈ Ag, where Aci ∩ Acj = ∅ for all i 6= j ∈ Ag; ρ : AcAg → 2Q

is an action precondition function, which for each action a ∈ AcAg defines the set

of states ρ(a) from which a may be executed; τ : Ac1 × · · · × Acn × Q → Q is a

partial system transition function, which defines the state τ(~a , q) that would result

by the performance of ~a from state q – note that, as this function is partial, not

all joint actions are possible in all states (see the precondition function above); Φ

is a finite, non-empty set of atomic propositions; and π : Q → 2Φ is a valuation

function, which gives the set of atomic propositions satisfied in each state: if

p ∈ π(q), then this means that the propositional variable p is satisfied in state q.

It is required that AATSs satisfy the following coherence constraints: (Non-

triviality) agents always have at least one legal action – ∀q ∈ Q , ∀i ∈ Ag , ∃a ∈

Aci s.t. q ∈ ρ(a); and (Consistency) the ρ and τ functions agree on actions that

may be performed: ∀q , ∀~a = 〈a1, · · · , an〉, (~a, q) ∈ dom τ iff ∀i ∈ Ag , q ∈ ρ(ai).

Given an agent i ∈ Ag and a state q ∈ Q , we denote the options available

to i in q – the actions that i may perform in q – by options(i , q) = {a | a ∈

Aci and q ∈ ρ(a)}. For a coalition C , we define options(C , q) =
⋃

{options(i , q) |

i ∈ C }. An action profile for a coalition C = {i1, . . . , ik} ⊆ Ag in state q is a

tuple of actions 〈ac1, . . . , ack〉, where acj ∈ options(ij , q) for each j ∈ [1..k ]. We

then say that a strategy for an agent i ∈ Ag is a function σi : Q → Aci which must

satisfy the legality constraint that σi(q) ∈ options(i , q) for all q ∈ Q . A strategy

profile for a coalition C = {i1, . . . , ik} ⊆ Ag is a tuple of strategies 〈σ1, . . . , σk〉,

one for each agent i ∈ C . We denote by ΣC the set of all strategy profiles for

coalition C ⊆ Ag ; if σC ∈ ΣC and i ∈ C , then we denote i ’s component of σC by

σi
C . Given a strategy profile σC ∈ ΣC and state q ∈ Q , let out(σC , q) denote the

set of possible states that may result by the members of the coalition C acting

as defined by their components of σC for one step from q :

out(σC , q) = {q ′ | τ(~a , q) = q ′ where (~a , q) ∈ dom τ and σi
C (q) = ai for i ∈ C }
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Notice that the set out(σAg , q) is a singleton because we assume that when

all agents choses their actions, a unique outcome is determined. Also, out(·, ·)

only deals with one-step successors, and we interchangeably write out(σC , q) and

out(AcC , q), where AcC is an action profile of coalition C in state q . The idea is

that for the one-step future, a strategy carries the same information as an action.

A q0-computation is an infinite sequence of states λ = q0, q1, . . .. Given u ∈ N,

we use λ[u] as the state indexed by u in the computation λ.

Given a strategy profile σC for some coalition C , and a state q ∈ Q , we define

comp(σC , q) to be the set of possible runs that may occur if every agent i ∈ C

follows the corresponding strategy σi , starting when the system is in state q ∈ Q .

That is, the set comp(σC , q) will contain all possible q-computations that the

coalition C can “enforce” by cooperating and following the strategies in σC .

comp(σC , q) = {λ | λ[0] = q and ∀u ∈ N : λ[u + 1] ∈ out(σC , λ[u])}.

Again, note that for any state q ∈ Q and any grand coalition strategy σAg , the set

comp(σAg , q) will be a singleton, consisting of exactly one infinite computation.

Definition 2.11 (ATL Semantics). Given an AATS A and a state q, we have,

A, q |= p iff p ∈ π(q) (where p ∈ Φ);

A, q |= ¬ϕ iff A, q 6|= ϕ;

A, q |= ϕ ∧ ψ iff A, q |= ϕ and A, q |= ψ;

A, q |= 〈〈C 〉〉 gϕ iff ∃σC ∈ ΣC , such that ∀λ ∈ comp(σC , q), we have A, λ[1] |= ϕ;

A, q |= 〈〈C 〉〉�ϕ iff ∃σC ∈ ΣC , such that ∀λ ∈ comp(σC , q), we have A, λ[u] |= ϕ

for all u ∈ N;

A, q |= 〈〈C 〉〉ϕU ψ iff ∃σC ∈ ΣC , such that ∀λ ∈ comp(σC , q), there exists some

u ∈ N such that A, λ[u] |= ψ, and for all 0 ≤ v < u, we have A, λ[v ] |= ϕ.

The abbreviations ⊤,⊥,∨,→ and ↔ are defined as usual. And 〈〈C 〉〉♦ϕ
is defined as 〈〈C 〉〉⊤U ϕ. For readability, we omit set brackets in cooperation

modalities, for example writing 〈〈1〉〉 instead of 〈〈{1}〉〉.
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Complexity

The complexity of the model checking problem in ATL is PTIME-Complete [6],

and the complexity of the satisfiability problem in ATL is EXPTIME-Complete

[19, 97]. These results are based on the assumption that the game models are

given explicitly as mathematical structures. The complexity might be different if

the game models are represented differently. R. Alur [2] et al. developed a model

checking tool called MOCHA to specify and verify multi-agent systems with ATL.

In MOCHA, the game modes are represented in the form of reactive modules

and such representation is much more compact than the explicit representation.

In [80] W. van der Hoek et al. showed that the complexity of the model checking

ATL with respect to reactive modules representation could be exponential in the

size of the reactive modules and the length of the formula.

Alternating Bisimulation

We now give an equivalence relation between two AATSs, called Alternating

Bisimulation. The purpose is to characterise the AATS structures that can not

be distinguished by ATL formulas. Here by ‘distinguish’, we mean there exists an

ATL formula such that it is true in one structure but false in another structure.

The following definition is based on [4].

Definition 2.12 (Alternating Bisimulation). Let A1 = 〈Q1, q1,Ag ,Ac1
1 , . . . , Ac1

n ,

ρ1, τ1,Φ, π1〉 and A2 = 〈Q2, q2,Ag ,Ac2
1 , . . . ,Ac2

n , ρ2, τ2, Φ, π2〉 be two AATS’s.

Then a relation R ⊆ Q1 × Q2 is called an alternating bisimulation if Rq1q2 and,

for every two states t1 and t2 for which Rt1t2,we have:

• Invariance: For all p ∈ Φ, p ∈ π(t1) iff p ∈ π(t2).

• Zig: For every coalition C ⊆ Ag, and every ac1
C ∈ options(C , t1), there

exists ac2
C ∈ options(C , t2) such that for every t ′2 ∈ out(ac2

C , t2), there is a

t ′1 ∈ out(ac1
C , t1) so that Rt ′1t

′
2.

• Zag: For every coalition C ⊆ Ag, and every ac2
C ∈ options(C , t2), there

exists ac1
C ∈ options(C , t1) such that for every t ′1 ∈ out(ac1

C , t1), there is a

t ′2 ∈ out(ac2
C , t2) so that Rt ′1t

′
2.

Note that the set of agents in both structures are the same, while the actions

in both structures do not have to be the same, since in ATL, one cannot directly

refer to actions in the object language. We have:
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Theorem 2.1 ([4]). Let A1 and A2 be such that there is an alternating bisimu-

lation R between them, with Rq1q2. Then, for all ATL formulas ϕ:

A1, q1 |= ϕ ⇔ A2, q2 |= ϕ

2.2 Epistemic Logics

2.2.1 Introduction

Epistemic logic is a formalisation of knowledge. Its philosophical root can be

dated back to Ancient Greece with epistemology. While philosophers since Aris-

totle have discussed Modal Logic, it was C.I. Lewis who introduced the first

symbolic and systematic approach to the topic in 1912 (see [45]). Modal logic

continued to mature as a field, reaching its modern form in 1963 with the work

of S. Kripke [44]. Many papers were written in the 1950s on a logic of knowledge,

but it was von Wright’s book An Essay in Modal Logic (1951) [96] that is seen

as a founding document.

Hintikka’s Seminal work Knowledge and Belief [39] is the first book-length

work to suggest using modalities to capture the semantics of knowledge. Since

then, many philosophers have been interested in further developing the notions of

knowledge and belief using possible world semantics, which is also called Kripke

semantics, due to the contribution of S. Kripke [44].

In the late 1980s, there was a merge of temporal frameworks and epistemic

frameworks [33, 21]. This development was originally motivated by the need to

reason about communication protocols. One is typically interested in what dif-

ferent parties to a protocol know before, during and after a run (an execution

sequence) of the protocol. It brought multi-agent systems into perspective, as

different parties can be typically modeled as agents. This interest in change of

knowledge over time is already eminent in this area for twenty years. Fagin,

Halpern, Moses and Vardi’s seminal Reasoning about Knowledge [21] is a culmi-

nation of several earlier papers in this area, and also incorporates Halpern and

Vardi’s 1986 paper [33] The Complexity of Reasoning about Knowledge and Time.

Dynamic Epistemic Logic studies what kinds of events are responsible for

change of knowledge in a multi-agent setting. A quizmaster may publicly an-

nounce the winning lot, or whisper it in the ear of his assistant. Both result in

a change of knowledge for everybody present, although the change is different in
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either case. Where belief revision [1] is interested in describing the effect of ex-

pansion, contraction and revision of a belief set of one agent, dynamic epistemic

logic treats all of knowledge, higher-order knowledge, and its dynamics on the

same level, and it gives a fine-tuned analysis of the way the revision is brought

about, ranging from a private insight by one agent to a public announcement in

a group.

Unlike temporal epistemic logics, where the meaning of a temporal shift only

appears from the underlying model, in dynamic epistemic logic this change is

specified ‘directly’ in the dynamic operators. Starting with a few somewhat iso-

lated contributions in the late 1980s [61, 74], the area strongly developed from the

late 1990s onward [28, 10, 92]. A general theory only now and partially emerges.

We will base our treatment of dynamic epistemic logic on [92].

In the following, we will first introduce epistemic logic with its most popular

semantics: possible world semantics. Then we present two extensions of epistemic

logic, namely temporal epistemic logic, which extends it with time; and dynamic

epistemic logic, which extends it with actions, or events.

2.2.2 Basic Epistemic Logic

Possible World Model

The basic idea of possible world semantics is simple: apart from the current world,

we could consider different possible worlds; if something is known, then it must

be true in all the worlds that we consider possible. This can be illustrated by the

following example.

Example 2.2. Suppose that Alice’s forehead is painted with either a white or

black dot. But she cannot see her forehead so she does not know which color it

is; in other words, she considers both cases possible.

Here we give a formal definition.

Definition 2.13 (Possible World Model). Given a set of atomic propositions P

and a set of n agents, a possible world model is a tuple 〈W ,R1, · · · ,Rn , π〉, where

W is a finite non-empty set of worlds(states), Ri is a binary relation, and π is a

valuation function from W to ℘(P).

Possible World Models are also called Kripke Models. Let us go back to

Example 2.2. In Figure 2.6 is a graphic representation of the Kripke model
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associated with this example. We have two possible worlds: one is indicated by a

black dot, the other by a white dot. The white-dot world is underlined, indicating

the current world. Alice considers that the other world is also possible, indicated

by the arrow from right to left. Of course, Alice also considers the current world

possible, so there is a reflexive arrow on it. Moreover she could imagine that

she could be in the other world, therefore we have a reflexive arrow on the

black-dot world, and a left-to-right arrow as well. In other words, Alice could

not distinguish these two worlds, which, as we call, are in a same equivalence

class. Suppose, we have a proposition p that says “Alice has a white dot on the

forehead”. It is easy to see that p is true in the white-dot world, and false in the

black-dot world. Accordingly in Figure 2.6, the white-dot world is labelled with

p indicating p is true in this world.

b bc p

Figure 2.6: A Kripke model for Example 2.2

Language and Semantics

Definition 2.14 (EL Language). Given a set of agents Ag, the language of Epis-

temic Logic (EL) is as follows, in BNF,

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kiϕ | CBϕ

where, i ∈ Ag, B ⊆ Ag.

Since we consider Multi-Agent Systems, we assume there are always two or

more agents in Ag , i.e. |Ag| ≥ 2.

Definition 2.15 (EL Semantics). Given a Kripke model 〈W ,R1, · · · ,Rn , π〉, and

a possible world w, we have:
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M ,w |= p ::= p ∈ π(s)

M ,w |= ¬ϕ ::= not M ,w |= ϕ

M ,w |= ϕ ∧ ψ ::= M ,w |= ϕ and M ,w |= ψ

M ,w |= Kiϕ ::= for all v ∈ W such that wRiv ,M , v |= ϕ

M ,w |= CBϕ ::= for all v ∈ W such that wR∗
Bv ,M , v |= ϕ

where R∗
B is the transitive and reflexive closure of

⋃

i∈B Ri .

Similar to the relations in temporal models, the relation R in a Kripke model

can also have more constraints. Here we mention three:

• Reflexivity: ∀x (xRx );

• Symmetry: ∀xy(xRy → yRx );

• Transitivity: ∀xyz (xRy ∧ yRz → xRz ).

For any relation R, if reflexivity, symmetry and transitivity all hold, then we

call R an S5 relation, or an equivalence relation. In the rest of this thesis, we

give S5 relations a special symbol ‘∼’. It will be specifically used in the models

of knowledge.

Complexity

The complexity of the model checking problem in EL is PTIME-Complete and

the complexity of the satisfiability problem in EL is EXPTIME-Complete [35].

2.2.3 Temporal Epistemic Logic

The central notion in the work of Fagin et al. [21], is that of an interpreted system.

When compared to Kripke (possible worlds) models, interpreted systems have at

least two appealing features: a natural accessibility relation between domain

objects, that can be summarised as ‘each agent knows its own state’, and an

equally natural notion of dynamics, modelled by runs. The accessibility relation

as we know it from the possible worlds model is in this case grounded; it has a

direct and natural interpretation, as follows. In an interpreted system, the role of



2.2. EPISTEMIC LOGICS 41

possible worlds is performed by global states, which are constituted by the agents’

local states and the state of the environment. Each agent knows exactly its own

local state: two global states are indistinguishable for an agent if his local states

are the same. Secondly, an interpreted system defines a number of runs through

such global states (i.e. a sequence of global states). Each run corresponds to a

possible computation allowed by a protocol. In an object language with temporal

and epistemic operators one can then express temporal properties such as liveness

(i.e. something will eventually happen), and temporal epistemic properties such

as perfect recall (i.e. the agents remember what have happened).

The temporal epistemic logic proposed in [21] is based on linear-time struc-

tures. Rather than linear-time, one may consider branching time logic, and apart

from synchrony (i.e. the agents know what the time is) and perfect recall, one

may consider properties with or without assuming a unique initial state, and with

or without the principle of no learning (i.e. the agent will not learn anything that

will allow him to distinguish two states that he could not distinguish before).

Varying only these parameters already yield 96 different logics: for a comprehen-

sive overview of the linear case we refer to [32], and for the branching time case,

to [87]. Moreover, apart from the interpreted systems stance there have been

several other and related approaches to knowledge and time, like the distributed

processes approach of Parikh and Ramanujam [56].

Interpreted System

We formally define an interpreted system I for n agents.

Definition 2.16 (Interpreted System). A global state s is a tuple s = (se , s1, . . . , sn)

where se is the state of the environment and where for i = 1 . . .n, si is the local

state of agent i . The set of global states of interest will be denoted G. A run

over G is a sequence of states, or, rather, a function r from time N to global

states. The pair (r ,m) consisting of a run and a time point is also referred to as

a point. Let r(m) = s be the global state at time m in run r, then with ri(m)

we mean local state si . An interpreted system I = (R, π) over G is a system

R of runs over a set G of global states with a valuation π which gives (r ,m) a

subset of atoms in Q that are true in (r ,m). Two points (r ,m) and (r ′,m ′) are

indistinguishable for i , written (r ,m) ∼i (r ′,m ′), if ri(m) = r ′
i (m

′).

With the definition of interpreted systems, we can formally define perfect recall

and synchrony. Perfect recall means that if the agent considers run r ′ possible at
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the point (r , n), in that there is a point (r ′, n ′) that the agent cannot distinguish

from (r , n), then the agent must have considered r ′ possible at all times in the past

(i.e., at all points (r , k) with k ≤ n). Synchrony means that if agent considers

a point (r ′, n ′) possible at the point (r , n), then these two points must have the

same clock value, i.e. n ′ = n.

Language and Semantics

Definition 2.17 (TEL Language). Given a set of agents Ag, the language Tem-

poral Epistemic Logic TEL is as follows, in BNF,

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kiϕ | CBϕ | hϕ | ϕU ψ

where, i ∈ Ag, B ⊆ Ag

We interpret the language of LTL over the synchronous interpreted systems,

which are the interpreted systems satisfying synchrony property. The reason to

use synchrony is that the interpreted systems we are going to use in the following

chapters will be synchronous. Please refer to [21] for a more general semantics.

Definition 2.18 (TEL Semantics over Synchronous Interpreted Systems ). Given

a synchronous interpreted system I, a run r, and a time point m, we have:

(I, r ,m) |= p ::= p ∈ π(r(m))

(I, r ,m) |= ¬ϕ ::= not (I, r ,m) |= ϕ

(I, r ,m) |= ϕ ∧ ψ ::= (I, r ,m) |= ϕ and (I, r ,m) |= ψ

(I, r ,m) |= Kiϕ ::= for all runs r ′ such that r ′
i (m) = ri(m) : (I, r ′,m) |= ϕ

(I, r ,m) |= CBϕ ::= for all runs r ′ such that there is a line of runs r 0, r 1 · · · r k

r 0 = r , r k = r ′, ∀j∃i ∈ B(r j
i (m) = r j+1

i (m)) : (I, r ′,m) |= ϕ

(I, r ,m) |= hϕ ::= (I, r ,m + 1) |= ϕ

(I, r ,m) |= ϕU ψ ::= ∃m ′ ≥ m : (I, r ,m ′) |= ψ and ∀m ≤ m ′′ < m ′ : (I, r ,m ′′) |= ϕ

Complexity

The complexity of model checking problem in TEL is PSPACE-Complete [95].

For more results on temporal epistemic model checking, refer to [84, 83, 46, 80].
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The complexity of satisfiability problem in TEL over the synchronous interpreted

system is EXPTIME-Complete [33]. The complexity of satisfiability of several

temporal epistemic logics allowing the combination of different properties such as

synchrony, perfect recall, no learning etc are discussed in [33].

2.2.4 Dynamic Epistemic Logic

Our treatment of Dynamic Epistemic Logic (DEL) is based on [92]. The main

new features introduced, compared to epistemic logic, are in two aspects. The

first is in syntax; it adds a new type of modality, called action modalities, which

allows us to express properties with actions explicitly. The second relates to the

semantics; it adds a new semantic structure called action models.

Language

Definition 2.19 (DEL Language). The logical language LDEL of Dynamic Epis-

temic Logic is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ψ) | Kiϕ | CBϕ | [M,w]ϕ

where q is a propositional atom, i is an agent, and B is a group of agents.

Semantics

To capture a static view of a multi-agent system, we use state models. They are

essentially possible world models. Here is the formal definition.

Definition 2.20 (State Model). A state model M for n agents is a structure

〈W ,∼1, · · · ,∼n , π〉

where W is a finite non-empty set of states, ∼i is an equivalence relation on W ,

and π is a valuation function from W to ℘(P).

The introduction of action models is based on this insight: just like agents

have uncertainty about possible worlds, they can also have uncertainty about

possible actions. Moreover, instead having valuation for worlds, we can have

preconditions to actions, indicating the conditions that they could be executed.
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Definition 2.21 (Action Model). An action model M for n agents is a structure

〈W,∼1, . . . ,∼n , pre〉

where W is a finite non-empty set of action points, ∼i is an equivalence relation

on W, and pre : W → LDEL is a precondition function that assigns a precondition

pre(w) to each w ∈ W.

Let MOD be the class of state models and ACT the class of LDEL models.

Then LDEL-update is an operation of the following type:

⊗ : MOD × ACT → MOD.

The operation ⊗ and the truth definition for L are defined by mutual recursion,

as follows.

Definition 2.22 (Update, Truth). Given a state model M and an action model

M, we define

M ⊗ M

as

(W ′,R′, π′),

where

W ′ ::= {(w ,w) | w ∈ WM ,w ∈ WM,M |=w pre(w)},

π′(w ,w) ::= πM (w),

(w ,w) ∼i (w ′,w′) ∈ R′ ::= w ∼i w ′ ∈ RM ,w ∼i w′ ∈ RM,

and where the truth definition is given by:

M ,w |= p ::= p ∈ VM (w)

M ,w |= ¬ϕ ::= not M ,w |= ϕ

M ,w |= ϕ ∧ ψ ::= M ,w |= ϕ and M ,w |= ψ
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M ,w |= Kiϕ ::= for all w ′with w ∼i w ′ M ,w ′ |= ϕ

M ,w |= CBϕ ::= for all w ′with w ∼∗
B w ′ M ,w ′ |= ϕ

M ,w |= [M,w]ϕ ::= M ,w |= pre(w) implies M ⊗ M, (w ,w) |= ϕ

where ∼∗
B is the reflexive and transitive closure of

⋃

i∈B ∼i .

Public Announcement Logic

A public announcement is an action which informs the whole group of agents

with a public message. Public Announcement Logic (PAL) is an extension of

standard multi-agent epistemic logic with dynamic modal operators to model

the effects of public announcements. It was originally proposed by Plaza [61].

Plaza used a different notation, without dynamic modal operators, and did not

incorporate common knowledge. Later milestones, with common knowledge and

also involving further generalizations, are by Gerbrandy et al. [28] and Baltag et

al. [10].

Here we treat PAL as a special case of DEL, since the public announcements

can be modelled using action models. In the following, we give the language of

PAL and its semantics.

Definition 2.23 (PAL Language). The language of Public Announcement Logic

is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ψ) | Kiϕ | CBϕ | [ϕ]ψ

where q is a propositional atom, i is an agent, and B is a group of agents.

Like the language of DEL, the language of PAL is also interpreted over state

models. Moreover, a singleton action model with universal access for all agents

represents a public announcement. To be more specific, an action model

(M0,w0) = (〈{w0},∼1, · · · ,∼n , pre〉,w0)

where ∼i= {(w0,w0)} for 1 ≤ i ≤ n and pre(w0) = ϕ, represents a public

announcement of ϕ. In DEL, formula [M0,w0]ψ stands for ‘after executing action

(M0,w0) it holds that ψ’; while in PAL, formula [M0,w0]ψ stands for ‘after public
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announcement of ϕ it holds that ψ’. We simplify the representation of [M0,w0]ψ

to [ϕ]ψ.

For the semantics, it basically follows from that of the DEL. We only mention

the case with [ϕ]ψ.

M ,w |= [ϕ]ψ ::= M ,w |= ϕ implies M ⊗ M0, (w ,w0) |= ϕ

where (M0,w0) = (〈{w0},∼1, · · · ,∼n , pre〉,w0) with ∼i= {(w0,w0)} for 1 ≤ i ≤ n

and pre(w0) = ϕ.

Complexity

As for as I know, the complexities of the model checking and satisifibility problems

in DEL are still under investigation, but some concrete results in PAL have been

made. In [48], C. Lutz showed that the complexity of the satisifibility problem

in PAL is EXPTIME-Complete.

2.3 Summary

This chapter provided a logical background for the work that is going to be pre-

sented. It first introduced temporal logics from a single-agent perspective and a

multi-agent perspective. From the single-agent perspective, Linear-time Tempo-

ral Logic (LTL) and Computational Tree Logic (CTL) were introduced. From the

multi-agent perspective, Alternating-time Temporal Logic (ATL) was introduced.

It then turned to epistemic logics, which are the logical frameworks of knowledge.

Epistemic Logic (EL) was firstly introduced to deal with the agents’ knowledge

and higher-order knowledge, including common knowledge. Two extensions of EL

were then introduced. One is Temporal Epistemic Logic (TEL), which models the

temporal changes of a system in addition to the agents’ knowledge. The other is

Dynamic Epistemic Logic (DEL), which also models the changes of a system but

through actions. Chapter 3 and 4 will be related to ATL; Chapter 5 and 6 will

be related to TEL and DEL.



Chapter 3

Bridging GDL and ATL

3.1 Introduction

Game playing competitions, particularly between humans and computers, have

long been part of the culture of artificial intelligence. Indeed, the victory of Deep

Blue over then world champion chess player Gary Kasparov in 1997 is regarded

as one of the most significant events in the history of AI. However, a common

objection to such specialised competitions and dedicated game playing systems

is that they explore only one very narrow aspect of intelligence and rationality.

To overcome these objections, in 2005 AAAI introduced a general game playing

competition1, intended to test the ability to play games in general, rather than

just the ability to play a specific game [59, 26]. Participants in the competition

are computer programs, which are provided with the rules to previously unknown

games during the competition itself; they are required to play these games, and

the overall winner is the one that fared best overall. Note that the participant

programs were required to interpret the rules of the games themselves, without

human intervention or interpretation. The Game Description Language (GDL) is

a special purpose, computer processable language, which was developed in order

to define the games played by participant programs. Thus, a participant must be

able to interpret game descriptions expressed in GDL, and then play the game

autonomously.

Since GDL is a language for defining games, it seems very natural to investi-

gate the problem of reasoning about games defined in GDL. Just as the designer

of a computer communications protocol might want to use model checking tools

1URL: http://games.stanford.edu

47
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to investigate the properties of the protocol (ensure it is deadlock-free, etc [16]),

so the GDL game designer will typically want to investigate the properties of

games. In addition to checking protocol-like properties such as deadlock-freeness,

the fact that GDL is used for describing games suggests a whole new class of

properties to check: those relating to the strategic properties of the game being

defined, such as the properties showing whether a particular agent or a coalition

of agents have a strategy to win.

One formalism for reasoning about games that has attracted much interest is

Alternating-time Temporal Logic (ATL) (see Section 2.1.5). The basic construct

of ATL is the cooperation modality, 〈〈C 〉〉ϕ, where C is a collection of agents,

meaning that coalition C can cooperate to achieve ϕ; more precisely, that C

have a winning strategy for ϕ. ATL has been widely applied to reasoning about

game-like multi-agent systems in recent years, and has proved to be a powerful

and expressive tool for this purpose [6, 30, 57, 58, 86, 81].

The aim of this chapter is to make a concrete link between ATL and GDL.

Specifically, it shows that GDL descriptions can be interpreted as specifications

of an ATL model, and that ATL can thus be interpreted over GDL descriptions.

This chapter is structured as follows. In Section 3.2, we introduce the Game

Description Language, and the construction of game models from GDL descrip-

tions. In Section 3.3, we show it is possible to translate a propositional GDL

description into an ATL formula that is equivalent up to alternating-bisimulation,

and which is only polynomially larger than the original GDL description. As a

corollary, we are able to characterise the complexity of ATL reasoning about

propositional GDL games: the problem is EXPTIME-Complete.

3.2 Game Description Language and Game Mod-

els

GDL is a specialised language, intended2 for defining games [26]. A game de-

scription must define the states of the game, a unique initial state, and the players

in the game (“roles” in GDL parlance). For every state and every player, the

game description must define the moves (a.k.a. actions) available to that player

in that state, as well as the state transition function of the game – how moves

2Please note that GDL can also be used as a specification language for a large class of
multi-agent environments (see [68]).
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01 (role xplayer)

02 (role oplayer)

03 (init (cell 1 1 b))

...

11 (init (cell 3 3 b))

12 (init (control xplayer))

13 (<= (next (cell ?m ?n x))

14 (does xplayer (mark ?m ?n))

15 (true (cell ?m ?n b)))

...

28 (<= (next (control oplayer))

29 (true (control xplayer)))

30 (<= (row ?m ?x)

31 (true (cell ?m 1 ?x))

32 (true (cell ?m 2 ?x))

33 (true (cell ?m 3 ?x)))

...

54 (<= (legal ?w (mark ?x ?y))

55 (true (cell ?x ?y b))

56 (true (control ?w)))

57 (<= (legal oplayer noop)

58 (true (control xplayer)))

...

61 (<= (goal xplayer 100)

62 (true (line x)))

...

77 (<= terminal

78 (line x))

79 (<= terminal

80 (line o))

81 (<= terminal

82 (not open))

Figure 3.1: A fragment of a game in the Game Description Language

transform the state of play. Finally, it must define what constitutes a win, and

when a game is over. The approach adopted by GDL is to use a logical definition

of the game. We introduce GDL by way of an example (Figure 3.1): a version

of “Tic-Tac-Toe” . In this game, two players take turns to mark a 3 × 3 grid,

and the player who succeeds in placing three of its marks in a row, column, or

diagonal wins.

GDL uses a prefix rule notation based on LISP. The Tic-Tac-Toe game

in Figure 3.1 consists of 82 lines. The first two lines, (role xplayer) and

(role oplayer), define the two players in this game. The following init lines

(lines 03-12) define facts true in the initial state of the game (all the cells are

blank, and xplayer has the control of the game). The following rule (line 13-15)

defines the effect of making a move: if cell(m, n) is blank (cell ?m ?n b), and

xplayer marks it, then in the next state, it will be true that cell(m, n) is marked

by x: (cell ?m ?n x). The next rule (line 28-29) says that if the current state

is under the control of xplayer, then the next state will be under the control of

oplayer. Lines 30-33 define what it means to have a row of symbols (we omit a

number of related rules). The legal rule (line 54-56) defines when it is legal for

a player ?w to perform a mark action. The goal rule (line 61-62) defines the aim

of the game: it says that the xplayer will get a reward of 100 if it brings about

a line marked by x. The final, terminal rules (line 77-82) define when the game

has ended.

Overall, a GDL description consists of a list of such rules, and the semantics

of these rules are similar to logic programming languages. Certain operators in

a GDL description have a special meaning: role (used to define the players
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of the game); init (defining initial facts); legal (defining pre-conditions for

actions); and goal (defining rewards for agents). An additional operator, true,

is sometimes used, to make explicit that a particular expression should be true

in the current state of the game.

While GDL in [26] permits predicates such as (cell ?m ?n b), we simplify this

by allowing only nullary predicates, i.e. propositions. We can do this via instan-

tiation of the predicates, i.e. replacing variables with their values. For example,

variables like ?m, ?n are replaced by elements in their domain {1, 2, 3}. Thus

(cell ?m ?n b) is instantiated as (cell 1 1 b), (cell 1 2 b), · · · , (cell 3 3 b).

It is easy to see that the rule in (line 13-15) is replaced by 9 rules with no

predicates, and in general, there will inevitably be an undesirable blow-up in the

number of rules when translating from arbitrary predicate form; nevertheless, the

translation is possible, a point that is implicitly used in what follows. We refer

to (cell 1 1 b) as a nullary predicate, or an atomic proposition. We will refer to

our fragment of GDL as propositional GDL in the remainder of this thesis.

In what follows, we will formally define the interpretation of GDL descrip-

tions with respect to game models. As GDL is based on Datalog, a logical

programming language, we begin by introducing Datalog.

3.2.1 Datalog Programs

Datalog is a query and rule language for deductive databases that, syntactically,

is a subset of Prolog [17]. GDL uses Datalog as a basis to specify game rules.

As we mentioned above, we deal with propositional GDL. Accordingly we only

introduce the propositional fragment of Datalog. We will give the syntax and

semantics of Datalog rules, and then illustrate how to build a game model from

a GDL description, based on the Datalog semantics.

Definition 3.1 (Datalog: Language, Rules and Programs). The basic unit of

the Datalog Language consists of a set of atomic propositions Π = {p, q , . . .}.

Let ℓ(Π) be the set of literals over Π: ℓ(Π) = Π ∪ {¬p | p ∈ Π}.

A Datalog rule is of the form (⇐ p, ℓ1, . . . , ℓn) where p ∈ Π and ℓi ∈

ℓ(Π) (i ≤ n). If the displayed rule is called r , we call p its head (p = hd(r)) and

the body of r , bd(r), is the set {ℓ1, . . . , ℓn}. Note that a body can be empty.

A Datalog Program is a set of Datalog rules.
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Definition 3.2 (Dependency Graphs for Datalog Programs). Let a Datalog

program ∆ be given. Its Dependency Graph DG(∆) is a labelled directed graph

〈Π, lab+, lab−〉, where

• Π is the set of atoms in ∆; Each atom serves as a node in the graph.

• lab+(p, h) (i.e. an edge from p to h labelled with +) iff there is a rule r ∈ ∆

with h = hd(r) and p ∈ bd(r).

• lab−(p, h) iff there is a rule r ∈ ∆ with h = hd(r) and ¬p ∈ bd(r).

A model for a Datalog program is a set of atomic propositions.

Definition 3.3 (Models for Datalog Programs). Given a Datalog program

∆, Σ ⊆ Π is a model of ∆ if and only if it satisfies the following conditions:

• if (⇐ p) ∈ ∆, then p ∈ Σ;

• if (⇐ p, bd) ∈ ∆ and pos(bd) ⊆ Σ and neg(bd)∩Σ = ∅, then p ∈ Σ, where

pos(bd) is the set of positive literals in bd and neg(bd) is the set of negative

literals.

Notice that there can be several models for a given Datalog program. For

example, the program {(⇐ p, q), (⇐ q ,¬p)} has two models: {p} and {p, q}.

But for some Datalog programs, there is a unique model.

Definition 3.4 (Stratified and Acyclic Datalog Programs). A Datalog pro-

gram ∆ is called stratified if its dependency graph DG(∆) contains no cycles with

a “−” label. An atom p is said to be in stratum i ∈ N if the maximum number

of edges labelled “−” on any path ending at p ∈ DG(∆) is i . A rule r ∈ ∆ is

of stratum i if hd(r) is in stratum i. A Datalog program ∆ is called acyclic if

DG(∆) contains no cycles.

Definition 3.5 (Datalog Semantics). Given a stratified Datalog program ∆,

we define its model s = DPMod(∆) as follows. First of all, let t0 = {p | (⇐

p) ∈ ∆}. Suppose ti is defined, initialise si to ti and, as long as there is a rule

(⇐ p, ℓ1, . . . , ℓn) in stratum i such that si |= ℓ1 ∧ · · · ∧ ℓn , add p to si . After this,

put ti+1 = si . If the maximum stratum of ∆ is k , put s = tk+1.

Stratification guarantees that, when computing a model for ∆, whenever we

have a literal ¬q in the body of a rule r , we will consider all rules r ′ with hd(r ′) =
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q before considering r . ∆ is acyclic iff there is a level mapping f : ℓ(Π) → N for

which f (p) = f (¬p) and for every rule (⇐ p, ℓ1, . . . , ℓn) in ∆, f (p) > f (ℓi), for

all i ≤ n.

Theorem 3.1 ([8]). The model s defined in Definition 3.5 is a unique model for

∆, and it does not depend on the particular stratification.

Definition 3.6 (Completion of ∆). Given an acyclic Datalog program ∆, the

completion of ∆ is a set of formulas CP(∆) as follows. Let the definition D(∆, p)

of p be the set of rules r in ∆ for which hd(r) = p. Then let

cp(p) = (p ↔
∨

r∈D(∆,p)

∧

bd(r))

where bd(r) = {ℓ1, · · · , ℓn} and
∧

bd(r) = ℓ1 ∧ · · · ∧ ℓn; for every empty body

bd(r),
∧

bd(r) = ⊤. Note that, if p does not occur as a head in any rule in

∆, we have cp(p) = ¬p. Finally, the Clark completion CP(∆) of a Datalog

program ∆ over Π is simply {cp(p) | p ∈ Π}.

Theorem 3.2. Let ∆ be an acyclic program, and Π be the set of atoms in ∆.

For all p ∈ Π, we have

p ∈ DPMod(∆) iff CP(∆) |=cl p,

where DPMod(∆) is the unique model of the stratified program ∆, and the set

CP(∆) is the Clark completion of ∆ and |=cl denotes consequence in classical

logic.

3.2.2 GDL Game Descriptions

We now formally define GDL game descriptions.

Definition 3.7 (GDL Syntax). Let a primitive set of proposition symbols Prim =

{p̂, q̂ · · · }, a set of agents Ag, a set of actions Ac, a set of strings S , and a set of

integers [0..100] be given. The set of atomic propositions of GDL, AtGDL, is the

minimal set satisfying the following conditions: Prim ⊆ AtGDL; a special atom

terminal ∈ AtGDL; for two strings s1, s2 ∈ S, (distinct s1 s2) ∈ AtGDL; for

every agent i ∈ Ag and action a ∈ Ac, (legal i a) ∈ AtGDL; for every agent i

and an v integer in [0..100]), (goal i v) ∈ AtGDL.
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The set of atomic expressions AtExprGDL of GDL, is the minimal set satis-

fying the following conditions:

• for p ∈ AtGDL, {p, (init p), (next p), (true p) } ⊆ AtExprGDL;

• for every agent i and action a, { (role i), (does i a)} ⊆ AtExprGDL.

LitAtGDL is {p, (true p), (not p), (not (true p)) | p ∈ AtGDL}. LitExprGDL is

AtExprGDL ∪ LitAtGDL.

A game description specifies the atoms from AtGDL that are true, either in

the initial state, or as a result of global constraints, or as the effect of performing

some joint actions in a given state.

Definition 3.8 (GDL Game Descriptions). A GDL game description Γ is a set

of Datalog rules r of the form 3 (⇐ (h)(e1) . . . (em)) where h, the head hd(r) of

the rule, is an element of AtExprGDL and each ei (i ∈ [1..m]) in the body bd(r) of

r is a literal expression from LitExprGDL. If m = 0, we say that r has an empty

body. We can split every game description Γ into four different types of rules

where:

• Γrole contains all claims of the form (⇐ (role x)). They specify the agents

in the game.

• Γinit is a set of initial rules of the form (⇐ (init p)), which has an empty

body and its head represent an initial constraints of the game.

• Γglob is a set of global rules of the form (⇐ (p) (e1) . . . (em)), where

p ∈ AtGDL and each body ei (i ∈ [1..m]) is from LitAtGDL.

• Γnext is a set of next rules of the form (⇐ (next p)(e1) . . . (em)) where each

ei(i ∈ [1..m]) is from LitAtGDL or of the form (does i a).

3.2.3 GDL Game Models

Given a GDL game description, we specify how to compute the corresponding

game model. In general, a game model can be seen as a game tree, where a set of

nodes represent states of the game, and a labelled edge from one state to another

3We do not allow disjunction in the body of a GDL rule as in [26]. A rule like (⇐ (h)(e1∨e2))
can be replaced by its equivalence, two rules (⇐ (h)(e1)) and (⇐ (h)(e2)).
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represents a transition from one state to another caused by the performance of

actions/moves by players.

We will shortly consider how to compute such game states from game descrip-

tions.

For the description of Game Models G , our approach is equivalent to that of

[26]. Instead of roles we will refer to a set Ag = {1, . . . , n} of agents or players.

Given the set of atomic propositions AtGDL, a Game Model is a structure:

G = 〈S , s0,Ag ,Ac1, · · · ,Acn , τ, π〉

where S is a set of game states; s0 ∈ S is the initial state of G ; Ag denotes the

set of agents, or players in the game; Aci is the set of possible actions or moves

for agent i ; τ : Ac1 × · · · × Acn × S → S is such that τ(〈a1, . . . , an〉, s) = u,

means that if in game state s , agent i chooses action ai , (i ≤ n), the system will

change to its successor state u – we require all states, except the initial state,

have only one predecessor; and finally, π : S → 2AtGDL is a valuation function,

which associates with each state the set of atomic propositions in AtGDL that are

true in that state. We will often abbreviate an action profile 〈a1, . . . , an〉 to ~a.

(Note that we do not include the subset T ⊆ S included in the game models of

[26]. This subset is supposed to denote the terminal states: we can obtain this

set in G by simply collecting all the states that satisfy terminal.)

Now we specify when a game model G is a model for a game description Γ;

this makes precise the informal description of [26], and in fact represents a formal

semantics for GDL.

We compute the game model GMod(Γ) for a game description Γ as follows.

The main idea is that every state s ∈ S of GMod(Γ) is associated with the

unique model under the stratified semantics of some Datalog Program ∆ that is

derived from Γ. In particular, let δ(Γglob) be derived from Γglob by replacing every

occurrence of true p by p. Since we assume that ∆ does not contain init or next

in any body of any rule, δ(Γglob) is indeed a Datalog Program. Also, let δ(Γinit)

be {⇐ p | (⇐ init p) ∈ Γinit}. The set Ag of agents, and Aci of actions for agent

i in GMod(Γ) are immediately read off from Γ: Ag = {i | (⇐ (role i)) ∈ Γrole}

and Aci = {a | (legal i a) occurs in Γ}.

In the following, we construct S , τ , and π step by step.
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• First, we define the initial state s0. Put

π(s0) = DPMod(δ(Γinit) ∪ δ(Γglob))

• Next, suppose a game state s ∈ S has already been defined. If this is not

a terminal state, i.e. terminal 6∈ π(s), each agent should have at least one

legal action available. An action ai is legal for agent i in state s , if and only

if (legal i ai) ∈ π(s). If terminal 6∈ π(s), we define, for every profile of

legal actions 〈a1, · · · , an〉, a successor u of s by first computing the atoms

that need to be true due to Γnext.

FΓ(〈a1, . . . , an〉, s) = {⇐ p | ∃ (⇐ (next p) (e1) · · · (em)) ∈ Γnext&

π(s) ∪ {(does i ai) | i ∈ Ag} |=cl e1 ∧ · · · ∧ em}

So, FΓ(〈a1, . . . , an〉, s) computes those atoms that need to be true in the

next state (the F is for ‘forward’), given that each agent i performs ai .

Now we add:

u = τ(〈a1, . . . , an〉, s) & π(u) = DPMod(FΓ(〈a1, . . . , an〉, s) ∪ δ(Γglob))

• Iteration: we repeat the above procedure to all the descendants of the initial

state, until we reach all the terminal states.

Note that atoms of the form (does i ai) are not added to the game model

GMod(Γ), as they are only used to calculate different successors for a given game

state s . So, they incorporate a kind of hypothetical reasoning of the form: “sup-

pose player i were to do ai , what would be the resulting next state?”

We illustrate the above procedure partially by the following example related

to Tic-Tac-Toe.

Example 3.1. Suppose that we already have a propositional version of the GDL

description presented in figure 3.1, i.e. all the variables have been instantiated. As

(control xplayer) ∈ δ(Γinit), we use Γglob and get (legal xplayer (mark 1 1))

∈ π(s0), and (legal oplayer noop) ∈ π(s0). We also see that terminal 6∈ π(s0),

because the bodies of all the global rules with head terminal cannot be satisfied.

Thus we have an action profile ~a = 〈mark 1 1, noop〉. It is easy to verify that

(cell 1 1 x) and (control oplayer) ∈ FΓ(~a , s0), due to the next rules.
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We can now compute a game model from a GDL game description. Next we

give meanings to the literal atomic propositions in LitAtGDL and the GDL rules

with respect to such game models.

Definition 3.9 (GDL Semantics). Let G = 〈S , s0,Ag ,Ac1, · · · ,Acn , τ, π〉 be a

game model derived from a game description Γ. Let {i1, . . . , ik} = Ag ′ be a set

of agents ⊆ Ag, each ix with an action ax (x ≤ k). Then we say that t is an

i1 : a1, . . . , ik : ak successor of s if there is a choice for any agent j in Ag \ Ag ′

for an action bj from Acj such that τ(〈c1, . . . , cn〉, s) = t, where cv = ax if

v = ix ∈ Ag ′, and cv = bj if v = j ∈ Ag \ Ag ′. For any state s ∈ S, p ∈ AtGDL,

we have:

• G , s |=GDL p iff p ∈ π(s);

• G , s |=GDL not p iff G , s 6|=GDL p;

• G , s |=GDL true p iff G , s |=GDL p;

• G , s |=GDL not (true p) iff G , s 6|=GDL true p;

and, for any rules in Γinit ∪ Γglob ∪ Γnext, we have,

• G |=GDL (⇐ (init p)) iff G , s0 |=GDL p;

• G |=GDL (⇐ (p) (e1) . . . (em)) iff ∀s : (∀i ∈ [1..m] : G , s |=GDL ei) ⇒

G , s |=GDL p;

• G |=GDL (⇐ (next p)(e1) . . . (em)(does i1 a1) . . . (does ik ak)) iff ∀s , t :

(∀i ∈ [1..m] : G , s |=GDL ei and t is an i1 : a1, . . . ik : ak successor of s)

⇒ G , t |=GDL p.

Note that we do not interpret the rules in Γrole as the agents are already fixed

with the game model.

3.3 Linking GDL and ATL

From previous sections, we can see that GDL and ATL are intimately related

at the semantic level: GDL is a language for defining games, while ATL gives

a language for expressing properties of such games. The difference between the

two languages is that GDL takes a relatively constructive, internal approach to
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GΓ AΓTsem

ΓGDL ΓATLTsyn

has unique
GDL model

has bisimilar
ATL models

Figure 3.2: The relation between a GDL description of a game ΓGDL and its
related ATL-theory ΓATL.

a game description, essentially defining how states of the game are constructed

and related by possible moves. In contrast, ATL takes an external, strategic view:

while it seems an appropriate language with which to express potential strategic

properties of games, it is perhaps not very appropriate for defining games.

In this section, we answer the following question: how complex is it to interpret

a property, represented by an ATL formula, over a game represented by a GDL

description? We do this by building two links between GDL and ATL:

• On the semantic level, every GDL description Γ has an ATL model associ-

ated with it.

• On the syntactic level, every GDL description Γ has an ATL theory associ-

ated with it.

Let us now be more precise about the links between GDL and ATL (see

Figure 3.2). We start from any game G with GDL description ΓGDL. On the

semantic level, we use stratified semantics and the tree representation of [26] to

construct a unique model GΓ from ΓGDL. This model has a natural associated

ATL-model AΓ = Tsem(GΓ). In Section 3.3.1, we will show Tsem . On the syntactic

level, we provide a translation Tsyn that transforms the GDL specification ΓGDL

into an ATL theory ΓATL = Tsyn(ΓGDL). In Section 3.3.2, we will describe our

tool that implements Tsyn . We further show that this transformation is correct,

in the following sense: all ATL-models satisfying ΓATL are bisimilar to AΓ. So

ΓATL can be said to characterise the ATL-theory of the game G . And, one has, for

any GDL-formula γ, that GΓ |=GDL γ iff Tsem(GΓ) |=ATL Tsyn(γ), where |=GDL

denotes the semantics of GDL and |=ATL denotes the semantics of ATL.
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We now explore these two links in more detail.

3.3.1 Tsem: From GDL Game Models to ATL Game Mod-

els

Suppose that we have already constructed a game model G from a GDL descrip-

tion Γ, using the methods in Section 3.2.3. It is not yet possible to interpret an

ATL formula on this model G . In this section, we transform G into an AATS,

the ATL game structure on which we can interpret ATL formulas.

Given a GDL game model G = 〈S , s0,Ag ,Ac1, · · · ,Acn , τ, π〉 and a set of

atomic propositions AtGDL, we can define an associated AATS, AG = 〈Q , q0,Ag ,

Ac1 ∪ {fin1}, . . . ,Acn ∪ {finn}, ρ, τ
′,Φ, π′〉, with the same sets of agents Ag such

that Φ is constructed from AtGDL in the following manner.

Definition 3.10 (Translation t and told ). Define a translation t : AtGDL → AtATL,

where we associate every atom in AtGDL with an atom in AtATL.

t(p̂) ::= p̂ t(goal i v) ::= goal(i , v)

t(legal i a) ::= legal(i , a) t(terminal) ::= terminal

t(distinct s1 s2) ::= distinct(s1 , s2 )

Let told be as follows: told (p) ::= pold .

We add four types of atomic propositions to Φ.

i. atoms representing the current state of the game: for every p in AtGDL, add

t(p) to Φ.

ii. atoms representing the previous state of the game: for every p in AtGDL,

add told (p) to Φ.

iii. atoms representing actions that are done in the transition from previous

state to current state: add atom done(i , a) to Φ for each (does i a).

iv. atoms distinguishing the initial and end states of the game: add init for

initial state and a special atom z⊥. It denotes a special ‘zink state’, z , which

we add to AG in order to make it a proper AATS. The idea is that z is

the only successor of every terminal state and itself. ;

The other elements of AG are:



3.3. LINKING GDL AND ATL 59

• Q = S ∪ {z}, where z is a zink state, and q0 = s0;

• ρ : AcAg → 2Q is the action precondition function, which agrees, for each

agent, with legal(i , ai), i.e., ρ(ai) = {q | q |=ATL legal(i , ai)∧¬terminal , q ∈

Q}. Moreover, ρ(fini) = {z} ∪ {q | q |=ATL terminal , q ∈ Q}, for every

agent i .

• τ ′ : Ac1 × · · · × Acn × Q → Q is based on τ . We keep all the mappings in

τ and add these: τ ′(〈fin1, . . . , finn〉, q) = z , for all q ∈ {z} ∪ {q | q |=ATL

terminal , q ∈ Q};

• π′ : Q → 2Φ is such that π′(q) is the minimal set satisfying the following

conditions:

– init ∈ π(q0), and z⊥ ∈ π(z ),

– π′(q) ⊇ {t(p) | p ∈ π(q)} for all q ∈ Q \ {z},

– ∀q , q ′ ∈ Q \ {z} and an action profile ~a = 〈a1, · · · , an〉 such that

q ′ = τ ′(~a , q), we require ∀i ∈ Ag , done(i , ai) ∈ π′(q ′), and {t(p)old |

p ∈ π(q)} ⊆ π′(q ′). Moreover ∀i ∈ Ag , done(i , fini) ∈ π′(z ).

Our intuition behind π′ is that each state, except q0 and z , has exactly one

done-proposition for each agent to record the action made in its unique predeces-

sor, and a set of pold to record the atomic propositions that is true in that same

predecessor.

Given a game description Γ, we have two game models G and AG . To show

that they correspond in all the games rules in Γ, we first define a translation from

GDL rules to ATL formulas.

Definition 3.11 (Translation from GDL rules to ATL formulas). Let Γ be a GDL

game description. A translation from any GDL rules in Γinit ∪ Γglob ∪ Γnext to

ATL formulas R : GDL → ATL is defined as follows:

• R(⇐ (init p)) ::= init → t(p)

• R(⇐ (p)(e1) . . . (em)) ::= 〈〈〉〉�(¬z⊥ ∧R(e1) ∧ · · · ∧ R(em) → t(p))

• R(⇐ (next p)(e1) . . . (em)(does i1 a1) . . . (does ik ak)) ::= 〈〈〉〉�(¬z⊥ ∧

R(e1)∧· · ·∧R(em) → 〈〈{i1, . . . ik}〉〉 h(t(p)∧done(i1, a1)∧· · ·∧done(ik , ak)))
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where t : AtGDL → AtATL is as in Definition 3.10, and for a GDL expression

ei , we stipulate: R(ei) ::= t(p) if ei = p or true p, and R(ei) ::= ¬t(p) if

ei = not p or not (true p).

Now we are ready to show that two game models G and AG of game descrip-

tion Γ do correspond in all the games rules in Γ.

Theorem 3.3. Let Γ be a GDL game description, G = GMod(Γ) be its game

model, and AG be the associated AATS structure. For each rule r ∈ Γinit ∪

Γglob ∪ Γnext, each s ∈ S and all e ∈ AtExprGDL, we have

G , s |=GDL e iff AG , s |=ATL R(e) and G |=GDL r iff AG |=ATL R(r)

Proof. Let a game description Γ, its game model G = 〈S , s0,Ag ,Ac1, · · · ,Acn , τ, π〉,

and its associated AATS, AG = 〈Q , s0,Ag ,Ac1∪{fin1}, . . . ,Acn∪{finn}, ρ, τ
′,Φ, π′〉

be given.

Step 1: to show G , s |=GDL e iff AG , s |=ATL R(e), we just need to show

it holds for four different cases, namely e = p , true p , not p , or not (true p).

Here we only show the last case e = not (true p), as other cases are very similar.

By GDL semantics (Definition 3.9), G , s |=GDL not (true p) iff G , s 6|=GDL p.

And by the semantic translation Tsem , G , s 6|=GDL p iff AG , s 6|=ATL p. Then by

R, AG , s 6|=ATL p iff AG , s |=ATL R(not (true p)).

Step 2: to show G |=GDL r iff AG |=ATL R(r), we show it is the case for three

type of rules in Γinit ∪ Γglob ∪ Γnext.

• Case: r = (⇐ (init p)).

We have G |=GDL (⇐ (init p)) iff G , s0 |=GDL p iff AG , s0 |=ATL p. Since

init is only true in s0 of AG , we have AG , s0 |=ATL p iff ∀s ∈ Q(AG , s |=ATL

init → p) iff AG |=ATL init → p iff AG |=ATL R(r).

• Case: r = (⇐ (p)(e1) . . . (em)).

We have,

G |=GDL r

iff by GDL Semantics

∀s ∈ S (∀i ∈ [1..m](G , s |=GDL ei) ⇒ G , s |=GDL p)

iff by Step 1

∀s ∈ S (∀i ∈ [1..m](AG , s |=ATL R(ei)) ⇒ AG , s |=ATL p)

iff by Q = S ∪ {z} and the fact that z⊥ is only true in z
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∀s ∈ Q(AG , s |=ATL R(e1) ∧ · · · ∧ R(em) ∧ ¬z⊥) ⇒ AG , s |=ATL p

iff

∀s ∈ Q(AG , s |=ATL R(e1) ∧ · · · ∧ R(em) ∧ ¬z⊥ → p)

iff

AG |=ATL 〈〈〉〉�(R(e1) ∧ · · · ∧ R(em) ∧ ¬z⊥ → p)

iff

AG |=ATL R(r).

• Case: r = (⇐ (next p)(e1) . . . (em)(does i1 a1) . . . (does ik ak)).

We have,

G |=GDL r

iff by GDL Semantics

∀s , t ∈ S (∀i ∈ [1..m](G , s |=GDL ei) and t is an i1 : a1, . . . ik : ak successor of

s ⇒ G , t |=GDL p)

iff by Step 1

∀s , t ∈ S (∀i ∈ [1..m](AG , s |=ATL R(ei)) and t is an i1 : a1, . . . ik : ak

successor of s ⇒ AG , t |=ATL R(p))

iff by the construction procedure of AG

∀s , t ∈ S (∀i ∈ [1..m](AG , s |=ATL R(ei)) and t is an i1 : a1, . . . ik : ak

successor of s ⇒ AG , t |=ATL t(p) ∧ done(i1, a1) ∧ · · · ∧ done(ik , ak)).

iff

∀s ∈ S (∀i ∈ [1..m](AG , s |=ATL R(ei)) ⇒ AG , s |=ATL 〈〈{i1, . . . ik}〉〉 h(t(p)∧

done(i1, a1) ∧ · · · ∧ done(ik , ak)))

iff

∀s ∈ S (AG , s |=ATL R(e1)∧· · ·∧R(em)) → 〈〈{i1, . . . ik}〉〉 h(t(p)∧done(i1, a1)∧

· · · ∧ done(ik , ak))

iff by Q = S ∪ {z} and the fact that z⊥ is only true in z

∀s ∈ Q(AG , s |=ATL ¬z⊥ ∧ R(e1) ∧ · · · ∧ R(em)) → 〈〈{i1, . . . ik}〉〉 h(t(p) ∧

done(i1, a1) ∧ · · · ∧ done(ik , ak))

iff

AG |=ATL 〈〈〉〉�(¬z⊥ ∧

R(e1)∧· · ·∧R(em) → 〈〈{i1, . . . ik}〉〉 h(t(p)∧done(i1, a1)∧· · ·∧done(ik , ak)))

iff

AG |=ATL R(r).
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3.3.2 Tsyn : From GDL Descriptions to ATL Theories

Now we turn to the syntactic level of the correspondence. Given a GDL de-

scription Γ, we translate it into an ATL-theory ΓATL which characterises the same

game. Here by ’same game’ we mean this. From the description Γ, we can derive

a game model GMod(Γ), and hence a unique AATS AGMod(Γ). And for ΓATL,

there might be several AATSs that satisfy it. They all amount to the same in

the sense that there is no ATL formulas that can distinguish these AATSs and

AGMod(Γ). We will prove this formally later by showing that there is an alternating

bisimulation between them.

Given Γ, we define the ATL theory ΓATL as a conjunction of ATL formulas:

ΓATL = INIT ∧MEM ∧ONE DONE ∧ LEGAL ∧ STRAT ∧TERM

First INIT is to characterise the initial state. Next, MEM is to remember the

previous state; ONE DONE and LEGAL are to make sure that for each non-

terminal state, there is a legal action selected by each agent. Combined with

MEM, ONE DONE and LEGAL, STRAT is to compute the current state

given the old state and the actions have been made. Finally, TERM ensures all

terminal states will go to the the special state z .

A state corresponds to a set of atoms which are true in that state. These

formulas force atoms to satisfy the wanted constraints among the states. Here

by ‘force’, we mean the following. Suppose we want to make an atom true, say

p, in the initial state q0, and false in all subsequent states i.e. in Q \ {q0}. This

can be expressed as a constraint among states CONS (p) ::= q0 ∈ π(p) ∧ ∀qi ∈

Q(qi 6= q0 → qi /∈ π(p)). We can use the formula ϕ(p) ::= p ∧ 〈〈〉〉 h〈〈〉〉�¬p to

force a class of AATSs to satisfy the constraint CON (p). More precisely, it is

the collection of AATSs A that satisfy the following equivalence:

A, q0 |=ATL ϕ(p) iff CONS (p) holds forA.

We now explain ΓATL with more details. Let S0 = DPMod(δ(Γinit)∪δ(Γglob)),

which gives the minimal set of atomic consequences (using the global rules) of all

(init p) expressions. We want an ATL formula that characterises the full initial

state. Consider:

INIT = init ∧ 〈〈〉〉 h〈〈〉〉�¬init ∧ PS0
∧

∧

pold∈AtATL

¬pold ∧ Ndone ∧ ¬z⊥
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where

PS0
=

∧

p∈S0

p ∧
∧

p/∈S0

¬p,

and

Ndone =
∧

i∈Ag

∧

a∈Aci∪{fini}

¬done(i , a).

This ensures that the special atom init is true in the initial state, and is false

everywhere else, and that the truth values of the other atoms in the initial state

of GMod(Γ) are reflected properly. It also ensures that all the old− and done−

propositions are false, since there is no previous state, and this is not a z state.

The intended use of an atom pold is that it records the old, i.e. previous, truth-

value of p. This is captured by the principle MEM:

MEM = 〈〈〉〉�
∧

p∈AtGDL

((t(p) ∧ ¬terminal → 〈〈〉〉 ht(p)old )∧

(¬t(p) ∧ ¬terminal → 〈〈〉〉 h¬t(p)old ))

The following constraint makes sure that for all non-initial states, one action

is done by each agent:

ONE DONE = 〈〈〉〉�(¬init →
∧

i∈Ag

XORa∈Aci∪{fini}done(i , a))

where XOR is the exclusive OR operator, a Boolean operator that returns a value

of TRUE only if just one of its operands is TRUE.

One assumption for playing GDL games is that each agent must play legal

moves. This is captured by the following principal:

LEGAL = 〈〈〉〉�
∧

i∈Ag ,ai∈Aci

∧

X={i},Ag

(legal(i , ai)∧¬terminal ↔ 〈〈X 〉〉 hdone(i , ai))

This principle says that, when an action ai is legal for agent i , and the current

state is not a terminal state, then agent i should have a strategy to enforce it,

and vice versa.

Let bd1, bd2, . . . be variables over possible bodies of rules, that is, sets of liter-

als, but not including any (does i a). We assume that atoms like (does i a) only

occur in rules which have a head of the form next p. This is their intended use:
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to enable players to compute the next state, given the moves of all players. Let

p ∈ AtGDL. Now suppose that all the rules r in Γ with hd(r) ∈ {(p), (next p)}

are the following:

r1 : ⇐ (p) bd1

. . . ⇐ (p) . . .

rh : ⇐ (p) bdh

s1 : ⇐ (next p) bd ′
1 (does i11 a11) . . . (does im1 am1)

. . . . . . . . . . . . . . . . . .

sk : ⇐ (next p) bd ′
k (does ik1 ak1) . . . (does imk amk)

We map all these rules for p to an ATL formula ϕ(p). For this, we first translate

the symbols from GDL to those of ATL using the functions t and told defined in

Definition 3.10. For convenience, we denote t(bdi) as the translation of all the

expressions in bdi by t , and similar for told (bdj ). For each atom p ∈ AtGDL, we

can now define an ATL constraint MIN (p), as follows:

MIN (p) = t(p) ↔
(

∨

i≤h t(bdi) ∨
∨

j≤k(told (bd ′
j ) ∧ done(ij1, aj1) ∧ · · · ∧ done(ijm , ajm ))

)

And if p does not occur in a head of any rule in Γ, we define MIN (p) = ¬p.

The semantics of stratified program Γ is now captured by the following con-

straint:

STRAT = 〈〈〉〉�
∧

p∈AtGDL

(¬init ∧ ¬z⊥ → MIN (p))

When a terminal state is reached, no further ‘real’ moves are played by agents,

i.e. they always play the fini actions:

TERM = 〈〈〉〉�
∧

i∈Ag

(terminal ∨ z⊥) ↔ 〈〈〉〉 h(z⊥ ∧ done(i , fini)))

In section 3.3.1, we have shown that we can conceive a GDL game model as an

AATS. The following is essentially a soundness result for our transformation.

Let Γ be a game description, and G = GMod(Γ) be its game model with initial

state s0; AG is the corresponding AATS. We have:

AG , s0 |=ATL ΓATL
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In the following, we add a requirement resulting in uniform AATS structures:

(uni) ∀s ∈ Q∀C ⊆ Ag∀σC∀s
′, s ′′ ∈ out(σC , s)∀i ∈ C∀a ∈ Aci :

(done(i , a) ∈ π(s ′) ⇔ done(i , a) ∈ π(s ′′))

This requirement says that, in the outcome states of a coalition C executing a

strategy, for the agents in C , the related done propositions are uniformly true or

false. Notice that AGMod(Γ) satisfies this requirement.

Lemma 3.1. Satisfiability checking with respect to a uniform AATS is in Exp-

Time.

Proof. It is shown that checking the satisfiability/validity of ATL formulas with

respect to AATS is in EXPTIME [97]. The uniform AATS is a subclass of

AATS, and we can apply similar method to show that satisfiability/validity of

ATL formulas with respect to uniform AATS is also in EXPTIME.

Note that the translation of the GDL description ΓGDL into the ATL specifi-

cation ΓATL can be done in polynomial time.

Now we prove an important result: every model for ΓATL is alternating-

bisimilar to AGMod(Γ).

Theorem 3.4. Let G = GMod(Γ) be the model for a game description Γ, and

let A1 = 〈Q1, q1,Ag , {Aci |i ∈ Ag}, ρ1, τ1,Φ, π1〉 be its associated AATS structure.

Let A2 = 〈Q2, q2,Ag , {Aci |i ∈ Ag}, ρ2, τ2,Φ, π2〉 be an uniform AATS that satis-

fies ΓATL. There exists an alternating bisimulation R between A1 and A2, with

Rq1q2.

Proof. We define a relation R ⊆ Q1 × Q2 as follows,

Rz1z2 iff π1(z1) = π2(z2).

We show that R is an alternating bisimulation which connects q1 and q2.

By INIT, one could easily check that Rq1q2.

Suppose we have established Rz1z2 for some z1 ∈ Q1 and z2 ∈ Q2 (see Fig-

ure 3.3). It is easy to see that R satisfies the invariance condition in definition

2.12. We need to show that it satisfies both the Zig and Zag conditions in

definition 2.12 as well.

We first show the Zig condition. In the case that A1, z1 |=ATL terminal , the

only actions available to the agents are the fini actions, and this will leads to
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U1 = out(ac1
C , z1)

U2 = out(ac2
C , z2)

A1, z1

A2, z2

u1

u2

R R

~a

~a ′

Figure 3.3: Alternating bisimulation between A1 and A2

the unique z state. The condition is then easy to complete. In the following,

we suppose A1, z1 6|=ATL terminal . By assumption, we then also have A2, z2 6|=ATL

terminal . Take an arbitrary coalition C , with a joint action ac1
C ∈ options(C , z1),

and consider U1 = out(ac1
C , z1) ⊆ Q1 in A1. We need to find ac2

C ∈ options(C , z2)

such that for every u2 ∈ out(ac2
C , z2), there is a u1 ∈ U1 so that Ru1u2.

It follows from ac1
C ∈ options(C , z1) that A1, z1 |=ATL legal(i , a1

i ) for all i ∈

C , a1
i ∈ ac1

C . Therefore, A2, z2 |=ATL legal(i , a1
i ) for all i ∈ C , a1

i ∈ ac1
C . And

by LEGAL, we have A2, z2 |=ATL 〈〈i〉〉 hdone(i , a1
i ) for all i ∈ C . So, for each

i ∈ C , there is ac2
i ∈ options(i , z2) such that for all x ∈ out(ac2

i , z2) ⊆ Q2,

A2, x |=ATL done(i , a1
i ). Let ac2

C be an action profile that consists of a2
i for all

i ∈ C and U2 = out(ac2
C , z2) ⊆ Q2. It is easy to see that for all x ∈ U2, we have

A2, x |=ATL done(i , a1
i ) for i ∈ C . We pick an arbitrary u2 ∈ U2. We are done if

we can show that there is a u1 ∈ U1 for which Ru1u2.

By ONE DONE, there is one and only one done(i , a) true in u2 for each

i ∈ Ag . We already know A2, u2 |=ATL done(i , a1
i ) for i ∈ C , and we assume

A2, u2 |=ATL done(j , b1
j ) for all j ∈ Ag \ C . As u2 is a successor of z2, we have

A2, z2 |=ATL 〈〈Ag〉〉 hdone(j , b1
j ) for all j ∈ Ag \ C , and by LEGAL, we have

A2, z2 |=ATL legal(j , b1
j ) for all j ∈ Ag \ C , hence A1, z1 |=ATL legal(j , b1

j ) for all

j ∈ Ag \ C . We collect the actions a1
i for i ∈ C , and b1

j for j ∈ Ag \ C to make

a complete action profile ~a.
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Now go back to A1 and consider u1 = out(~a, z1). We claim that this u1 is

the state we are looking for: it satisfies A1, u1 |=ATL p iff A2, u2 |=ATL p, for

all p ∈ Φ. By MEM, we have pold ∈ π1(u1) iff pold ∈ π2(u2) for all pold ∈ Φ.

By ONE DONE, we have done(i , ai) ∈ π1(u1) iff done(i , ai) ∈ π2(u2) for all

done(i , ai) ∈ Φ.

We now claim:

∀p ∈ AtGDL,G , u1 |=GDL p iff A1, u1 |=ATL t(p) iff A2, u2 |=ATL t(p) (3.1)

The first ‘iff’ immediately follows from Theorem 3.3, and we will use it to know

’why’ a certain atom is true in G , u1. Since u1 = out(~a, z1), we know that in G ,

we have u1 = τ(~a , z1), i.e. u1 is calculated from Γ as DPMod(FΓ(~a , z1)∪δ(Γglob)).

We distinguish two cases:

• Either there is no rule r ∈ FΓ(~a, z1) ∪ δ(Γglob) with hd(r) = p. Then p 6∈

DPMod(FΓ(~a, z1)∪δ(Γglob)) and hence G , u1 6|=GDL p, and, by Theorem 3.3,

A1, u1 |=ATL ¬p. Now consider the axiom STRAT, which says that MIN (p)

is true everywhere in A2 except the initial state and the zink state. In case

that p does not appear in the head of any rule in Γ, MIN (p) = ¬p, which

implies that A2, u2 |=ATL ¬p, as desired. Otherwise, p must appear in the

head of some rule r ∈ Γ. Since in this case we assume this is not so for

δ(Γglob), the only way to make p true, using MIN (p), is that we have some

bd ′
j , generated by some rule

sj : (⇐ next(p) bd ′
j does(j1, aj1) · · ·does(jm, ajm))

for which A2, u2 |=ATL told (bd ′
j ) ∧ done(j1, aj1) ∧ . . . done(jm , ajm ). And by

ONE DONE, we know that for any i ∈ Ag , the only action bi for which

A2, u2 |=ATL done(i , bi) is true is bi = ai . By MEM, since A2, u2 |=ATL

told (bd ′
j ), we have that A2, z2 |=ATL bd ′

j . Using the induction hypothesis we

get A1, z1 |=ATL bd ′
j . Now looking at A1 as a game model G for Γ, we see

that (⇐ p) ∈ FΓ(~a, z1), contradicting our assumption that there is no rule

in FΓ(~a , z1) ∪ δ(Γglob) with p as a head.

• Or, for some rule r ∈ FΓ(~a, z1)∪δ(Γglob), we have hd(r) = p. We distinguish

two sub-cases:

– r ∈ FΓ(~a, z1). It follows that r = (⇐ p). Since u1 = DPMod(FΓ(~a , z1)∪
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δ(Γglob)), we have G , u1 |=ATL p. It also follows from r ∈ FΓ(~a, z1), that

G , z1∪{does 1 a1∧· · ·∧does n an} |=ATL bdl(r ′)∧bda(r ′) for some next

rule r ′ in the form of (⇐ next(p) bdl bda), where bdl is the literal part

of this rule, and bda is the action part. This means that ax ∈ ~a for all

does x ax ∈ bda. By construction of G , we have G , z1 |=GDL bdl(r ′),

and, by Theorem 3.3, we have A1, z1 |=ATL t(bdl(r ′)) which gives,

by the induction hypothesis, A1, z2 |=ATL t(bdl(r ′)) and, by MEM,

A2, u2 |=ATL told (bdl(r ′)). By choice of u2, we also have A2, u2 |=ATL

done(1, a1) ∧ · · · ∧ done(n, an), thus A2, u2 |=ATL told (bda(r ′)). By

MIN (p), we then have A2, u2 |=ATL p.

– r ∈ δ(Γglob) and r /∈ FΓ(~a, s). Now we consider a level mapping

f : e(AtGDL(Γ)) → N. We claim for all n ∈ N,

f (x) = n ⇒ (G , u1 |=GDL x ⇔ A1, u1 |=ATL x ⇔ A2, u2 |=ATL x )

We do induction on f (p).

∗ Base case: f (p) = 0. There must be a global rule (⇐ p) in

δ(Γglob), thus G , u1 |=GDL p and A1, u1 |=ATL p. And by MIN (p),

we have A2, u2 |=ATL p. This proves the claim.

∗ Induction step: Suppose f (p) = k + 1, and the claim proven for

all q with f (q) ≤ k . We have to show that G , u1 |=ATL p ⇔

A1, u1 |=ATL p ⇔ A2, u2 |=ATL p. The fact G , u1 |=GDL p is true

if and only if there exists a rule r = (⇐ p bd) ∈ δ(Γglob) such

that G , u1 |=GDL bd . For any atom q ∈ bd , f (q) < k + 1, so by

induction hypothesis, we know that G , u1 |=ATL q ⇔ A1, u1 |=ATL

q ⇔ A2, u2 |=ATL q , for all q ∈ bd . It follows that G , u1 |=ATL

bd ⇔ A1, u1 |=ATL t(bd) ⇔ A2, u2 |=ATL t(bd). And by MIN (p),

we have G , u1 |=GDL p if and only if A2, u2 |=ATL p.

We now show the Zag condition.

Take an arbitrary coalition C and with a joint action ac2
C and consider U2 =

out(ac2
C , z2) ⊆ Q2 in A2. Pick an arbitrary u2 ∈ U2, we apply ONE DONE,

so for i ∈ C , we have an unique done(i , a1
i ) true in u2. Due to the uniform

requirement, we have that for all u ∈ U2 and all i ∈ C , A2, u |=ATL done(i , a1
i ).

Take a1
i into ac1

C , we have an action profile for C . And let U1 = out(ac1
C , z1).

We want to demonstrate that for every u1 ∈ U1 there is a u2 ∈ U2 for which
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Ru1u2. Choose u1 ∈ U1 arbitrarily. Let ~a be the action profile for which u1 =

out(~a, z1), it is easy to see that in G this means that u1 = τ(~a, z1), i.e., u1 =

DPMod(FΓ(~a, z1)∪δ(Γglob)). Now we have A1, z1 |=ATL legal(j , a1
j ) for j ∈ Ag \C

and a1
j ∈ ~a. And by assumption, A2, z2 |=ATL legal(j , a1

j ) as well. Hence, by

LEGAL, we have A2, z2 |=ATL 〈〈j 〉〉 hdone(j , a1
j ) for every j ∈ Ag \ C . For each

done(j , a1
j ), we can find an action a2

j in A2 such that for all u ∈ out(a2
j , z2), we

have A2, u |=ATL done(j , a1
j ). We collect a2

j for all j ∈ Ag \C , and combine them

with a2
i for all i ∈ Ag , then we get a complete action profile ~a ′.

Now let u2 = out(~a ′, z2), and we claim that this is the one to complete Ru1u2.

The proof that ∀p ∈ AtGDL,G , z1 |=GDL p iff A1, u1 |=ATL p iff A2, u2 |=ATL p is

very similar to the proof of (3.1) above.

One way of interpreting the result above is as follows: GDL can be viewed as a

model specification language, suitable for use in a model checker [16]. This gives

rise to the formal decision problem of ATL model checking problem over GDL

game descriptions, which can be described as follows: Given an ATL formula ϕ

and a GDL game description Γ, is it the case that AGMod(Γ) |=ATL ϕ?

Theorem 3.5. ATL model checking over propositional GDL game descriptions

is EXPTIME-Complete.

Proof. Membership in EXPTIME follows from Theorem 3.4 and Lemma 3.1.

Given game description Γ, and ATL formula ϕ, construct ΓATL, and then check

whether ΓATL∧¬ϕ is not satisfiable; the correctness of this procedure follows from

Theorem 3.4. The fact that ATL unsatisfiability is in EXPTIME is from [19, 97].

EXPTIME-hardness may be proved by reduction from the problem of de-

termining whether a given player has a winning strategy in the two-player game

PEEK-G4 [71, p.158].

An instance of peek-G4 is a quad:

〈X1,X2,X3, ϕ〉

where:

• X1 and X2 are disjoint, finite sets of Boolean variables, with the intended

interpretation that the variables in X1 are under the control of agent 1, and

X2 are under the control of agent 2;
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• X3 ⊆ (X1 ∪ X2) are the variables deemed to be true in the initial state of

the game; and

• ϕ is a propositional logic formula over the variables X1 ∪ X2, representing

the winning condition.

The game is played in a series of rounds, with the agents i ∈ {1, 2} alternating

(with agent 1 moving first) to select a value (true or false) for one of their variables

in Xi , with the game starting from the initial assignment of truth values defined by

X3. Variables that were not changed retain the same truth value in the subsequent

round. An agent wins in a given round if it makes a move such that the resulting

truth assignment defined by that round makes the winning formula ϕ true. The

decision problem associated with peek-G4 involves determining whether agent

2 has a winning strategy in a given game instance 〈X1,X2,X3, ϕ〉. Notice that

peek-G4 only requires “memoryless” (Markovian) strategies: whether or not an

agent i can win depends only on the current truth assignment, the distribution

of variables, the winning formula, and whose turn it is currently. As a corollary,

if agent i can force a win, then it can force a win in O(2|X1∪X2|) moves. Given an

instance 〈X1,X2,X3, ϕ〉 of peek-G4.

Encoding PEEK-G4 in GDL is a straightforward exercise in GDL program-

ming, and the question of whether there exists a winning strategy is directly

encoded in an ATL formula to model check (see [80]).

Note that, although this seems a negative result, it means that interpreting

ATL over propositional GDL descriptions is no more complex than interpreting

ATL over apparently simpler model specification languages such as the Simple

Reactive Systems Language [80].

3.4 Summary

There is much interest in the connections between logic and games, and in par-

ticular in the use of strategic logics for reasoning about multi-agent systems.

This chapter investigated the connections between ATL and GDL, a declarative

language intended for defining games. We first demonstrated that GDL can be

understood as a specification language for ATL models, and subsequently that

it is possible to succinctly characterise GDL game descriptions directly as ATL

formulas, and that, as a corollary, the problem of interpreting ATL formulas over
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GDL descriptions is EXPTIME-Complete. This chapter provides a theoreti-

cal foundation for the next chapter. We will show that our work can be applied

to formal verification of GDL descriptions: the GDL game designer can ex-

press properties of games using ATL, and then automatically check whether these

properties hold of their GDL descriptions.
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Chapter 4

Playability Verification for

Games in GDL

4.1 Introduction

Apart from the theoretical interest in drawing a link between ATL and GDL,

and characterising the complexity of interpreting ATL formulas over GDL de-

scriptions, which was explained in Chapter 3, we now want to explore this topic

more practically.

Our purpose is perhaps best explained by analogy with the literature on tem-

poral logic for reactive systems [20]. Temporal logics, in various forms, have

been used for reasoning about reactive systems for several decades, and a large

literature has been established on classifying the properties of such systems via

temporal formulas of various types; probably the best-known classification is that

of liveness and safety properties, although many more properties have been clas-

sified [50, 51, p.298]. Our ultimate aim is, in much the same way, to use ATL

to derive a similar classification of game properties and to verify them using

model checking tools. Note that ATL is, of course, a temporal logic, and we

might expect the classification to include liveness and safety properties and sim-

ilar; but the more novel aspect of the classification, (and, crucially, the part of

the classification which simply cannot be done in conventional temporal logic) is

a classification of strategic properties of games. To be more specific, we try to

answer the following questions:

• What are the conditions which characterise when a given GDL description

defines a (meaningful) game? We refer to these properties as playability

73
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conditions. Although some useful playability conditions have been discussed

in the GDL literature [26], these conditions are in fact very basic.

• How can we check whether a game specified in GDL satisfies such playa-

bility conditions?

This chapter is organised as follows. In section 4.2, we give a systematic clas-

sification of GDL playability conditions, and show how these conditions may be

characterised as ATL formulas. This classification extends the discussion and for-

malisation of playability conditions given in [59, 26] considerably. In section 4.3,

we describe the GDL2RML translator, a prototype tool for model checking of

ATL properties over GDL descriptions. In Section 4.4, we present a case study of

a game specified in GDL using the GDL2RML translator and the ATL model

checker MOCHA. A brief summary is given in Section 4.5.

4.2 Characterising Playability Conditions in ATL

When we design a game, there are qualities or properties that we wish the game

will have. Some are quite subjective, such as ‘breathtaking’, ‘fun’, etc.; some are

more objective, such as ‘terminal’, ‘turn-based’ etc. Here we will focus on the

objective properties, and more specifically we would like to characterise them for-

mally. Here by ‘characterising’ we mean the properties will be expressed precisely

and unambiguously in ATL logical formulas. A GDL game description satisfies

such a formal property if and only if the ATL game model that arises from such

description satisfies this property under ATL semantics.

We begin our top-level classification of game properties by distinguishing be-

tween properties relating to the coherence of a game and those relating to its

strategic structure. We assume to have a stock of state atoms SAt = {p, q , . . .}

(in Tic-Tac-Toe, an example would be (cell 1 2 x)), old atoms OAt = {pold |

p ∈ SAt} and done atoms DAt = {done(i , a) | i ∈ Ag , a ∈ Aci}. Throughout this

chapter, unless stated otherwise, properties that we discuss are evaluated in the

beginning of the game.

4.2.1 Coherence Properties

Roughly, coherence properties simply ensure that the game has a “sensible” in-

terpretation. To illustrate what we mean by this, we introduce a vocabulary of
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atomic propositions that we use within game property formulas. These propo-

sitions play an analogous role to propositions such as ati(ℓ) in the temporal ax-

iomatisation of programs [29, p.70].

• turni will be true in a state if it is agent i ’s turn to take a move in that

state;

• legal(i , a) will be true in a state if action (move) a is legal for agent i in

that state;

• has legal movei will be true in a state s if agent i has at least one legal

move in that state;

• terminal will be true in a state if that state is terminal, i.e. the game is

over.

• wini will be true in a state if agent i has won in that state;

• losei will be true in a state if agent i has lost in that state;

• draw will be true in a state if the game is drawn in that state;

Note that the specific interpretation of these atomic propositions will depend

on the game at hand, but they will typically be straightforward to derive. In

the context of GDL, we might have wini = goal(i , 100), losei = goal(i , 0) and

draw =
∧

i∈Ag goal(i , 50).

Now that we have such a vocabulary in place, we can start to define specific

properties. Perhaps the most important question is whether a game is “balanced”,

in that all players have in some sense an equal chance to win. As it turns out,

this apparently intuitive property is surprisingly hard to define, but we will see

various notions of balancedness in what follows.

From the perspective of designing a game, the general game playing compe-

tition [26] suggests the following criteria to be a necessity: it should first of all

be playable: every player has at least one move in every non-terminal state. We

represent this constraint as follows.

〈〈〉〉�(¬terminal →
∧

i∈Ag

has legal movei) (Playability)
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where has legal movei =
∨

a∈Aci

legal(i , a).

The second of these relate to terminal states. In a finite extensive game, the

terminal states are exactly those in which no player can perform a move. This

signals a fundamental difference with ATL, where computations are by definition

infinite. We can bridge this gap by letting a terminal state in a game correspond

with a ‘zink-state’, from which transitions are possible, but only to (copies of)

itself. So, our first property says that a terminal state really is terminal: once

we reach a terminal state, nothing subsequently changes. For all properties only

involving state atoms, we have:

〈〈〉〉�((terminal ∧ ϕ) → 〈〈〉〉�(terminal ∧ ϕ)) (GameOver)

The above property involves a scheme ϕ, and as such it would lend itself more

naturally for the theorem proving paradigm, rather than that of model checking.

However, we can deal with this as follows. Every agent i has an action noop at

his disposal. This is helpful to define turn-based games, by the following.

〈〈〉〉�(turni ↔ ¬legal(i , noop)) (Turn)

Let p be a state atom in SAt. We assume that state atoms cannot be changed

by the players’ noop actions. So true state atoms still remain true and false atoms

remain false if all agents do noop actions, i.e. do nothing. This is captured by the

following property:

〈〈〉〉�(l → 〈〈〉〉 h(
∧

i∈Ag

done(i , noop) → l)) (No Change)

where l is a literal.

Now, we can establish (GameOver) by imposing the following, from which

(GameOver) would then follow by induction over ϕ:

〈〈〉〉�(terminal → 〈〈〉〉 h〈〈〉〉�(terminal ∧
∧

i∈Ag

done(i , noop))) (Ind)
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Next, we often have that a state is terminal if the game is either won or drawn.

〈〈〉〉�((draw ∨
∨

i∈Ag

wini) → terminal)

Note that we may or may not have the converse implication, as we can specify

more subtle results using goal(i , x ).

There will typically be some coherence relation between wini , losei , and draw

propositions, although the exact relationship will depend on the game. For ex-

ample, the following says that a draw excludes a win.

〈〈〉〉�(draw →
∧

i∈Ag

¬wini) (Draw)

Finally, one might add conditions like termination, which says that a game

will eventually end:

〈〈〉〉♦terminal (Termination)

4.2.2 Fair Playability Conditions

All of the above conditions only take the coalition modalities with empty set of

agents, i.e. of the form 〈〈〉〉Tϕ. Recall that 〈〈C 〉〉Tϕ means that the agents in C

can choose a strategy such that no matter what the agents in Ag \ C do, Tϕ

will hold. In particular, 〈〈〉〉Tϕ then means that no matter what the agents in Ag

do, Tϕ will hold. Thus these conditions define invariants, i.e. safety properties,

over games. Such properties could thus be specified using conventional temporal

logics, eg. Computational Tree Logics, and verified using conventional temporal

logic model checkers. We now turn to a fundamentally different class of properties

– those relating to the strategic structure of a game; as we argued above, such

properties cannot be specified using conventional temporal logics, whence our

interest in logics such as ATL for this purpose.

In general, the kinds of properties we might typically hope for in a game relate

to “fairness”1 – intuitively, the idea that no player has an inherent advantage in

1the term “fairness” is already used in a technical sense in the temporal logic/verification
community, to mean something related but slightly different. Here when we talk about fairness,
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the game. In fact, it turns out to be rather hard to give a useful formal meaning

to the term, let alone to capture such a meaning logically. Nevertheless, there

are some useful fairness-related playability conditions that we can capture.

We first define the notion of winnability. A game is strongly winnable iff:

“for some player, there is a sequence of individual moves of that player

that leads to a terminal state of the game where that player’s goal

value is maximal. [26, p.9].

Formally, strong winnability may be captured as follows. Notice that this can

not be expressed in CTL if the number of agents in Ag is more than one.

∨

i∈Ag

〈〈i〉〉♦wini (Strong Winnability)

The Strong Winnability is too strong for games involving multiple players, as if it

would hold in the initial state, then perfect play by that player would guarantee

a win by that player, which makes the game inherently unfair. So, we have a

more relaxed requirement, called weak winnability, for multi-player games:

“A game is weakly winnable if and only if, for every player, there is

a sequence of joint moves of all players that leads to a terminal state

where that player’s goal is maximal.” [26, p.9].

We capture this as follows:

∧

i∈Ag

〈〈Ag〉〉♦wini . (Weak Winnability)

In general game playing, every game should be weakly winnable, and all single

player games are strongly winnable. This means that in any general game, every

player at least has a chance of winning.

One might also impose “Weak Losability”, which would be like the property

(Weak Winnability), but with wini replaced by losei : at least, in principle, every

player could lose.

we are appealing to the everyday meaning of the term, rather than the technical meaning as
in [22].
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There are many other notions of fairness one can impose on a game. We say

a game is fair if no player can lose without himself at least being involved. To

put it another way, a player can only lose with less than perfect play.

∧

i∈Ag

¬〈〈Ag \ {i}〉〉♦losei (Fair)

4.2.3 Characterising Different Games

The notions we just discussed can be considered as examples of minimal require-

ments to call a system a “meaningful game”. We show how ATL can be used to

characterise different kinds of games. In fact we have already seen such a gen-

eral property: our (Strong Winnability) is in the literature known as determinacy

of the game. Other examples would include (Sequential): everywhere, the next

state is determined by one agent. In ATL, such a situation is called turn-based

([6]). Although the characteristic formula refers to arbitrary ϕ again, it can also

be related to 〈〈〉〉�(XORi∈Ag turni), together with (Turn) and (Ind).

〈〈〉〉�(〈〈Ag〉〉 hϕ→
∨

i∈Ag

〈〈i〉〉 hϕ) (Sequential)

In many sequential games, the order in which to take turns is crucial, and

although [18, page 56] claims that ‘young children are obsessed with making sure

that they go first in any and every game that they play’, sometimes, rather than

a first-mover advantage, there is a second-mover advantage (like cutting a cake

and choosing a piece) or an advantage to enter the game in any specific round.

Defining the advantage of agent i as the payoff of agent i is strictly larger than

other agents:

advi =
∨

x∈{0..100}

(goal(i , x ) ∧
∧

j∈Ag\{i},x>y≥0

goal(j , y))

Second-mover advantage might be defined as follows:

∧

i∈Ag

((¬turni ∧ 〈〈〉〉 hturni) → 〈〈i〉〉♦advi) (Second-mover advantage)
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Other examples include (Zero-sum) (here given for a two-player game):

〈〈〉〉�(terminal → ((win1 ∧ lose2)XOR(draw1 ∧ draw2)XOR(lose1 ∧ win2))

(Zero-sum)

Note that although we currently have modelled the outcome propositions as

booleans, one can do this easily with numbers as well, enabling also easy repre-

sentations of constant-sum games.

Finally, we have the following characterises one-shot strategic form games

with symmetry payoffs:

Strategic ∧
∧

x ,y∈{0..100}

Symmetry(x , y) (Strategic Symmetry)

where,

∧

i∈Ag

turni ∧ 〈〈〉〉 hterminal (Strategic)

(〈〈Ag〉〉 h(goal(1, x ) ∧ goal(2, y)) → 〈〈Ag〉〉 h(goal(1, y) ∧ goal(2, x ))

(Symmetry(x , y))

Note that, since we assume that all Aci and Acj are disjoint when i 6= j , in

(Symmetry(x , y)) agents do not need to be able to ‘swap actions’, they only need

swap outcomes.

4.2.4 Special Properties for Tic-Tac-Toe

We now consider properties specific to our running example, Tic-Tac-Toe. For this

game, we denote the players with Xplayer and Oplayer, respectively. The atom

turni says that it is player i ’s turn: turni ↔ (¬terminal ∧〈〈i〉〉 h¬done(i , noop)),

i.e., it is player i ’s turn if it is not in a terminal state, and he can assure to have

done anything else than a noop action. Let c(i , j ,w) (with 1 ≤ i , j ≤ 3 and

w ∈ {o, x , b}) abbreviate cell(i , j ) = w (‘cell(i , j ) shows currently symbol w ’).

Finally, XOR denotes exclusive or.

Now, our game designer may want to verify that the property that certain

configurations on the board will never be reached (e.g., (iCell) expresses the

invariant that we don’t have two o’s and one x in the game in the first row and
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only blanks everywhere else – recall that the player who starts is Xplayer). Such

properties need not be about invariants, but can also be, for instance, about the

progress in the game, or about persistence of written cells or non-written ones

(Persistence(x )) (saying that a written X is persistent over any move, a non-

written X is persistent under any move of the other player(s)). Using our atoms

that recall what is true in the previous state, we can even specify the exact effect

of any action: (Write(x )) says that wherever we are in the game, saying that it

is x ’s turn is equivalent to saying that in every next state, there is exactly one

cell that is written with an x now, but was blank before.

〈〈〉〉�¬(c(1, 1, o) ∧ c(1, 2, o) ∧ c(1, 3, x ) ∧
∧

i 6=1

c(i , j , b) (iCell)

〈〈〉〉�(
∧

1≤i ,j≤3

(c(i , j , x ) → 〈〈〉〉 hc(i , j , x )) ∧ (¬turnXplayer →

∧

1≤i ,j≤3

(¬c(i , j , x ) → 〈〈〉〉 h¬c(i , j , x )))) (Persistence(x ))

〈〈〉〉�(turnXplayer ↔ 〈〈〉〉 hXOR1≤i ,j≤3(c(i , j , x ) ∧ c(i , j , b)old)) (Write(x ))

Regarding game playing, of course it is interesting to know what parties can

achieve, in a given game. (A designer of) player i might in particular be in-

terested whether the following instantiation of (Strong Winnability) holds: is it

the case that 〈〈i〉〉♦wini? In Tic-Tac-Toe, no player is guaranteed a win, i.e.,

(Strong Winnability) is not true for Tic-Tac-Toe. Indeed, for most interesting

games, (Strong Winnability) does not hold.

Let happy(C ) =
∧

i∈C (wini ∨ drawi). For instance, (Coalition) expresses that

coalition C has some reason to cooperate: by doing so, everybody is reasonably

happy, while there is no subset of C that guarantees that. As another example,

(R(i , a)) considers whether a is a reasonable move for i : that is, it cannot achieve

less than what it currently can achieve, by performing a. This is an example of

a property one might want to check in several states of the game, not just the

root.



82 CHAPTER 4. PLAYABILITY VERIFICATION FOR GAMES IN GDL

〈〈C 〉〉♦happy(C ) ∧ ¬
∨

C ′⊂C

〈〈C ′〉〉♦happy(C ′) (Coalition)

happy(i) ∧ turni ∧ 〈〈i〉〉 h(done(i , a) ∧ happy(i)) (R(i , a))

4.3 The GDL2RML Translator

In this section, we describe our work on how to verify the games in GDL using

an ATL model checker. The main purpose of our work is to show a method using

existing ATL model checking tools on the verification of GDL games, rather than

developing a model checking tool from the scratch. In this way, we can add value

to the work that has been done by other people.

We built a translator, GDL2RML, from GDL descriptions to representa-

tions in the Reactive Modules Language (RML). RML is the model description

language of the ATL model checker MOCHA. Using GDL2RML, we can verify

properties expressed in ATL via MOCHA.

In the following subsections, we first introduce MOCHA and RML, then ex-

plain the design of the GDL2RML translator, and finally discuss the correctness

and evaluation of the GDL2RML translator.

4.3.1 MOCHA and RML

The ATL model checker we use is MOCHA, which was developed by Alur et al.

[7, 2], some of whom are also the inventors of ATL. To our knowledge, this is by far

the standard model checking tool for ATL. It has been applied in the verification

of various systems, such as the shared-memory multiprocessor systems [37], the

asynchronous processes [3], and the dataflow processors [36]. The practical model

checking complexity using MOCHA was studied in [80].

The model description language of MOCHA is the Reactive Modules Lan-

guage (RML), which is rich enough to model systems with heterogeneous com-

ponents: synchronous, asynchronous, speed-independent or real-time, finite or

infinite state, etc. Here we briefly introduce RML. An RML specification con-

sists of a set of modules. A module can be seen as an agent; it consists of a set

of variables and a set of rules to define the evolution of the variables that are

controlled by the module. The input variables are called external variables, and
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atom xyz

controls x

reads x, z

awaits y

init

[] true -> x’:=0

[] true -> x’:=1

update

[] y’=true & z = false -> x’:=x+1

[] y’=true & z = true -> x’:= x

[] y’=false -> x’:=x-1

endatom

Figure 4.1: An example of an atom

the output variables are called interface variables. A module controls its interface

variables and its private variables. Within a module, the basic construct is an

atom. A simple example of an atom is given in figure 4.1.

This definition has three parts: 1) a declaration of the variables that are

controlled, read, or awaited; 2) an init part; and 3) an update part. An atom

can write the variables that it controls, read the ones it reads or it awaits.

The primes besides the variables refer to their values in the next round. Here,

awaiting the value of a variable y means it reads the value that y will receive

in the next round, which is determined by another atom. For instance, in the

example, the next value of x is evaluated using the current value of z , and after

the next value of y is specified. The init part initializes the value of x by a

set of guarded commands starting with a ‘[]’. A guarded command statement

consists of two parts: a guard, that is a boolean expression specifying when the

guarded command can be executed, and a list of commands, used to specify

the next value of the controlled variables. If several guards are true, the system

randomly chooses an associated command. The next part is different to the init

in two ways: first, it can repeatedly execute after the first round, while init only

executes in the first round; second, it can take boolean expressions with variables

as guards, while init can only have the guard true.

The state of a system at one time point is completely captured by the valua-

tions of the variables that the system controls. The evolution of the state of the

system is decided by the initial state and the update commands in each atom.
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4.3.2 Design of the GDL2RML Translator

Given a GDL description, how can we obtain a representation in RML which

characterises the same system (game structure)? Basically, we have to take care

of this for a state and the change of a state. Both in GDL and RML, a state is

represented by a set of propositions or variables. And for the change of a state,

GDL uses a set of rules in a logical programming language, while RML uses

guarded commands. GDL rules are different from RML guarded commands in

two ways: 1) a GDL rule can specify the value of one proposition or variable

only, but an RML guarded command can specify more than one; 2) all GDL

rules will be executed if their conditions are true, but only one RML guarded

command will be executed within the same atom on any given round.

In RML, we need to specify which propositions or variables belong to which

module, where modules can be seen as agents. So the main tasks of our GDL2RML

translator are:

• to specify the roles in GDL as modules in RML,

• to specify the propositions controlled by each module,

• to specify the initial state and the corresponding update mechanism.

We cut a GDL description Γ into four parts: Γrole ,Γinit ,Γnext ,Γglob , where

Γrole is a collection of the rules with keyword role, Γinit is a collection of the rules

with keyword init , Γnext is a collection of the rules with keyword next , and Γglob

contains the rest. Our GDL2RML translator is written in Java, and processes

the rules in these four categories as follows.

Roles For every rule in Γrole , we associate it with a module; moreover, we in-

troduce a special module called Gmaster, which takes the same responsibility as

the game master in the General Game Playing competition (GGP) [26]. The

main duties of the Gmaster are: to serve the players with the current game

board state, to read the actions of the players, and to update the board state

accordingly. The behaviour of Gmaster is deterministic, and it will not influence

the outcome of a game. In terms of ATL, we have that, for any coalition C ,

〈〈C ∪ {Gm}〉〉♦ϕ↔ 〈〈C 〉〉♦ϕ. This justifies why we left out Gmaster Gm in our

analysis in Section 4.2.



4.3. THE GDL2RML TRANSLATOR 85

Propositions and Variables Each player module controls their own action

variables, and all the rest are controlled by the Gmaster. In other words, the

players decide about their move, and all its consequences are then determined.

To be more specific, we use a variable DONE_X for each player X, and the scope

of this variable is easily identified by the clauses with keywords ’does X’ in

Γnext . For example, in the Tic-Tac-Toe game in Figure 3.1, we have a clause

(does xplayer (mark ?m ?n)), so we add MARK_1_1,...,MARK_3_3 to the do-

main of DONE_XPLAYER, given that the scope of ?m and ?n are determined by the

context. The reason to choose a DONE prefix is related to the update mechanism,

which will be introduced shortly.

The propositions for the Gmaster module are directly obtained from Γ. For

example, we have in Figure 3.1 a rule (<= terminal (line x)), so we take

TERMINAL and LINE_X as propositions. Theoretically, we can represent the state

using only propositions, but to make our representation more efficient, we choose

some variables to have a richer domain. This will be explained in more detail in

the case study in section 4.4.

The Initial State As we mentioned earlier, a state is a full characterization of the

system in a particular time point. In Γinit , GDL specifies the propositions that

are true initially, but not necessary all the propositions that are true, as some

global rules in Γglob might make some propositions true as well. For example,

suppose Γ1 consists of the following two rules: (init p) and (<= q p). In the

initial state, we first know p is true, and then know that q is true by the global

rule (<= q p). So we need to do some computation, w.r.t Γinit ∪ Γglob , to get a

complete picture of the initial state. But RML does not make it possible to do

computations for the initial state, as all the guards in the init part can only be

true (see Figure 4.1).

We have two design choices here: either we figure out all the initial values of

the variables and then specify their values directly using [] true -> x’:=value

in RML, or we add an extra round to allow the modules’ update part to compute

the full initial state. We take the later approach, as we want to delegate all the

work of constructing the game system to MOCHA. Therefore, we introduce a

special variable preinit, the idea being that we make preinit true initially and

then false always afterwards. If we call this special state produced by RML the

‘pre-init’ state, the real init state is then the computed successor of the pre-init

state. In the example of Γ1 above, p would be true in pre-init, and p and q in
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init. We make sure that there is only one init state. In the following, when we

refer to the “init state”, it should be understood that we are not referring to the

pre-init state.

The Update Mechanism In RML, state changes are made via the update

construction, which is specified with keyword update. There are two types of

update rules in GDL, namely Γglob , which gives constrains globally, and Γnext ,

which talks about the future. Accordingly, we have to deal with both of them in

RML.

For the rules in Γglob , we add one rule in the atom which has the head of

the rule as a controlled variable. And we use primed versions of the variables

as they all update in the same round, and the ones in the guards are updated

earlier than those in the commands. The dependency requires that there is no

circularity, and this is checked by MOCHA automatically. Here is an example

from Figure 3.1: for the GDL rule (<= terminal (line x)), we have an update

rule in RML: LINE_X’ -> TERMINAL’:=true, which says that if LINE_X is true

in the next round, then TERMINAL is true in the next round as well. Note that

LINE_X is an awaited variable.

For the rules in Γnext , we also add one rule in the atom which has the head of

the rule as a controlled variable. For example: a GDL rule

(<= (next(cell 1 1 x)) (does xplayer (mark 1 1)) (cell 1 1 b))

can be translated to an update rule:

CELL_1_1=B & DONE_XPLAYER’=MARK_1_1 -> CELL_1_1’:=X.

This rule says if the Cell(1,1) is blank currently, and Xplayer marks Cell(1,1),

then in the next state, the Cell(1,1) becomes X.

How does the whole system evolve? In GDL, the players (roles) make a choice

and the game master uses them to update the state, according to the Γglob and

Γnext rules. This continues until a terminal state is reached. In RML, we will

do the same thing, but an important question here is how to record the players’

actions in a state. For example, suppose in the current state, player X is allowed

to make a move MARK_1_1. Shall we have a proposition DOES_X_MARK_1_1 to

indicate that player X will make this move in next state? No, because (1) this

would cause the current state to only have one successor, and (2) we do not
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intend to say that X does the MARK_1_1 move in the current state, but only

like to reason hypothetically what would happen if he would make that move.

The fact that X makes a certain move should be recorded in the successor state

associated with that move, and not in the current state. Therefore, we introduce

the DONE_X variable for each player X, to record the actions made by X in the

previous round. The update process in RML starts as follows: all the DONE_X

variables are given a value in the players’ module, and then the Gmaster module

uses the rules from Γnext to specify the variables in the head of these rules using

the update construct, and finally Gmaster does the same with rules translated

from Γglob . For instance, the effect of X performing a MARK_1_1 move is captured

by the following atom in the module Gmaster.

update

[]DONE_Xplayer’=MARK_1_1 & CELL_1_1=B -> CELL_1_1’:=X

[]DONE_Oplayer’=MARK_1_1 & CELL_1_1=B -> CELL_1_1’:=O

[]~(CELL_1_1=B) -> CELL_1_1’ :=CELL_1_1

[]~(DONE_Xplayer’=MARK_1_1 | DONE_Oplayer’=MARK_1_1)

& CELL_1_1=B -> CELL_1_1’:=B

This says that if Xplayer’s chosen action is to mark Cell(1,1), and this cell is

currently blank, it will become marked with X, and similarly for Oplayer and the

symbol O. If Cell(1,1) was already not blank, it keeps its value, and, finally, it

stays blank if it was blank and nobody wrote on it in this round.

4.3.3 Correctness and Evaluation

How can we ensure the correctness of the GDL2RML translator? Here the

‘correctness’ means that the original GDL description specifies the same game

model as its GDL2RML translation. In the previous chapter, we have formally

defined the game models for the GDL descriptions. Ideally, we shall also define

the game models of the RML descriptions, and formally prove that the game

model of a GDL description Γ corresponds to the game model of the translation

of Γ in RML. This requires a formalisation of RML with game semantics, which

is out of the scope of this thesis. But we do have two approaches to ensure

certain degree of the correctness. The first approach is to check whether all the

propositions, variables and the rules have been mapped correctly. We get this
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level of assurance by checking the design of the GDL2RML translator. This

might still prone to human errors, so we have a second approach, which is to use

the model checker MOCHA to verify properties of the GDL2RML translations.

If the MOCHA results agree with the truth of those properties in the original

game, then we get certain degree of assurance that our translation is correct. Of

course when the MOCHA results do not conform the truth of those properties,

this approach alone does not tell whether the original GDL description does not

describe the game properly, or the GDL2RML translator is problematic.

As for the evaluation of the GDL2RML translator, we have tested it with

a number of examples, such as Maze, Buttons and Tic-Tac-Toe, from the game

depository2 of the General Game Playing Website. All these examples were trans-

lated within several seconds in a Dural-Core Linux Machine, and the verification

results in MOCHA are all as desired. In the next section, we will present a

concrete case study to show that our translation of Tic-Tac-Toe has produced

desired results (see Fig 4.2). Compared with the programming-oriented brute-

force method mentioned in [26], our method has two advantages. First, we do

not need to write a program to expand the game models, as the model checkers

automatically generate the game models from RML descriptions. Second, we can

specify the properties in ATL in a more abstract way than specifying them in a

programming language, so that we do not need to deal with the details in the level

of game states. Our GDL2RML translator is still a prototype tool; in theory,

it shall automatically translate any GDL descriptions to RML descriptions, but

in practice we still need to manually add some tags into GDL descriptions to

reduce the numbers of variables in the translation, in order to reduce the model

checking time in MOCHA.

4.4 Case Study and Experimental Results

4.4.1 Introduction

In this section we do a case study in the context of the game of Tic-Tac-Toe using

our GDL2RML tool and MOCHA.

The game of Tic-Tac-Toe is often used as an example to introduce game

complexity, which involves both state space complexity and game-tree complexity.

For Tic-Tac-Toe, a simple upper bound for the size of the state space is 39 =

2URL: http://visionary.stanford.edu:4000
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19,683, as there are three states for each cell and nine cells. This is of course quite

rough, since there are many illegal states, such as a state with all ‘X’ occupying

the spaces. After removing these illegal states, we get 5,478 states. And when

rotations and reflections of positions are regarded as identical, there are only 765

essentially different positions. A simple upper bound for the size of the game

tree is 9! = 362,880, as there are nine positions for the first move, eight for the

second, and so on. After removing the illegal states there are 255,168 possible

games; and when rotations and reflections of positions are considered the same,

there are only 26,830 possible games3. Compared with the complexity of Chess4,

the complexity of Tic-Tac-Toe is rather small. Nevertheless it has 26,830 possible

games, which is not trivial.

Tic-Tac-Toe has been modelled and verified successfully by model checking

tools; in [41], the SPIN model checker [40] was used, and the properties were

expressed in LTL. One clear advantage of our approach is that we are able to

verify a bigger class of properties, especially those can only be expressed in ATL.

4.4.2 Playability of Tic-Tac-Toe in MOCHA

For the translation from a GDL description to an RML description, we have

illustrated the main idea in the previous section. What we want to stress here

is the controlled variables for Gmaster. Most of them are boolean variables, and

only a few can take multiple values, e.g., CELL_1_1 ∈ { B,X,O}. Alternatively,

we can use three booleans: CELL_1_1_B, CELL_1_1_X, and CELL_1_1_O. Then

the equivalent expression of CELL_1_1=X is

CELL_1_1_B=false & CELL_1_1_X=true & CELL_1_1_O=false.

We choose the former representation for the sake of compactness.

The general playability conditions are presented in section 4.2. Now we tailor

them specifically for Tic-Tac-Toe. We select a few representative properties and

give concrete representations that are accepted by model checker MOCHA. The

purpose is to show how our work is used in practice.

3http://en.wikipedia.org/wiki/Tic-tac-toe
4C. Shannon gave an estimation in [69] with the size of state space 1043 and the size of

game-tree 10120.
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Coherence Properties The first coherence property we pick is Playability:

〈〈〉〉�(¬terminal →
∧

i∈Ag

has legal movei)

For i = Xplayer , has legal movei can be represented as

( LEGAL_X_MARK_11 | LEGAL_X_MARK_12 | LEGAL_X_MARK_13

| LEGAL_X_MARK_21 | LEGAL_X_MARK_22 | LEGAL_X_MARK_23

| LEGAL_X_MARK_31 | LEGAL_X_MARK_32 | LEGAL_X_MARK_33

| LEGAL_X_NOOP)

The rest is straightforward.

The second coherence property is GameOver:

〈〈〉〉�((terminal ∧ ϕ) → 〈〈〉〉�(terminal ∧ ϕ))

Let us look at an instantiation of ϕ: suppose ϕ here means that Xplayer wins.

Its representation in MOCHA is

<<>>X(<<>>G((TERMINAL&GOALX=g100)=><<>>G(TERMINAL&GOALX=g100)))

Note that we have some small notional differences. Here X corresponds to h,

G to �, & to ∧, and => to →. The reason to have <<>>X at the beginning is that

we have an extra, “pre-initial” initial state. We have explained the reason to have

such state in Section 4.3.2.

The third coherence property we pick is Turn:

〈〈〉〉�(turni ↔ ¬legal(i , noop))

The case with i being Xplayer is:

<<>>X <<>> G (turn=Xplayer <=> ~LEGAL_Xplayer_NOOP) .

The last coherence property we pick is Termination:

〈〈〉〉♦terminal

The MOCHA representation is straightforward: <<>> X <<>> F terminal,

where F is the MOCHA notation for ♦.
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Fairness Properties Now we pick two fairness properties:

∨

i∈Ag

〈〈i〉〉♦wini(StrongWinnability) , and
∧

i∈Ag

〈〈Ag〉〉♦wini(WeakWinnability).

The representations are

<<>>X(<<Xplayer>>F GOALX=g100 | <<Oplayer>>F GOALO=g100)

and

<<>>X(<<Xplayer,Oplayer>>F GOALX=g100 & <<Xplayer,Oplayer>>F GOALO=g100)

respectively.

4.4.3 Playing Tic-Tac-Toe via Model Checking

Although our main motivation in this work is to consider the analysis of games

from the view point of a game designer, it is also worth speculating about the

use of our approach to play GDL games via Model checking. Let us suppose the

following situation in Tic-Tac-Toe (Xplayer moves first).

X O

X

O

Now it is Xplayer’s turn. The questions are:

i. Is there a winning strategy for Xplayer in the current state?

ii. If so, which move should Xplayer take?

There is indeed a winning strategy for Xplayer, namely, by marking the Cell(2, 1)

(see below). In that case, no matter how Oplayer responds, Xplayer can mark

either Cell(2, 3) or Cell(3, 1) in its next turn.

X O

X X

O
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We show that we can answer these questions via model checking.

First, “Xplayer has a winning strategy” is expressed as 〈〈Xplayer〉〉♦winXplayer

in ATL and as <<Xplayer>>F GOALX=g100 in MOCHA. Given game model G ,

and current state s , the question 1 amounts to checking whether G , s |=ATL

〈〈Xplayer〉〉♦winXplayer . In MOCHA, we can only check a property with re-

spect to the initial state, namely s0, but we can get around using the following

approach. We characterise a state s by a formula ϕ(s), so instead of check-

ing G , s |=ATL 〈〈Xplayer〉〉♦winXplayer , we can check G , s0 |=ATL 〈〈〉〉�(ϕ(s) →

〈〈Xplayer〉〉♦winXplayer). For the above example, ϕ(s) can be Cell(1, 1,X ) ∧

Cell(1, 2,O) ∧ Cell(2, 2,X ) ∧ Cell(3, 3,O) ∧
∧

x ,y=rest Cell(x , y ,B). We denote

the MOCHA representation of 〈〈〉〉�(ϕ(s) → 〈〈Xplayer〉〉♦winXplayer) as sXWin.

Now, suppose we got a positive answer to the question 1. To answer the ques-

tion 2, we use an action variable DONEX to guide the search for a proper move.

The idea is to select a legal move for Xplayer, and then to check whether Xplayer

still has a winning strategy under this move. If so Xplayer shall take it; if not,

Xplayer will check the a different legal move; the existence of a winning strat-

egy guarantees that there is such a move. To be more specific, suppose Xplayer

chooses mark(2, 1), it is to check: G , s0 |=ATL 〈〈〉〉�(ϕ(s) → 〈〈Xplayer〉〉 h(DONEX

= MARK 2 1〈〈Xplayer〉〉♦winXplayer)).

We denote the MOCHA version of this formula as ‘sXWin by mark21’. If the

answer is positive, it means Xplayer’s move Mark 2 1 is indeed a move leading

towards a winning position.

There is of course a question “what if there is no winning strategy in the cur-

rent position?”. We believe that it is interesting to explore a position evaluation

function, which estimates the value or goodness of a position, and its connection

with ATL properties; but we would leave this for further research.

4.4.4 Experimental Results on Tic-Tac-Toe

Here we present experimental results to show that the analysis described above

can be done in reasonable time with moderate computing resources. For these

experiments, we ran MOCHA under Linux kernel 2.6.20 i686 with a Dural-Core

1.8Ghz CPU and 2GB RAM. The table in Figure 4.2 gives timings for checking

the various properties listed in the previous section.

These results indicate that our tool can generate correct results in a reasonable

amount of time. We believe that there is much room for improvement with
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Property Results Time
GameOver passed 2sec
Turn passed 0.3sec
Termination passed 4min49sec
Playability passed 0.4sec
Strong Winnability failed 23sec
Weak Winnability passed 4min01s
sXWin passed 1min06sec
sXWin by mark21 passed 1min59sec

Figure 4.2: Verification results of Tic-Tac-Toe

respect to these results. In particular, it might be useful in future to consider

investing some effort in optimising the translation process from GDL to RML,

particularly with respect to the number of variables produced in the translation.

Even moderate optimisations might yield substantial time and memory savings.

4.5 Summary

This chapter investigated the specification and verification of games described in

GDL. In particular, two main contributions were made. First, we character-

ized a class of playability conditions that can be used to express the correctness

of the games specified in GDL. Second, we developed an automated tool, the

GDL2RML translator, that can transform a set of GDL descriptions into RML

specifications, and we can verify the playability conditions over these RML spec-

ifications using an off-the-shelf ATL model checker, MOCHA. In future research,

we believe it is worthwhile to refine this work on formal verification of GDL de-

scriptions. The main issues are likely to be the efficiency and scalability of our

automated tool.
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Chapter 5

Bridging Action and Time Logics

5.1 Introduction

This chapter provides a study of logical frameworks that not only deal with action

or time, but also deal with knowledge of multi-agent systems. In particular we

study a correspondence between Dynamic Epistemic Logic (DEL) and Temporal

Epistemic Logic (TEL). As shown in Chapter 2, these two logical frameworks

are capable of modelling multi-agent systems with agents’ knowledge and its

change. However, there is a large difference in terms of model checking: in DEL

the interpretation of a dynamic epistemic formula is over a state model, which

represents a static view of a multi-agent system; while in TEL, the interpretation

of a temporal epistemic formula is over an interpreted system, in which the full

history of a system is unfolded.

The presented frameworks interact both on the level of logical languages and

on the level of semantic objects, and it is precisely this interaction that is the sub-

ject of the underlying investigation. Various results have already been achieved.

The relation between Kripke models and interpreted systems has been investi-

gated by Lomuscio and Ryan in [47]. They focussed on an interpreted system

named Hypercube System that corresponds to the cartesian product of all lo-

cal state values, and that has no dynamic features. In the correspondence, local

state values become boolean propositional variables. Their approach suits Kripke

models where all states have different valuations, which is not generally the case.

A recent study by Pacuit [55] compares the history-based approach by Parikh

and Ramanujam [56] to interpreted systems, with runs. This addresses the rela-

tion between Kripke models with histories consisting of event sequences (in our

95
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case this primitive is derived and called a forest model) and interpreted systems.

Pacuit handles partial observability of agents, when the agents perceive only some

but not all of a sequence of events. He does not address in [55] the partial ob-

servability common in dynamic epistemics, where only an aspect of an event is

observable, not the full event. Other recent work by van Benthem, Gerbrandy

and Pacuit [79], rooted in older work [78, 75], gives a precise relation between

temporal epistemics and dynamic epistemics. In their approach, each action w in

an action model M corresponds to a unique labelled modality ©(M,w), interpreted

in a linear-time temporal logic, such that a dynamic epistemic formula of the form

[M,w]ϕ (‘after execution of event ‘(M,w)’ it holds that ϕ’) is true in a Kripke

model with epistemic accessibility relations, if and only if a temporal epistemic

formula ©(M,w)ϕ is true in an ‘enlarged’ Kripke model that is constructed using

two copies of the former and an accessibility relation for ©(M,w)-execution that

connects them. This is a forest that we will introduce later. We have straightfor-

wardly applied their elegant approach. Unlike them, we do not assume a protocol,

but compute it based on the structure of a given formula.

Much recent work in model checking is based on temporal epistemics describ-

ing interpreted systems (MCMAS [67], MCK [25], and see also [73]), and some

recent work is based on dynamic epistemics describing model updates (DEMO,

[94]). Our work is intended to draw a connection between these two different

model checking approaches.

This chapter is organized as follows. Section 5.2 contains definitions on logical

languages and semantics that we are going to discuss. Section 5.3 presents two

translations, a syntactical one and a semantical one, from PAL (a special case of

DEL) to NTEL (a variant of TEL); and then we prove a correspondence between

PAL and NTEL. Section 5.4 extends the results from PAL to the more general

case DEL. A brief summary is given in Section 5.5.

5.2 Logical Preliminaries

In this section, we present the logical preliminaries of our work. We introduce

four structural primitives and two languages. The structures are:

• state models, which are Kripke models with S5 accessibility relations repre-

senting agents’ knowledge about states;
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• action models, which are Kripke models with S5 accessibility relations rep-

resenting agents’ knowledge about actions;

• forest models, which are Kripke models with not just accessibility relations

representing agents’ knowledge of states but also accessibility relations rep-

resenting state transitions;

• action-based interpreted systems, which are based on well-accepted inter-

preted systems.

The reason that we restrict the state models to have only S5 accessibility relations

is because the framework we want to relate it to, namely that of action-based

interpreted systems, has S5 for its accessibility relations. The first two models

were introduced in Chapter 2, and the remaining two, forest models and action-

based interpreted systems, will be defined soon.

The languages are those of dynamic epistemic logic and a variant of temporal

epistemic logic which one could think of as ‘next-time temporal epistemic logic’.

The former can be given meaning both on state models and on forest models; the

latter both on forest models and on interpreted systems. As global parameters

to both the languages and the structures we have a set Ag of n agents, and a

(countable) set Q of atoms q , and to action-based structures, we assume a finite

set of W of actions w.

5.2.1 Languages

As shown in Section 2.2.4, the language LDEL of Dynamic Epistemic Logic is

inductively defined as follows

ϕ ::= q | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CBϕ | [M,w]ϕ

where q ∈ Q , i ∈ Ag , B ⊆ Ag , and (M,w) a pointed action model. Without

loss of generality, we assume that all points of all action models are differently

named, so that we can associate a particular w with the pointed model (M,w)

whenever convenient. For the special case of singleton action models with reflexive

accessibility relations for all agents, i.e. public announcements, we write [ϕ]ψ

where ϕ is the precondition (the announced formula).

The dynamic part of LDEL is the action modality and it can be seen as repre-

senting one time step. Now we want to connect it to a temporal language. Natu-
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rally, we could associate each action modality with a one-step temporal modality.

We define the language of Next-time Temporal Epistemic Logic as follows.

Definition 5.1 (Language LNTEL). Given a set of actions W, the language of

Next-time Temporal Epistemic Logic LNTEL is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CBϕ | ©w ϕ

where, q ∈ Q, i ∈ Ag, B ⊆ Ag, and w ∈ W.

There are some differences with the temporal language LTEL(see Section 2.2.3),

as the next-time temporal modalities here are labelled with actions. Also we do

not need U (‘until’) operators in our investigation. We call ϕ an NTEL formula

if ϕ ∈ LNTEL.

5.2.2 Structures

We first recap the key parts of the definitions of state models and action models

introduced in Chapter 2.

A state model is a structure 〈W ,∼1, . . . ,∼n , π〉 where W is a domain of pos-

sible states, for each agent i , ∼i is an S5 accessibility relation between states

expressing the states that are indistinguishable from each other for that agent,

and where π : W → ℘(Q) is a valuation (or interpretation) that determines for

each state which atoms are true in that state.

An action model M is a structure 〈W,∼1, . . . ,∼m , pre〉 such that W is a domain

of action points, and for each i ∈ Ag , ∼i is an equivalence relation on W, and

pre : W → L is a precondition function that assigns a precondition pre(w) in

language L to each w ∈ W.

We introduce a structure that adds an extra dimension to a state model.

Definition 5.2 (Forest Model). Given a set of atomic propositions Q, a set of

actions W, a forest model is a structure

〈W ,∼1, . . . ,∼n , {→w| w ∈ W}, π〉

where

• W is a set of states;

• ∼i is an S5 accessibility relation of agent i for each i ∈ Ag;
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• →w is a binary relation on states expressing the execution of action w with

an extra condition such that each state can only have at most one action

predecessor, in other words, for each state w ∈ W , if there is w1,w2 ∈ W

and w′,w′′ ∈ W such that w1 →w′ w and w2 →w′′ w, then w1 = w2, and

w′ = w′′;

• and π is a valuation function from W to ℘(Q).

We sometimes write a forest model as 〈W ,∼1, . . . ,∼n , {→w}, π〉 if W is clear

from the context.

If we represent all states in W in the form of (w ,w1, . . . ,wm) where w is a state

and w1, . . . ,wm is a sequence of executed actions, then w1 →w w2 iff (w1,w) = w2.

For brevity, ((w ,w1, . . . ,wm),w) and (w ,w1, . . . ,wm ,w) are treated as the same

state.

In order to interpret the NTEL formulas, we extend the interpreted system

(see Definition 2.16) with actions.

Definition 5.3 (Action-based Interpreted System). Given a set of atomic propo-

sitions Q, a set of actions W, an action-based interpreted system I = (R, {→w

|w ∈ W}, π) over G is a system R of runs over a set G of global states with a

valuation π which decides for each point (r ,m) a set of atoms P ⊆ Q that are

true in (r ,m). Two points (r ,m) and (r ′,m ′) are indistinguishable for i , written

(r ,m) ∼i (r ′,m ′), if ri(m) = r ′
i (m

′). Two points in the same run (r ,m) and

(r ,m + 1) are connected by an action w ∈ W, written as (r ,m) →w (r ,m + 1).

5.2.3 Semantics

In the following, we give meanings to the formulas of the languages over the

structures we have introduced. More specifically, we interpret DEL formulas over

state models and forest models, and interpret NTEL formulas over forest models

and action-based interpreted systems. This can be illustrated by the diagram in

Figure 5.1.

Here we distinguish four different interpretations. |=sd denotes the interpre-

tation of a DEL formula over a state model; |=fd denotes the interpretation of

a DEL formula over a forest model; |=ft denotes the interpretation of an NTEL

formula over a forest model; and |=it denotes the interpretation of an NTEL

formula over an action-based interpreted system. All these interpretations are
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State Models

Forest Models

Action-based Interpreted Systems

LDEL

LNTEL

|=sd

|=fd

|=ft

|=it

Figure 5.1: Semantics of two languages over three models

defined similarly in terms of atomic propositions, logical connectives and knowl-

edge modalities, which have been introduced in Chapter 2. We focus on clauses

of action executions, and the temporal connectives. For action executions, we

also mention the special case of public announcement.

Definition 5.4 (Semantics |=sd ). The semantics of [M,w]ψ over a state model

M is as follows,

M ,w |=sd [M,w]ψ iff M ,w |=sd pre(w) ⇒ M ⊗ M, (w ,w) |=sd ψ

where ⊗ is the update operation.

For the special case of public announcement, assuming that [ϕ] corresponds to

the action w0 in public announcement model M0, we have:

M ,w |=sd [ϕ]ψ iff M ,w |=sd ϕ⇒ M ⊗ M0, (w ,w0) |=sd ψ.

Note that this definition is essentially the same as what we have defined in

Section 2.2.4. The following is new.

Definition 5.5 (Semantics |=fd ). The semantics of [M,w]ψ over a forest model

M is as follows,

M ,w |=fd [M,w]ψ iff M ,w |=fd pre(w) ⇒ ∃v s.t. w →w v and M , v |=fd ψ

For the special case of public announcement, assuming [ϕ] corresponds to w,

we have:

M ,w |=fd [ϕ]ψ iff M ,w |=fd ϕ⇒ ∃v s.t. w →w v and M , v |=fd ψ

This needs a bit more explanation. See the following example.
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Example 5.1. Suppose we have a formula p → [p]⊤. For any state model M

and state w, we have M ,w |=sd p → [p]⊤. This is because if p is true in w, then

a truthful public announcement could be made in w, and in the resulting state,

⊤ is trivially true. But if we interpret this formula in a forest model, it can be

false. A simple example would be a forest model M ′ with only one state w ′ such

that p is true in w ′, and there is no action successors of that state. So we have

M ′,w ′ 6|=fd [p]⊤, as the action relation corresponds to [p] is empty. This property

of |=fd may seem a bit strange, as it may not directly fit the same expectation as

in |=sd . Essentially, this is because we do not yet enforce any strong connection

of an announcement modality and an action in the forest model. We will see later

that formula p → [p]⊤ does hold in a special class of forest models that relate to

this formula (see Definition 5.10).

Next, we define the meanings of the formulas with ‘next-time’ temporal op-

erators in the following way.

Definition 5.6 (Semantics |=ft ). The semantics of temporal formula ©wϕ on

a forest model M is as follows:

M ,w |=ft ©w ϕ iff ∃v s.t. w →w v and M , v |=ft ϕ

According to this definition, ©wϕ∧©w¬ϕ is satisfiable, as one could imagine

that there is a state w with two w successors in one of which ϕ is true and in the

other ϕ is false. But we will show that this is not satisfiable in a special class of

forest models in Definition 5.10.

Let I = (R, {→w}, π) be an action-based interpreted system over a set G

of global states. “Runs r and r ′ are equivalent to time m” means that the

initial segments of r and r ′ are the same from 0 to m, i.e., r(0) = r ′(0) up to

r(m) = r ′(m). Choosing the bundle semantics as in [87], we now define the

meaning of ©wϕ over an action-based interpreted system.

Definition 5.7 (Semantics |=it ). The semantics for ©wϕ on an action-based

interpreted systems I is as follows,

(I, r ,m) |=it ©w ϕ iff there is a run r ′ that is equivalent to r to time m and

r ′(m) →w r ′(m + 1) such that: (I, r ′,m + 1) |=it ϕ.

Note that this definition also shows a connection of action and time as in

r ′(m) →w r ′(m + 1).
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5.3 The Case of Public Announcement

In this section, we deal with the case of public announcement action models and a

fragment of LDEL for public announcement, referred to as LPAL. Given a formula ϕ

in LPAL, and a multi-agent state model (M ,w), we want to simulate checking the

truth of ϕ in (M ,w) by checking the truth of a corresponding temporal epistemic

formula in a corresponding interpreted system. The interpreted system is based

on (M ,w) but should also encode the dynamics that is implicitly present in ϕ in

the form of public announcement operators. It is therefore relative to both ϕ and

(M ,w). In other words, we are looking for a semantic transformation sem and a

syntactic translation syn (with type: LPAL → LNTEL) such that:

M ,w |=sd ϕ iff sem((M ,w), ϕ) |=it syn(ϕ).

The image of the actual world w under sem (a global state sw ) is entirely deter-

mined by the role of w in M . It is therefore sufficient to determine sem(M , ϕ):

M ,w |=sd ϕ iff sem(M , ϕ), sw |=it syn(ϕ).

5.3.1 Syntactic translation

The PAL formulas translate to NTEL formulas in the following way.

Definition 5.8 (LPAL to LNTEL). Suppose that every action corresponds to a

different announcement modality, we define a translation syn from LPAL to LNTEL

as follows:

syn(q) ::= q

syn(ϕ ∧ ψ) ::= syn(ϕ) ∧ syn(ψ)

syn(¬ϕ) ::= ¬syn(ϕ)

syn(Kiϕ) ::= Kisyn(ϕ)

syn(CBϕ) ::= CBsyn(ϕ)

syn([ϕ]ψ) ::= syn(ϕ) → ©wsyn(ψ)

where action w corresponds to [ϕ].

We assume that every announcement in different positions corresponds to

a different action, so even when two announcement modalities have the same

formula, they still get different names. For example, [ϕ][ϕ]q cannot be translated

to ©w ©w q , as the first [ϕ] and second [ϕ] are in different positions and have
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different dynamic effects. For this reason, we introduce a simple procedure to

mark the announcement modalities so that they get a unique name. We mark

the n announcements occurring in a formula with indexes from 1 to n in the order

of occurrence of their left ‘[’ bracket, when reading the formula from left to right.

Then we associate each modality with index i with action wi . Note that this is

not the only way to assign different names to different announcements.

Here is an example of the above translation method.

Example 5.2. Suppose we have a formula [q ∧ [r ]K2r ]C12q ∧ [⊤]¬K1q with three

announcements. The left bracket ‘[’ in ‘[q∧. . . ’ comes first when reading from left

to right. Then comes the left bracket of the announcement [r ] that is a subformula

of [q ∧ [r ]K2r ]. Finally we reach the announcement [⊤] in the right-hand side of

the conjunction. We add indexes to the modalities as follows [1q ∧ [2r ]K2r ]C12q ∧

[3⊤]¬K1q, then associate them with three announcement variables as follows

w1 [1q ∧ [r ]K2r ]

w2 [2r ]

w3 [3⊤]

The translation syn([q ∧ [r ]K2r ]C12q ∧ [⊤]¬K1q) then is

((q ∧ (r → ©w2K2r)) → ©w1C12q) ∧ (⊤ → ©w3¬K1q).

PAL Protocols The dynamics implicitly present in PAL formula ϕ can be iden-

tified with the set of all sequences of public announcements that may need to be

evaluated in order to determine the truth of ϕ. As this is known as a protocol

[55], we call this the protocol of a formula ϕ. It can be determined from ϕ and is

therefore another syntactic feature that we can address before applying it in the

semantic transformation sem((M ,w), ϕ).

Definition 5.9 (Protocol of PAL formula). The protocol of a PAL formula is

defined by induction on the formula structure. In the last clause, w is the name

for the announcement of ϕ in [ϕ]ψ, and wprot(ψ) = {ww1 . . .wm | w1 . . .wm ∈
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prot(ψ)}, i.e. the concatenation of w to all sequences in the set of prot(ψ).

prot(q) ::= ∅

prot(¬ϕ) ::= prot(ϕ)

prot(ϕ ∧ ψ) ::= prot(ϕ) ∪ prot(ψ)

prot(Kiϕ) ::= prot(ϕ)

prot(CBϕ) ::= prot(ϕ)

prot([ϕ]ψ) ::= prot(ϕ) ∪ wprot(ψ)

This notion of protocol is similar to the one in [55]. The difference is that in

our case prot(ψ) is not subsequence closed. The protocol of a formula would

be subsequence closed if the last clause is changed to prot([ϕ]ψ) ::= prot(ϕ)∪

wprot(ψ) ∪ {w}. For a protocol variable we use T.

Example 5.3. We have that prot([q ][r ](q ∧ r)∧ [r ]K1r) = {w1w2,w3}, and that

prot([q ∧ [r ]K2r ]C12q ∧ [⊤]¬K1q) = {w1,w2,w3}. (See previous example.)

5.3.2 Semantic transformation

The required semantic transformation sem in sem(M , ϕ) is determined in two

steps. First, we construct the forest model, f(M , prot(ϕ)) from the state model

M and the protocol prot(ϕ) of the public announcement formula ϕ in a similar

way as in [75, 79]. Then we determine an interpreted system is(M ′) corresponding

to a forest model M ′. We then simply define sem(M , ϕ) as is(f(M , prot(ϕ))).

Definition 5.10 (Generated Forest Models). Given a state model M = 〈W ,∼1

, ...,∼n , π〉, w ∈ W , and a protocol T = prot(ϕ) generated from PAL formula ϕ.

The forest model f(M ,T) is defined in three steps.

(1) Let w1 · · ·wm be a sequence of actions in protocol T, and suppose that these

actions belong to public announcement models M1,M2, · · · ,Mm respectively. Let

Mi be a state model M ⊗ M1 · · · ⊗ Mi , which is the result of announcing w1 to

wi subsequently on M . Then g(M ,w1 · · ·wm) is a forest model M ′ = 〈W ′,∼′
1

, . . . ,∼′
n , {→

′
w
}, π′〉 such that

• W ′ = WM ∪WM1
∪· · ·∪WMm

i.e. the set of states obtained from subsequent

updates by announcements;

• ∼′
i=

⋃

j∈[1..m]

∼j
i , where ∼j

i is the epistemic relation of agent i in model Mj ;
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• w →w (w ,w) for any w , (w ,w) ∈ W ′;

• π′(w) = π(w) s.t. ∃Mk(w ∈ WMk
& π belongs to Mk).

(2) We define a union ⊎ of two forest models. Given forest model M ′ =

〈W ′,∼′
1, . . . ,∼

′
n , {→

′
w
}, π′〉, and M ′′ = 〈W ′′,∼′′

1, . . . ,∼
′′
n , {→

′′
w
}, π′′〉,

M ′ ⊎ M ′′ ::= 〈W ′′′,∼′′′
1 , . . . ,∼

′′′
n , {→

′′′
w
}, π′′′〉

where W ′′′ = W ′ ∪ W ′′, ∼′′′
i =∼′

i ∪ ∼′′
i for all i ∈ Ag, →′′′

w
=→′

w
∪ →′′

w
for all

w, and π′′′(w) = π′(w) ∪ π′′(w) for all w ∈ W ′ ∩ W ′′, π′′′(w) = π′(w) for all

w ∈ W ′ \ W ′′, π′′′(w) = π′′(w) for all w ∈ W ′′ \ W ′.

(3) We have,

f(M , prot(ϕ)) ::= ⊎τ∈prot(ϕ)g(M , τ).

The construction can be seen as repeatedly merging a model and the modal

product of that model and a singleton ‘action model’ corresponding to an an-

nouncement. We refer to the next section for an example illustrating this proce-

dure.

Next, from such a forest model we determine an action-based interpreted

system. This is based on a fairly intuitive idea. For each world in a forest model

we associate it with a global state of an interpreted system. This can be achieved

by keeping that world as the value of the environmental state and for each agent

the set of indistinguishable worlds as the value of that agent’s local state. The

valuation π remains as it was. Now for a world w in a state model M = 〈W ,∼1

, . . . ,∼n〉 this recipe delivers a corresponding global state s = (w ,w∼1, . . . ,w∼n ),

where w∼i is the i -equivalence class containing w , i.e. {w ′ ∈ W | w ′ ∼i w}.

The same recipe applies, in principle, to worlds (w ,w1, . . . ,wm) in the forest

model f(M , prot(ϕ)), but here we can somewhat simplify matters by observing

that (i) the environment is fully determined by the w in (w ,w1, . . . ,wm) because

all events (such as announcements) are defined relative to their combined effect

on the agents only, and by observing that (ii) public announcements are fully

observable by all agents so we can represent them as global parameters. In

the following we use (w ,w∼1, . . . ,w∼n ,w1, . . . ,wm) to denote the global state

((w ,w1, . . . ,wm), (w ,w1, . . . ,wm)∼1 , . . . , (w ,w1, . . . ,wm)∼n ).
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Definition 5.11 (Generated Action-based Interpreted System). Given a forest

model M = 〈W ,∼1, ...,∼n , {→w}, π〉, we associate M with an action-based inter-

preted system I, also written as is(M ), which is a structure (R, {→w}, π) defined

as follows.

Every state (w ,w1, . . . ,wm) in the forest model M corresponds to a global state

(w ,w∼1, . . . ,w∼n ,w1, . . . ,wm), where the local state of agent i is (w∼i ,w1, . . . ,wm).

We pick every state in forest model M with no →w successors for any action w.

A run r ∈ R is defined for each of such states. Suppose (w ,w1, . . . ,wk ) is a state

in M , its associated run r, together with →w and π, is defined as follows:

• r(0) = (w ,w∼1, . . . ,w∼n);

• r(i) = (w ,w∼1, . . . ,w∼n ,w1, . . . ,wi) for all 1 ≤ i ≤ k ; r(i) = r(i − 1),

otherwise;

• r(i − 1) →wi r(i) for all 1 ≤ i < k;

• The valuations correspond: π(r(i)) = π(w), i.e. all the states in a run have

the same valuation.

It is easy to see that each run is essentially a branch in the corresponding

forest model. We have an example in the next section to illustrate this.

The following diagram summarizes the syntactic translation and the semantic

transitions we made.

State Models

Forest Models

Action-based Interpreted Systems

LDEL

LNTEL

sem syn

5.3.3 Example

We illustrate the transformations defined in the previous section through the

following example.

Consider two agents 1 and 2 and two facts q and r . Agent 1 knows whether

q but is uncertain about the truth of r , whereas agent 2 knows whether r but is

uncertain about the truth of q . The agents are commonly aware of each other’s
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factual knowledge and ignorance. In fact, both q and r are true. This is modelled

by the following state model (call it Minit).

w 01 w 11

w 00 w 102

2

1 1

We have named the four states of the model w 00, w 10, w 01, and w 11, where the

index reveals the valuation of atoms q and r (in that order), e.g. to state w 01,

we give π(w 01) = {r}. Agent 1 cannot distinguish states w 00, w 01, therefore they

are linked and the link is labelled with a ‘1’, i.e. w 00 ∼1 w 01. Similar for agent 2.

Suppose we want to check the truth of formula [q ][r ](q ∧ r) ∧ [r ]K1r in state

w 11 of the above model. One could associate this formula with an indexed version

[1q ][2r ](q ∧ r)∧ [3r ]K1r we proposed earlier, and the action variables w1,w2, and

w3 represent the three different announcements in this formula. Note that the first

and second announcement r are named differently. The protocol prot([q ][r ](q ∧

r) ∧ [r ]K1r) is {w1w2,w3}.

We now apply the procedure introduced in Definition 5.10, and construct the

forest model f(Minit , prot([q ][r ](q ∧ r) ∧ [r ]K1r)) as follows.

First, consider q . An announcement of q results in a new model, M1 with two

states (w 11,w1) and (w 10,w1). In the resulting model, agent 1 is still uncertain

about r , but agent 2 now knows the value of q . After the announcement of q ,

given [q ][r ](q ∧ r), atom r is subsequently announced, resulting in another state

model M2, which consists a single state (w 11,w1,w2). In this model, both agents

know that q and r are true. Now we consider the second r . It is announced in

the initial model and results in a third model M3 with two states (w 01,w3) and

(w 11,w3). In this model, agent 2 is still uncertain about q , but agent 1 knows

whether q . Depicting all three announcements at the same time, we get

(w 01,w3) (w 11,w3)

w 01 w 11 (w 11,w1) (w 11,w1,w2)

w 00 w 10 (w 10,w1)
2

2

1 1 1

2
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where M1 is in column 3, and M2 is in column 4 and M3 is in row 1 (counting

from top to bottom).

f(Minit ,w
1w2) is depicted in the row 2 and 3 with seven states in total, and

f(Minit ,w
3) is depicted in the column 1 and 2 with six states in total. Now

f(Minit ,w
1w2)⊎f(Minit ,w

3) is the merge of above two forests which have common

states exactly the same as the states in the initial model Minit .

(w 01,w3) (w 11,w3)

w 01 w 11 (w 11,w1) (w 11,w1,w2)

w 00 w 10 (w 10,w1)
2 w1

2 w1 w2

1 1 1

w3 w3

2

We now associate an action-based interpreted system with the forest model

just given, following Definition 5.11. The above forest model consists of four

trees with the roots w 11, w 00, w 01, and w 10, and five states that have no action

successors: (w 10,w1), (w 11,w1,w2), (w 01,w3), and (w 11,w3) and w 00.

The global state (w 10, {w 10,w 11}, {w 00,w 10}) is associated with the state w 10,

and the global state (w 10, {w 10,w 11}, {w 10},w1), (in other words:

(w 10, {(w 10,w1), (w 11,w1)}, {(w 10,w1)})), is associated with the state (w 10,w1)

in the forest model, etc. Write s10 for the former global state and s10w1 for the

latter. The accessibility relations for agent 1 and 2 remain the same. Instead of

action-labelled transitions we now have runs connecting the global states. There

are five runs, (arbitrarily) named as

r (s10, s10w1)

r ′ (s11, s11w1, s11w1w2)

r ′′ (s01, s01w3)

r ′′′ (s11, s11w3)

r ′′′′ (s00)
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This interpreted system can now be depicted as

s01w3 s11w3

s01 s11 s11w1 s11w1w2

s00 s10 s10w12 r

2 r ′ r ′

1 1 1

r ′′ r ′′′

2

The translation syn of the formula [q ][r ](q ∧ r) ∧ [r ]K1r , was, as we have al-

ready seen, (q → ©w1(r → ©w2(q ∧ r))) ∧ (r → ©w3K1r). It is easy to verify

that Minit ,w
11 |=sd [q ][r ](q ∧ r)∧ [r ]K1r , as well as, is(Minit , prot([q ][r ](q ∧ r)∧

[r ]K1r)), s11 |=it (q → ©w1(r → ©w2(q ∧ r))) ∧ (r → ©w3K1r).

5.3.4 Theoretical results

We now show, in three steps, the equivalence

M ,w |=sd ϕ iff sem(M , ϕ), sw |=it syn(ϕ).

The first step is to show that given a state model M and a PAL formula ϕ, the in-

terpretation of ϕ over (M ,w) is equivalent to its interpretation over f(M , prot(ϕ))

which is the forest model built from M and ϕ. The second step is to show that ϕ

and its syntactic transformation syn(ϕ) are equivalent when they are both inter-

preted over the forest model f(M , prot(ϕ)). The third, last, step is to show that

the interpretation of syn(ϕ) over an arbitrary forest model and its corresponding

interpreted system are equivalent. We explain these steps in three propositions:

Proposition 5.1, Proposition 5.2, and Proposition 5.3. Before doing that, we first

prove a lemma about some important features of the forest models.

Lemma 5.1. Given a state model M and PAL formulas ϕ, ψ, the following equiv-

alences hold:

i. f(M , prot(ϕ ∧ ψ)),w |=fd ϕ⇔ f(M , prot(ϕ)),w |=fd ϕ;

ii. f(M , prot([ϕ]ψ)),w |=fd ϕ⇔ f(M , prot(ϕ)),w |=fd ϕ;

iii. f(M , prot(ϕ ∧ ψ)),w |=ft syn(ϕ) ⇔ f(M , prot(ϕ)),w |=ft syn(ϕ);
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iv. f(M , prot([ϕ]ψ)),w |=ft syn(ϕ) ⇔ f(M , prot(ϕ)),w |=ft syn(ϕ);

Proof. Let a state model M and PAL formulas ϕ, ψ be given.

Case i:

We first prove the direction ⇒. Suppose f(M , prot(ϕ ∧ ψ)),w |=fd ϕ, we have

f(M , prot(ϕ) ∪ prot(ψ)),w |=fd ϕ, since prot(ϕ ∧ ψ) = prot(ϕ) ∪ prot(ψ).

It follows that f(M , prot(ϕ)) ⊎ f(M , prot(ψ)),w |=fd ϕ. Suppose the domain

of f(M , prot(ϕ)) is W1, and that of f(M , prot(ψ)) is W2, then according to

the forest model construction in Definition 5.10, we have W1 ∩W2 = WM , which

means that the set of common states between these two forests is exactly the set

of states in model M .

There are two cases for formula ϕ, either it contains no action modalities,

then its truth value can be solely decided by the states in M , or it contains action

modalities that correspond only to the actions in forest model f(M , prot(ϕ)),

therefore its truth value can be decided solely by f(M , prot(ϕ)). In both

cases, the truth value of ϕ can be solely decided in f(M , prot(ϕ)), so we have

f(M , prot(ϕ)),w |=fd ϕ. The direction ⇐ follows from a reverse reasoning.

Case ii: (assume the action corresponding to [ϕ] is w)

We first prove the direction ⇒. Suppose f(M , prot([ϕ]ψ)),w |=fd ϕ, we have

f(M , prot(ϕ)∪wprot(ψ)),w |=fd ϕ, since prot([ϕ]ψ) = prot(ϕ)∪wprot(ψ).

Therefore f(M , prot(ϕ))⊎f(M ,wprot(ψ)),w |=fd ϕ. Again we distinguish two

cases of ϕ, and conclude that the truth value of ϕ is solely decided by the forest

f(M , prot(ϕ)), so f(M , prot(ϕ)),w |=fd ϕ. The direction ⇐ follows from a

reverse reasoning.

Case iii:

We first show the direction ⇒. Suppose f(M , prot(ϕ ∧ ψ)),w |=ft syn(ϕ), it

follows that f(M , prot(ϕ) ∪ prot(ψ)),w |=ft syn(ϕ), and therefore

f(M , prot(ϕ))⊎f(M , prot(ψ)),w |=ft syn(ϕ). We distinguish two cases of for-

mula syn(ϕ), either it contains no temporal modalities, then its truth value can

be solely decided by M , or it contains temporal modalities parameterized by the

actions only in forest model f(M , prot(ϕ)), hence its value can be decided by

f(M , prot(ϕ)). In both case, the truth value of syn(ϕ) can be decided by forest

model f(M , prot(ϕ)), so we have f(M , prot(ϕ)) |=ft syn(ϕ). The direction ⇐

follows from a reverse reasoning.

Case iv:

It follows from a similar reasoning as presented in Case ii and Case iii.
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This lemma shows a special property of the forest models built from a state

model and a PAL formula. In the case of formula ϕ∧ψ and [ϕ]ψ, the truth value

of ϕ is solely decided by the forest model f(M , prot(ϕ)), which is a submodel

of both f(M , prot(ϕ ∧ ψ)) and f(M , prot([ϕ]ψ)).

We give the following example to explain the idea more intuitively.

Example 5.4. As we show in the previous example, f(Minit , prot([q ][r ](q ∧ r)∧

[r ]K1r)) is as follows,

(w 01,w3) (w 11,w3)

w 01 w 11 (w 11,w1) (w 11,w1,w2)

w 00 w 10 (w 10,w1)
2 w1

2 w1 w2

1 1 1

w3 w3

2

The forest model f(Minit , prot([q ][r ](q ∧r)) consists of all the states in the lower

two rows, and the forest model f(Minit , prot([r ]K1r)) consists of all the states

in the first and second columns. Clearly, the common states of these two forest

models are w 01,w 11,w 00 and w 10, which are exactly those states in model Minit .

We evaluate the second conjunct of [q ][r ](q ∧ r) ∧ [r ]K1r , namely [r ]K1r , in the

state w 11 of the model f(Minit , prot([q ][r ](q ∧ r)) ∧ K1r). It is easy to verify

that r is true in w 11 and there is a w3-successor (w 11,w3) in which K1r is true.

Since all w3-successors can only be included in the forest f(Minit , prot([r ]K1r))

and there are no epistemic links to the rest of the states, we conclude that the

evaluation of [r ]K1r in the state w 11 of the model f(Minit , prot([r ]K1r)) is the

same.

We can do a similar analysis for the evaluation of syn([r ]K1r)), i.e. r →

©w3K1r , in model f(Minit , prot([q ][r ](q ∧ r)).

Here is our first result.

Proposition 5.1. Let M be a state model and ϕ ∈ LPAL.

M ,w |=sd ϕ iff f(M , prot(ϕ)),w |=fd ϕ
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Proof. Given a state model M , and formula ϕ, we follow the procedure in Defi-

nition 5.10 and build a forest model f(M , prot(ϕ)). Suppose that the interpre-

tation function of M is π1 and that of f(M , prot(ϕ)) is π2. We do an induction

on the structure of ϕ.

Case q :

M ,w |=sd q

⇔

q ∈ π1(w)

⇔ π1(w) = π2(w) by the construction of f(M , prot(ϕ))

q ∈ π2(w)

⇔

f(M , prot(q)),w |=fd q

Case ¬ψ:

M ,w |=sd ¬ψ

⇔

M ,w 6|=sd ψ

⇔ By induction

f(M , prot(ψ)),w 6|=fd ψ

⇔ As prot(ψ) = prot(¬ψ)

f(M , prot(¬ψ)),w 6|=fd ψ

⇔

f(M , prot(¬ψ)),w |=fd ¬ψ

Case ψ1 ∧ ψ2:

M ,w |=sd ψ1 ∧ ψ2

⇔

M ,w |=sd ψ1 and M ,w |=sd ψ2

⇔ By induction

f(M , prot(ψ1)),w |=fd ψ1 and f(M , prot(ψ2)),w |=fd ψ2

⇔ By Lemma 5.1

f(M , prot(ψ1 ∧ ψ2)),w |=fd ψ1 and f(M , prot(ψ1 ∧ ψ2)),w |=fd ψ2

⇔

f(M , prot(ψ1 ∧ ψ2)),w |=fd ψ1 ∧ ψ

Case Kiψ:
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M ,w |=sd Kiψ

⇔

∀v(w ∼i v ⇒ M , v |=sd ψ)

⇔ By induction

∀v(w ∼i v ⇒ f(M , prot(ψ)), v |=fd ψ)

⇔ As prot(ψ) = prot(Kiψ)

∀v(w ∼i v ⇒ f(M , prot(Kiψ)), v |=fd ψ)

⇔

f(M , prot(Kiψ)),w |=fd Kiψ

Case CBψ:

M ,w |=sd CBψ

⇔

∀v(w ∼∗
B v ⇒ M , v |=sd ψ)

⇔ By induction

∀v(w ∼∗
B v ⇒ f(M , prot(ψ)), v |=fd ψ)

⇔ As prot(ψ) = prot(CBψ)

∀v(w ∼∗
B v ⇒ f(M , prot(CBψ)), v |=fd ψ)

⇔

f(M , prot(CBψ)),w |=fd CBψ

Case [ψ1]ψ2: assume that [ψ1] corresponds to the only action w in public

announcement model M,

M ,w |=sd [ψ1]ψ2

⇔

M ,w |=sd ψ1 ⇒ M ⊗ M, (w ,w) |=sd ψ2

⇔ By induction

f(M , prot(ψ1)),w |=fd ψ1 ⇒ f(M ⊗ M, prot(ψ2)), (w ,w) |=fd ψ2

⇔ By Lemma 5.1

f(M , prot([ψ1]ψ2)),w |=fd ψ1 ⇒ f(M ⊗ M, prot(ψ2)), (w ,w) |=fd ψ2

⇔ By forest model construction

f(M , prot([ψ1]ψ2)),w |=fd ψ1 ⇒ f(M ,wprot(ψ2)), (w ,w) |=fd ψ2

⇔

f(M , prot([ψ1]ψ2)),w |=fd ψ1 ⇒

f(M ,wprot(ψ2) ∪ prot(ψ1)), (w ,w) |=fd ψ2

⇔ As wprot(ψ2) ∪ prot(ψ1) = prot([ψ1]ψ2)
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f(M , prot([ψ1]ψ2)),w |=fd ψ1 ⇒ f(M , prot([ψ1]ψ2)), (w ,w) |=fd ψ2

⇔

f(M , prot([ψ1]ψ2)),w |=fd ψ1 ⇒ there is (w ,w) such that w →w (w ,w)

and f(M , prot([ψ1]ψ2)), (w ,w) |=fd ψ2

⇔

f(M , prot([ψ1]ψ2)),w |=fd [ψ1]ψ2

This result shows that we can either evaluate a PAL formula in a state model,

or alternatively construct a ‘supermodel’ that already contains all future dynamic

developments labelled by actions. Our formulation, relative to a formula ϕ to be

evaluated, is slightly different from the standard purely semantic form. In Ven-

ema’s chapter ‘Dynamic Models in their Logical Surroundings’ in [78, page 122],

he presented a model construction by way of a ternary accessibility operator,

based on ordinary binary epistemic accessibilities. For a description of the tech-

nique see [78], or [75, 79].

The next result says that a formula ϕ ∈ LPAL and its translation syn(ϕ) ∈

LNTEL are equivalent when they are interpreted over the same forest model.

Proposition 5.2. Given a state model M and a PAL formula ϕ:

f(M , prot(ϕ)),w |=fd ϕ iff f(M , prot(ϕ)),w |=ft syn(ϕ)

Proof. Given a state model M , and formula ϕ, we follow the procedure in Defi-

nition 5.10 and build a forest model f(M , prot(ϕ)). Suppose that the interpre-

tation function of f(M , prot(ϕ)) is π in both semantics |=fd and |=ft . We do

an induction on the structure of ϕ. The cases of q , ¬ψ, Kiψ and CBψ are trivial,

so we just show the following two cases.

Case ψ1 ∧ ψ2:

f(M , prot(ψ1 ∧ ψ2)),w |=fd ψ1 ∧ ψ2

⇔

f(M , prot(ψ1 ∧ ψ2)),w |=fd ψ1 and f(M , prot(ψ1 ∧ ψ2)),w |=fd ψ2

⇔ By Lemma 5.1

f(M , prot(ψ1)),w |=fd ψ1 and f(M , prot(ψ2)),w |=fd ψ2

⇔ By induction

f(M , prot(ψ1)),w |=ft syn(ψ1) and f(M , prot(ψ2)),w |=ft syn(ψ2)

⇔ By Lemma 5.1
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f(M , prot(ψ1 ∧ ψ2)),w |=ft syn(ψ1) and

f(M , prot(ψ1 ∧ ψ2)),w |=ft syn(ψ2)

⇔

f(M , prot(ψ1 ∧ ψ2)),w |=ft syn(ψ1) ∧ syn(ψ2)

⇔

f(M , prot(ψ1 ∧ ψ2)),w |=ft syn(ψ1 ∧ ψ2)

Case [ψ1]ψ2: (assume that [ψ1] corresponds to the only action w in public

announcement model M)

We have to show that

f(M , prot([ψ1]ψ2)),w |=fd [ψ1]ψ2 iff f(M , prot([ψ1]ψ2)),w |=ft syn([ψ1]ψ2).

In other words:

f(M , prot([ψ1]ψ2)),w |=fd ψ1 ⇒ f(M , prot([ψ1]ψ2)), (w ,w) |=fd ψ2

⇔

f(M , prot([ψ1]ψ2)),w |=ft syn(ψ1) ⇒ f(M , prot([ψ1]ψ2)),w |=ft ©w syn(ψ2)

First we show that both conditional parts are equivalent (i). Then we show that

on the condition, both consequential parts are equivalent (ii). In the proof we

use various times that prot([ψ1]ψ2)) = prot(ψ1) ∪ wprot(ψ2).

(i) We show that

f(M , prot([ψ1]ψ2)),w |=fd ψ1 iff f(M , prot([ψ1]ψ2)),w |=ft syn(ψ1)

by the following equivalence:

f(M , prot([ψ1]ψ2)),w |=fd ψ1

⇔ By Lemma 5.1

f(M , prot(ψ1)),w |=fd ψ1

⇔ By induction

f(M , prot(ψ1)),w |=ft syn(ψ1)

⇔ By Lemma 5.1

f(M , prot([ψ1]ψ2)),w |=ft syn(ψ1)
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(ii) Next, we show that on condition of f(M , prot(ψ1)),w |=fd ψ1:

f(M , prot([ψ1]ψ2)), (w ,w) |=fd ψ2 iff f(M , prot([ψ1]ψ2)),w |=ft ©w syn(ψ2).

f(M , prot([ψ1]ψ2)), (w ,w) |=fd ψ2

⇔

f(M , prot(ψ1) ∪ wprot(ψ2)), (w ,w) |=fd ψ2

⇔ (w ,w) 6∈ f(M , prot(ψ1))

f(M ,wprot(ψ2)), (w ,w) |=fd ψ2

⇔ By forest model construction

f(M ⊗ M, prot(ψ2)), (w ,w) |=fd ψ2

⇔ By induction

f(M ⊗ M, prot(ψ2)), (w ,w) |=ft syn(ψ2)

⇔ By forest model construction

f(M ,wprot(ψ2)), (w ,w) |=ft syn(ψ2)

⇔ (w ,w) 6∈ f(M , prot(ψ1))

f(M , prot(ψ1) ∪ wprot(ψ2)), (w ,w) |=ft syn(ψ2)

⇔

f(M , prot([ψ1]ψ2)), (w ,w) |=ft syn(ψ2)

⇔

f(M , prot([ψ1]ψ2)),w |=ft ©w syn(ψ2)

We now turn to the third result.

Proposition 5.3. For every executable ϕ ∈ LNTEL (i.e., a formula of the form

syn(ψ) with ψ ∈ LPAL), and forest model M :

M ,w |=ft ϕ iff is(M ), (w ,w∼1, . . . ,w∼n ) |=it ϕ

Proof. Let a forest model M be given. We construct an interpreted system is(M )

according to the procedure in Definition 5.11. Let sw stand for (w ,w∼1, . . . ,w∼n),

the interpretation function of M be π1, and the interpretation function of is(M )

be π2. We do an induction on ϕ. All the cases are trivial but the following case:

Case ψ1 → ©wψ2:

M ,w |=ft ψ1 → ©wψ2

⇔
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M ,w |=ft ψ1 ⇒ M ,w |=ft ©w ψ2

⇔ (♯) on condition of M ,w |= ψ1 a run exists

M ,w |=ft ψ1 ⇒ M , (w ,w) |=ft ψ2

⇔ By induction

is(M ), sw |=it ψ1 ⇒ is(M ), (sw ,w) |=it ψ2

⇔ (@) a run always exists

is(M ), sw |=it ψ1 ⇒ is(M ), sw |=it ©w ψ2

⇔

is(M ), sw |=it ψ1 → ©wψ2

In step ♯ of the proof, this is guaranteed by the condition M ,w |=ft ψ1: as the

announcement is true, it can be executed and there is an →w accessible state

from w . This is not guaranteed if ψ1 is false.

In step @ of the proof the required path always exists, as runs in inter-

preted systems are infinite. In particular, if sw = (rw , i), the selected (sw ,w)

(i.e. (w , (w∼1,w), . . . , (w∼n ,w)) is of the form (r ′
w , i + 1) where r ′ is equivalent

to r to time i .

We emphasise that Proposition 5.3 does not hold for arbitrary formulas in our

temporal epistemic fragment, because of the observed slight but essential differ-

ence between forest models, where action sequences are finite, and corresponding

interpreted systems, with infinite runs. More precisely: in case ϕ→ ©wψ of the

proof of Proposition 5.3 the precondition ϕ is essential! States in forest models

do not necessarily have an action successor, so that in such states all formulas

of form ©wψ are false, whereas runs in interpreted systems keep looping after a

finite meaningful prefix, e.g. ©wq will always remain true if q is true.

We now have the main result from Propositions 5.1, 5.2, and 5.3. Note that

sem(M , ϕ) is by definition is(f(M , prot(ϕ))).

Theorem 5.1. Given a state model M , and a PAL formula ϕ,

M ,w |=sd ϕ iff sem(M , ϕ), sw |=it syn(ϕ)

Proof. M ,w |=sd ϕ

⇔ Proposition 5.1

f(M , prot(ϕ)),w |=fd ϕ

⇔ Proposition 5.2
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f(M , prot(ϕ)),w |=ft syn(ϕ)

⇔ Proposition 5.3

is(f(M , prot(ϕ))), sw |=it syn(ϕ)

5.4 Generalization

We now generalize the approach in the previous section from public announce-

ments as in [ϕ]ψ to action models as in [M,w]ψ.

Definition 5.12 (LDEL to LNTEL). We define a translation syn from LDEL to

LNTEL as follows:

syn(q) ::= q

syn(ϕ ∧ ψ) ::= syn(ϕ) ∧ syn(ψ)

syn(¬ϕ) ::= ¬syn(ϕ)

syn(Kiϕ) ::= Kisyn(ϕ)

syn(CBϕ) ::= CBsyn(ϕ)

syn([M,w]ψ) ::= syn(pre(w)) → ©wsyn(ψ)

It is easy to see that the clause for public announcement (see Definition 5.8)

is a special case.

We then define the protocol of a DEL formula in a similar way as in Definition

5.9.

Definition 5.13 (Protocol of DEL formula). The protocol of a DEL formula is

defined by induction on the formula structure. In the last clause, vprot(ψ) =

{vw1 . . .wm | w1 . . .wm ∈ prot(ψ)}, i.e. the concatenation of v to all sequences

in the set of prot(ψ).

prot(q) ::= ∅

prot(¬ϕ) ::= prot(ϕ)

prot(ϕ ∧ ψ) ::= prot(ϕ) ∪ prot(ψ)

prot(Kiϕ) ::= prot(ϕ)

prot(CBϕ) ::= prot(ϕ)

prot(prot([M,w]ψ)) ::=
⋃

v∈D(M)(prot(pre(v) ∪ vprot(ψ))

where D(M) is the domain of the action model, which includes the point w.
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The main change in this definition compared to Definition 5.9 is the last

clause. Here we chose to take a union for all v ∈ D(M) because the truth of ϕ

might be evaluated in the result of the current state model updated with action

model M. And of course Definition 5.9 is still a special case of this one, as the

public announcement model has a singleton domain.

Next, we generalize Definition 5.10 in a straight-forward way.

Definition 5.14 (Generated Forest Models: the General Case). Given a state

model M = 〈W ,∼1, ...,∼n , π〉, w ∈ W , and a protocol T = prot(ϕ) generated

from DEL formula ϕ. The forest model f(M ,T) is defined in three steps.

(1) Let w1 · · ·wm be a sequence of actions in protocol T, and suppose that these

actions belongs to action models M1,M2, · · · ,Mm respectively. Let Mi be a state

model M ⊗ M1 · · · ⊗ Mi , which is the result of updating M1 to Mi subsequently

on M . Then g(M ,w1 · · ·wm) is a forest model M ′ = 〈W ′,∼′
1, . . . ,∼

′
n , {→

′
w
}, π′〉

such that

• W ′ = WM ∪WM1
∪· · ·∪WMm

i.e. the set of states from subsequent updates;

• w ∼′
i w ′ iff ∃Mk (w ∼i w ′ & ∼i is the relation of agent i in Mk);

• w →w (w ,w) for any w , (w ,w) ∈ W ′;

• π′(w) = π(w) s.t. ∃Mk(w ∈ WMk
& π belongs to Mk).

(2) We define a union ⊎ of two forest models. Given forest model M ′ =

〈W ′,∼′
1, . . . ,∼

′
n , {→

′
w
}, π′〉, and M ′′ = 〈W ′′,∼′′

1, . . . ,∼
′′
n , {→

′′
w
}, π′′〉,

M ′ ⊎ M ′′ ::= 〈W ′′′,∼′′′
1 , . . . ,∼

′′′
n , {→

′′′
w
}, π′′′〉

where W ′′′ = W ′ ∪ W ′′, ∼′′′
i =∼′

i ∪ ∼′′
i for all i ∈ Ag, →′′′

w
=→′

w
∪ →′′

w
for all

w, and π′′′(w) = π′(w) ∪ π′′(w) for all w ∈ W ′ ∩ W ′′, π′′′(w) = π′(w) for all

w ∈ W ′ \ W ′′, π′′′(w) = π′′(w) for all w ∈ W ′′ \ W ′.

(3) We have,

f(M , prot(ϕ)) ::= ⊎τ∈prot(ϕ)g(M , τ).

The transformation from the forest models to the action-based interpreted

systems is the same as in Definition 5.11, as we do not put any special restric-

tions of forest model in that definition. The idea again is to associate every state
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(w ,w1, . . . ,wm) in the forest model with a global state (w ,w∼1, . . . ,w∼n ,w1, . . . ,wm)

in G, where the local state of agent i is (w ,w1, . . . ,wm)∼i , and to compile runs

out of branches of the forest model.

5.4.1 Theoretical results

We now proceed to generalize the results in Section 5.3.4.

Lemma 5.2. Given a state model M and DEL formulas ϕ, ψ, the following equiv-

alences hold:

i. f(M , prot(ϕ ∧ ψ)),w |=fd ϕ⇔ f(M , prot(ϕ)),w |=fd ϕ;

ii. f(M , prot([M,w]ψ)),w |=fd pre(w) ⇔ f(M , prot(pre(w))),w |=fd pre(w);

iii. f(M , prot(ϕ ∧ ψ)),w |=ft syn(pre(w)) ⇔

f(M , prot(ϕ)),w |=ft syn(pre(w));

iv. f(M , prot([M,w]ψ)),w |=ft syn(pre(w)) ⇔

f(M , prot(pre(w))),w |=ft syn(pre(w));

Proof. Let a state model M and DEL formulas ϕ, ψ be given.

Case i: This follows from the same reasoning as in Lemma 5.1.

Case ii: For the direction ⇒, suppose f(M , prot([M,w]ψ)),w |=fd pre(w).

We have f(M ,
⋃

v∈D(M)(prot(pre(v)∪vprot(ψ))),w |=fd pre(w). It is easy to see

that f(M , prot(pre(w))) is a sub-model of f(M ,
⋃

v∈D(M)(prot(pre(v)∪vprot(ψ))).

We distinguish two cases of pre(w), i.e. either pre(w) contains no action modal-

ities, or it contains action modalities that correspond only to the actions in forest

f(M , prot(pre(w))). In both cases, the truth value of pre(w) is solely decided by

the forest f(M , prot(pre(w))), therefore we have f(M , prot(pre(w))),w |=fd pre(w).

The direction ⇐ follows from a reverse reasoning.

Case iii: This follows from the same reasoning as in Lemma 5.1.

Case iv: This follows from the similar reasoning as in Case ii.

Proposition 5.4. Let M be a state model and ϕ ∈ LDEL.

M ,w |=sd ϕ iff f(M , prot(ϕ)),w |=fd ϕ

Proof. Given a state model M , and formula ϕ, we follow the procedure in Def-

inition 5.14 and build a forest model f(M , prot(ϕ)). We do an induction on
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the structure of ϕ. The cases of atomic proposition, negation, knowledge and

common knowledge are essentially the same as in the proof of Proposition 5.1.

We only show the case with action modality.

Case [M,w]ψ:

M ,w |=sd [M,w]ψ

⇔

M ,w |=sd pre(w) ⇒ M ⊗ M, (w ,w) |=sd ψ

⇔ By induction

f(M , prot(pre(w))),w |=fd pre(w) ⇒ f(M ⊗ M, prot(ψ)), (w ,w) |=fd ψ

⇔ By Lemma 5.2

f(M , prot([M,w]ψ)),w |=fd pre(w) ⇒ f(M ⊗ M, prot(ψ)), (w ,w) |=fd ψ

⇔ By forest model construction

f(M , prot([M,w]ψ)),w |=fd pre(w) ⇒

f(M ,∪v∈D(M)vprot(ψ)), (w ,w) |=fd ψ

⇔

f(M , prot([M,w]ψ)),w |=fd pre(w) ⇒

f(M ,∪v∈D(M)vprot(ψ) ∪ prot(pre(w))), (w ,w) |=fd ψ

⇔ As ∪v∈D(M)vprot(ψ) ∪ prot(pre(w)) = prot([M,w]ψ)

f(M , prot([M,w]ψ)),w |=fd pre(w) ⇒

f(M , prot([M,w]ψ)), (w ,w) |=fd ψ

⇔

f(M , prot([M,w]ψ)),w |=fd pre(w) ⇒ ∃(w ,w) s.t. w →w (w ,w)

and f(M , prot([M,w]ψ)), (w ,w) |=fd ψ

⇔

f(M , prot([M,w]ψ)),w |=fd [M,w]ψ

Proposition 5.5. Given a state model M and a DEL formula ϕ:

f(M , prot(ϕ)),w |=fd ϕ iff f(M , prot(ϕ)),w |=ft syn(ϕ)

Proof. Given a state model M and a DEL formula ϕ, we follow the procedure

in Definition 5.14 and build a forest model f(M , prot(ϕ)). We do an induction

on the structure of ϕ. The cases of atomic proposition, negation, knowledge and

common knowledge are essentially the same as in the proof of Proposition 5.2.

We only show the case with action modality.
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Case [M,w]ψ:

We have to show that

f(M , prot([M,w]ψ)),w |=fd [M,w]ψ iff f(M , prot([M,w]ψ)),w |=ft syn([M,w]ψ).

In other words:

f(M , prot([M,w]ψ)),w |=fd pre(w) ⇒ f(M , prot([M,w]ψ)), (w ,w) |=fd ψ

⇔

f(M , prot([M,w]ψ)),w |=ft syn(pre(w)) ⇒ f(M , prot([M,w]ψ)),w |=ft ©w syn(ψ)

First we show that both conditional parts are equivalent (i). Then we show that

on the condition, both consequential parts are equivalent (ii). In the proof we

use various times that prot([M,w]ψ)) = ∪v∈D(M)vprot(ψ) ∪ prot(pre(w)).

(i) We show that

f(M , prot([M,w]ψ)),w |=fd pre(w) iff f(M , prot([M,w]ψ)),w |=ft syn(pre(w))

by the following equivalence:

f(M , prot([M,w]ψ)),w |=fd pre(w)

⇔ By Lemma 5.2

f(M , prot(pre(w))),w |=fd pre(w)

⇔ By induction

f(M , prot(pre(w))),w |=ft syn(pre(w))

⇔ By Lemma 5.2

f(M , prot([M,w]ψ)),w |=ft syn(pre(w))

(ii) Next, we show that on condition of f(M , prot(pre(w))),w |=fd pre(w):

f(M , prot([M,w]ψ)), (w ,w) |=fd ψ iff f(M , prot([M,w]ψ)),w |=ft ©wsyn(ψ).

f(M , prot([M,w]ψ)), (w ,w) |=fd ψ

⇔

f(M ,∪v∈D(M)vprot(ψ) ∪ prot(pre(w))), (w ,w) |=fd ψ

⇔ (w ,w) 6∈ f(M , prot(pre(w)))

f(M ,∪v∈D(M)vprot(ψ)), (w ,w) |=fd ψ

⇔ By forest model construction
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f(M ⊗ M, prot(ψ)), (w ,w) |=fd ψ

⇔ By induction

f(M ⊗ M, prot(ψ)), (w ,w) |=ft syn(ψ)

⇔ By forest model construction

f(M ,∪v∈D(M)vprot(ψ)), (w ,w) |=ft syn(ψ)

⇔ (w ,w) 6∈ f(M , prot(pre(w)))

f(M ,∪v∈D(M)vprot(ψ) ∪ prot(pre(w))), (w ,w) |=ft syn(ψ)

⇔

f(M , prot([M,w]ψ)), (w ,w) |=ft syn(ψ)

⇔

f(M , prot([M,w]ψ)),w |=ft ©w syn(ψ)

Proposition 5.6. For every executable ϕ ∈ LNTEL (i.e., a formula of the form

syn(ψ) with ψ ∈ LDEL), and forest model M :

M ,w |=ft ϕ iff is(M ), (w ,w∼1, . . . ,w∼n ) |=it ϕ

Proof. Let a forest model M be given. We construction an interpreted sys-

tem is(M ) according to the procedure in Definition 5.11. Let sw stand for

(w ,w∼1, . . . ,w∼n ). We do an induction on ϕ. We only show the case with

temporal modality as the other cases are essentially the same as in the proof

of Proposition 5.3.

Case pre(w) → ©wψ:

M ,w |=ft pre(w) → ©wψ

⇔

M ,w |=ft pre(w) ⇒ M ,w |=ft ©w ψ

⇔ (♯) on condition of M ,w |= pre(w) a run exists

M ,w |=ft pre(w) ⇒ M , (w ,w) |=ft ψ

⇔ By induction

is(M ), sw |=it pre(w) ⇒ is(M ), (sw ,w) |=it ψ

⇔ (@) a run always exists

is(M ), sw |=it pre(w) ⇒ is(M ), sw |=it ©w ψ

⇔

is(M ), sw |=it pre(w) → ©wψ



124 CHAPTER 5. BRIDGING ACTION AND TIME LOGICS

In step ♯ of the proof, this is guaranteed by the condition M ,w |=ft pre(w): as

the precondition of w is true, it can be executed and there is an →w accessible

state from w . This is not guaranteed if pre(w) is false.

In step @ of the proof the required path always exists, as runs in inter-

preted systems are infinite. In particular, if sw = (rw , i), the selected (sw ,w)

(i.e. (w , (w ,w)∼1, . . . , (w ,w)∼n ) is of the form (r ′
w , i + 1) where r ′ is equivalent

to r to time i .

Now the generalization of Theorem 5.1 also holds.

Theorem 5.2. Given a state model M , and a DEL formula ϕ,

M ,w |=sd ϕ iff sem(M , ϕ), sw |=it syn(ϕ)

Proof. It directly follows from Proposition 5.4, Proposition 5.5 and 5.6.

5.5 Summary

Theorem 5.1 and Themorem 5.2 provide a correspondence on dynamic epistemic

framework and temporal epistemic framework. Given an epistemic state and a

formula in dynamic epistemic logic, we constructed an action-based interpreted

system relative to that epistemic state and that formula, that satisfied the transla-

tion of the formula into temporal epistemic logic, and vice versa. The construction

involved the protocol implicitly present in the dynamic epistemic formula, i.e. the

set of sequences of actions being executed to evaluate the formula.

The temporal epistemic model checkers mentioned [67, 25, 73] have all in

common that their semantics is on interpreted systems, and that they optimize

search by implementing ordered binary decision diagrams (OBDDs, see [42] for

an introduction). This requires boolean local state variables. Our presentation so

far has been on a rather ‘abstract’ level where local states took structured forms

such as (w ,w, v), thus providing a direct representation for the comparison with

dynamic epistemic logics. Such abstract presentation has its value in theoretical

investigations, but it is still open how it can be used in the context of MAS

programs. Although the current temporal epistemic checkers do not yet support

action-based interpreted systems, we believe that it is a possible direction to go.



Chapter 6

Model Checking Knowledge

Dynamics

6.1 Introduction

In Chapter 4, we considered the verification of playability conditions for complete

information games. In Chapter 5, we built a connection between two closely-

related formalisms, Dynamic Epistemic Logic (DEL) and Temporal Epistemic

Logic (TEL), in which one can represent and reason about the dynamics of the

agents’ knowledge. The modelling of agents’ knowledge and ignorance captures

the essence of incomplete information. Now we turn to the verification of in-

complete information scenarios more practically, with model checking tools (also

referred to as “model checkers”) using DEL or TEL as underlying theories.

This chapter first discusses the role of protocols in building multi-agent sys-

tems during the model checking process (section 6.2), then gives an introduction

(section 6.3) to three state-of-the-art model checkers that are going to be used:

DEMO (Dynamic Epistemic MOdelling), MCK (Model Checking Knowledge)

and MCMAS (Model Checking Multi-Agent Systems). The differences of mod-

elling multi-agent systems in DEL and TEL with three model checkers are studied

and compared through two detailed case studies: the Russian Cards Problem

(section 6.4) and the Sum And Product Problem (section 6.5). In the first case

study, we formulate and study the properties of a communication protocol that

solves the Russian Cards Problem, and then verify these properties in three model

checkers. In the second case study, we investigate a protocol involved with agents’

knowledge and ignorance. It is specified and verified in DEMO. Then the com-
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plexity of this problem in DEMO is discussed. And we also explain the inherent

difficulties to use MCK and MCMAS for this case.

6.2 Model Checking and Protocols

As introduced in Chapter 1 and shown in Chapter 4, there are mainly three steps

in the model checking process: (1) modelling the problem in a logical formalism

that is accepted by a model checker, (2) translating the specification in natural

language to its formal correspondence in the specification language of the model

checker, and (3) running the actual verification with the model produced in the

first step and the specification produced in the second step. The new aspect in

this chapter is that we are dealing with models for incomplete information and

with knowledge specifications.

In the case of DEL modelling, there are two types of models: state models,

which represent all possible states of a multi-agent system in a particular time

point and agents’ uncertainties about these states, and action models, which

represent all possible actions with preconditions and agents’ uncertainties about

these actions. State models will be drawn from (1), and action models will be

derived in (2). In the case of TEL modelling, there is only one type of models,

namely interpreted systems, which represent all possible states of a multi-agent

system, agents’ uncertainties of these states, and the temporal precedence rela-

tions among these states.

Depending on the specific model checker at hand, the models and specifi-

cations in steps (1) and (2) are obtained differently. The DEL model checker

DEMO specifies state models and action models directly in the form of math-

ematical structures, while the TEL model checkers MCK and MCMAS specify

interpreted systems in the form of programs, hence the dynamics of interpreted

systems are generated by such programs. To be more specific, an interpreted

system is built from a set of initial states and a set of protocols for agents. The

protocols basically specify the set of actions that each agent can choose in each

state. A protocol for an agent typically consists of a set of guarded commands:

if ϕ then a, where ϕ is a propositional formula on the local states, and a is an

action of that agent. In each round, the preconditions of these commands are

checked, and if the precondition of a command is true, then the agent will be able

to choose the corresponding action. When all agents have selected an action in a

state, then a unique outcome state will be determined. Thus a transition of the
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current state to the next state represents a change in the system. The restriction

of ϕ to be propositional formulas makes these two TEL model checkers unable to

build interpreted systems from protocols with knowledge preconditions.

Let us go back to DEL. There is no explicit representation of an agent’s

protocol in DEL, but the actions are represented in a way very close to the guarded

commands. Suppose w is an atomic action in DEL, and it has a precondition

pre(w). The execution of the action w in a state w of a model M is as follows: if

(M ,w) |= pre(w) then there is a new state (w ,w). This is close to the execution

of a guarded command: if ϕ then a. Yet, there are two main differences: (1) ϕ

can only be a propositional formula in MCK and MCMAS, but a precondition

pre(w) can be any DEL formulas in DEMO; (2) the atomic actions in DEL are

either joint actions by the agents or some events happened in the environment.

So, the protocols of interpreted systems in TEL and action models in DEL are

similar in that actions may have preconditions, but they also have differences.

On the one hand the protocols used in TEL model checkers can have individual

actions for agents, but restriction on the propositional preconditions, and on the

other hand, the action models in DEL have more flexibility in preconditions but

have more restrictions on agents’ actions, in the sense that these actions have to

be unified as one. This will be demonstrated more concretely in the second case

study.

6.3 Three Model Checkers

Recently, epistemic model checkers with dynamic facilities have been developed

to verify properties of various multi-agent systems. In this section, we intro-

duce three state-of-the-art model checkers in this category: DEMO, MCK and

MCMAS. This is by no means the complete list the model checkers for multi-

agent systems. There are other model checkers such as VerICS [53], but they will

not be discussed in this chapter.

6.3.1 Model Checker DEMO

DEMO is short for Dynamic Epistemic MOdelling, developed by J. van Eijck

[94]. DEMO implements the Dynamic Epistemic Logic of [9] (see Section 2.2.4).

It allows modelling of epistemic updates, formula evaluation, graphical display of

models, and so on.
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DEMO is based on DEL, so it must provide data structures for state models,

action models and DEL formulas. Written in the functional programming lan-

guage Haskell, DEMO allows users to call the pre-defined functions in Haskell.

The state models and action models are represented in a very natural way. Here

is a generalized definition over these two types of models in DEMO.

Mo [state][(state,formula)][(Agent,state,state)]

Mo is an indicator of model; [state] represents a list of states; [(state, formula)]

represents a valuation or precondition function depending on the type of formula;

and finally [(Agent, state, state)] represents accessibility relations of the agents.

Note that ‘[]’ indicates a list, which is a standard data structure in Haskell. The

elements in a list is ordered, and the elements in a set is not; but in the cases of

state or action models, we could just treat a list as a set.

Typically pointed models, i.e. models of the form (M ,w), are used in model

checking. DEMO uses a more general version, multiple pointed models, adding

a set of points instead of one:

Pmod [state][(state,formula)][(Agent,state,state)][state]

The only difference between Mo and Pmod is clearly the last [state].

Depending on the type of ‘formula’, there are two kinds of pointed models:

EpistM = Pmod [state][(state,[Prop])][(Agent,state,state)][state]

PoAM = Pmod [state][(state, Form)][(Agent,state,state)][state]

Here EpistM represents pointed (epistemic) state models; PoAM represents pointed

action models; [Prop] is a list of atomic propositions, and Form is a DEL formula.

We proceed with a relevant part of the definition of formulas in DEMO.

Form = Top | Prop Prop | Neg Form | Conj [Form] | Disj [Form]

| K Agent Form | CK [Agent] Form | Up PoAM Form

Formula Top stands for ⊤, Prop Prop for atomic propositional letters (the first

occurrence of Prop means that the datatype is ‘propositional atom’, whereas the

second occurrence of Prop is the placeholder for an actual proposition letter,

such as P 3), Neg for negation, Conj [Form] stands for the conjunction of a list

of formulas of type Form, similarly for Disj, K Agent stands for the individual

knowledge operator for agent Agent, and CK [Agent] for the common knowledge
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operator for the group of agents listed in [Agent]; and finally Up PoAM Form

stands for the formula with action modal operator.

The state changes are via update product: this is a mechanism to produce a

new state model from two given models (the current state model and the current

action model). We have explained this mechanism in Section 2.2.4. In DEMO,

the update operation is specified as:

upd :: EpistM -> PoAM -> EpistM

Here, EpistM is a pointed state and PoAM is a pointed action model, and the

update generates a new pointed state model. We can also update with a list of

pointed action models:

upds :: EpistM -> [PoAM] -> EpistM

In this chapter, the case studies can all be treated in PAL, so we just need to

use public announcement models. The pointed and singleton action model for a

public announcement is created by a function public with a precondition (the

announced formula) as argument.

Finally, the following function is truth evaluation function, which takes a

pointed state model and a DEL formula and return a Boolean value.

isTrue :: EpistM -> Form -> Bool

So far we have introduced the modelling and specification languages in DEMO,

and we will see the use of them shortly.

6.3.2 Model Checker MCK

MCK, for ‘Model Checking Knowledge’, is a model checker for temporal and

knowledge specifications, developed by P. Gammie and R. van der Meyden [25].

The system is written in Haskell. But different from DEMO, the input language

of MCK is a declarative language, so no Haskell functions are supported in

the input. To address the state explosion problem, MCK uses OBDD-based

techniques.

MCK is based on TEL (see Section 2.2.3). The overall setup supposes a

number of agents acting in an environment. This is modelled by an interpreted

system where agents perform actions according to a protocol i.e. a set of rules.

The effect of actions is to change the state of the system. Actions and the



130 CHAPTER 6. MODEL CHECKING KNOWLEDGE DYNAMICS

environment may be only partially observable to agents at each instant in time.

Knowledge may be based on current observations only, on current observations

and clock value, and on the history of all observations and clock value. The last

corresponds to synchronous perfect recall. We will use the later approach. In

the temporal dimension, the specification formulas may describe the evolution of

the system along a single computation, i.e. using linear-time temporal logic, or

they may describe the branching structure of all possible computations, i.e using

branching time or computation tree logic.

An input file consists of the following parts [25]:

• The environment in which the agents operate, including: the possible

states of the environment, the initial states of the environment, the names

of agents operating in this environment, how the agents’ actions change the

state of the environment, (optionally) a set of fairness conditions;

• The protocol by which each of the named agents chooses their

sequence of actions, including: the structure of local states maintained

by the agent to make such choices and record other useful information, the

possible initial values of the agent’s local states, and a description of what

parts of the state are observable to the agent;

• A number of specification formulas, expressing some property of the

way that the agent’s knowledge evolves over time.

The Figure 6.1 shows an example of input file. The scenario is that a single

agent called Bob (running the protocol “robot”) operates in an environment of

8 possible positions. The environment provides noisy readings of the position to

the robot via the sensor variable, which is declared to be an observable input to

the agent. Bob does not have the complete information of the system as he could

not access the position variable. The transitions section represents the effects

of the robot’s actions (Halt and skip) on the state, by means of a program using

non-deterministic ‘if’ statements. This program is considered to run atomically

in a single tick of the clock.

The specification formula spec spr xn indicates that the knowledge modality

should be interpreted using synchronous perfect recall, and that the formula has

the form X n ϕ, expressing that ϕ holds in precisely n steps after an initial state

(n = 2 in this example). This specification expresses that Bob knows he is in the
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type Pos = {0..7}

position : Pos

sensor : Pos

halted : Bool

init_cond = position == 0 /\ sensor == 0 /\ neg halted

agent Bob "robot" ( sensor )

protocol "robot" (sensor : observable Pos)

begin

do neg (sensor >= 3) -> skip

[] break -> <<Halt>>

od

end

transitions

begin

if Bob.Halt -> halted := True fi;

if neg halted -> position := position + 1 fi;

if True -> sensor := position - 1

[] True -> sensor := position

[] True -> sensor := position + 1

fi

end

spec_spr_xn = X 2 (sensor >= 3 <=> Knows Bob position in {2..4})

Figure 6.1: An example of MCK input, adapted from [25]

region {2..4} exactly when the sensor reading is larger or equal than 3. Then it

is up MCK to verify whether this specification is true or not.

6.3.3 Model Checker MCMAS

MCMAS, for ‘Model Checking Multi-Agent Systems’, is a model checker devel-

oped by F. Raimondi and A. Lomuscio [67, 65]. Similar to MCK, MCMAS uses

interpreted systems as the models for multi-agent systems, and uses OBDD tech-

niques as well; but in the specification language, MCMAS allows ATL formulas

in addition to LTL and CTL formulas. MCMAS is implemented in the program-

ming language C++. Our investigation is based on the version 0.6.0. Currently
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Agent Smith

Lstate = {s0,s1,s2,s3};

Lgreen = {s0,s1,s2};

Action = {a1,a2,a3};

Protocol:

s0:{a1};

s1:{a2};

s2:{a1,a3};

s3:{a2,a3};

endProtocol

Ev:

s2 if ((AnotherAgent.Action=a7);

s3 if Lstate=s2;

endEv

endAgent

Figure 6.2: An example of ISPL for MCMAS

there is a new version 0.9.61 with improved functionalities.

The input language of MCMAS is called Interpreted Systems Programming

Language (ISPL). The basic unit is an agent, starting from Agent and ending at

endAgent. An example is given in Figure 6.2. Each agent description consists

of the following parts: a list of local states, and a list of green local states:

Lstate and Lgreen; a list of actions: Action = {...}; a protocol for the agent:

‘Protocol ... endProtocol’, which specifies a set of actions available for the

agent; and an evolution function for the agent: ‘Ev ... endEv’, which specifies

the change of the local state of the agent.

The initial condition of the system is specified in ‘InitStates ... end

InitStates’, and the execution of agents generates temporal evolutions of the

system. The interpretation function is then defined in a construct ‘Evaluation

... end Evaluation’ with entries like ‘p if Smith.Lstate = s0’. And the

properties to be verified are specified in ‘Formulae ... end Formulae’ with

entries like EG (p -> K(Smith, p)), which means there exists a run (or compu-

tation) such that if p is true then agent Smith knows it.

1http://dfn.dl.sourceforge.net/sourceforge/ist-contract/mcmas-0.9.6.tar.gz
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6.4 Case Study: Russian Cards Problem

This section studies the Russian Cards Problem. We first give an analysis of

this problem and present a communication protocol that solves this problem in

Section 6.4.1. Then we show how to model this problem and specify the safety

conditions that should hold after any communications, and specify them in Public

Announcement Logic (PAL), a special case of DEL, in Section 6.4.2 and in TEL in

Section 6.4.4 respectively. Finally, we verify the safety conditions for the protocol

given earlier, in all three model checkers, and compare the differences.

6.4.1 The Problem

From a pack of seven known cards two players each draw three cards

and a third player gets the remaining card. How can the players with

three cards openly inform each other about their cards, without the

third player learning from any of their cards who holds it?

This Russian Cards Problem originated at the Moscow Math Olympiad 2000.

Call the players Anne, Bill and Cath, and the cards 0, ..., 6, and suppose Anne

holds {0, 1, 2}, Bill {3, 4, 5}, and Cath card 6. For the hand of cards {0, 1, 2},

write 012 instead, for the card deal, write 012.345.6, etc. Assume from now on

that 012.345.6 is the actual card deal. All announcements must be public and

truthful. There are not many things Anne can safely say. Obviously, she cannot

say “I have 0 or 6,” because then Cath learns that Anne has 0. But Anne can

also not say “I have 0 or 3,” because Anne does not know if Cath has 3 or another

card, and if Cath had card 3, she would have learnt that Anne has card 0. But

Anne can also not say “I have 0 or 1.” Even though Anne holds both 0 and 1, so

that she does not appear to risk that Cath eliminates either card and thus gains

knowledge about single card ownership (weaker knowledge, about alternatives, is

allowed), Cath knows that Anne will not say anything from which Cath may learn

her cards. And thus Cath can conclude that Anne will only say “I have 0 or 1” if

she actually holds both 0 and 1. And in that way Cath learns two cards at once!

The apparent contradiction between Cath not knowing and Cath knowing is not

really there, because these observations are about different information states: it

is merely the case that announcements may induce further updates that contain

yet other information.
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Whenever after Anne’s announcement it is (at least) not common knowledge

to Anne, Bill, and Cath, that Cath remains ignorant of any of Anne’s or Bill’s

cards, this may be informative to Cath after all. A typical example is when Anne

says that she either holds 012 or not any of those cards, after which Bill says

that Cath holds card 6. For details, see [88]. Indeed, a solution requirement is

that Cath’s ignorance remains public knowledge after any announcement. Such

announcements are called safe. In next section, a safety condition will be defined

precisely.

A Solution A solution to the Russian Cards Problem is a sequence of safe an-

nouncements after which it is commonly known to Anne and Bill (not necessarily

including Cath) that Anne knows Bill’s hand and Bill knows Anne’s hand. This

(instance of a) five hands protocol is a solution [88]:

Anne says “My hand of cards is one of 012, 034, 056, 135, 246,” after

which Bill says “Cath has card 6.”

Note that Bill’s announcement is equivalent to “My hand of cards is one of 345,

125, 024.” After this sequence, it is even publicly known that Anne knows Bill’s

hand and Bill knows Anne’s hand. If we extend Anne’s announcement with

one more hand, namely 245, and if it is public knowledge that the protocols

used by Anne and Bill are of finite length (so may consist of more than two

announcements), then it is ‘merely’ common knowledge to Anne and Bill that

they know each other’s hand, but (disregarding further analysis) Cath considers

it possible that they do not know each other’s hand of cards. This is a useful

security feature for Anne and Bill, as Cath plays the role of the eavesdropper. A

further postcondition is that all safe announcements by Anne ensure at least one

safe response from Bill, and vice versa. This recursive requirement results in a

more complex condition. See [89]. We will verify this five hands protocol indeed

meets safety conditions.

6.4.2 Modelling in Public Announcement Logic

We now model the Russian Cards Problem in public announcement logic. Given

a stack of known cards and some players, the players blindly draw some cards

from the stack. In a state where cards are dealt in that way, but where no game

actions of whatever kind have been done, it is commonly known what the cards
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are, that they are all different, how many cards each player holds, and that players

only know their own cards. From the last it follows that two deals are the same

for an agent, if she holds the same cards in both, and if all players hold the same

number of cards in both. This induces an equivalence relation on deals.

A (epistemic) state model Mrus encodes the knowledge of the players Anne,

Bill and Cath (a, b, c). It consists of
(

7
3

)(

4
3

)(

1
1

)

= 140 deals. Each deal is repre-

sented as aaa.bbb.c, where aaa represents three cards for Anne, bbb three cards

for Bill, and c one card for Cath. For each player, access between states is induced

by the equivalence above, for example, 012.345.6 ∼a 012.346.5 says that Anne

cannot tell these two card deals apart as her hand is 012 in both. Facts about

card ownership written as qi , for ‘card q is held by player i ’. The valuation V0a

of fact 0a (Anne holds card 0) consists of all 60 deals where 0 occurs in Anne’s

hand, etc. We select 012.345.6 as the actual deal, thus the initial condition is

captured by this pointed state model, (Mrus , 012.345.6).

After a sequence of announcements that is a solution of the Russian Cards

Problem, it should hold that Anne knows Bill’s cards, and that Bill knows Anne’s

cards:
a knows bs ::=

∧

q=0..6(Kaqb ∨ Ka¬qb)

b knows as ::=
∧

q=0..6(Kbqa ∨ Kb¬qa)

Moreover, it needs to satisfy that Cath does not know any of Anne’s or Bill’s

cards:

c ignorant ::=
∧

q=0..6(¬Kcqa ∧ ¬Kcqb)

We suggested in the previous section that these conditions are too weak. This

can be exemplified by the observation that, e.g.,

Mrus , 012.345.6 |= [(012a ∨ (¬0a ∧ ¬1a ∧ ¬2a))][c ignorant]¬c ignorant

After Anne says that her hand is 012 or that she does not hold any of those

cards, c ignorant is true, but a further update with that (in other words:

when Cath can assume that this is true) makes Cath learn some of Anne’s

cards, so that c ignorant is false. The actually required postconditions avoid-

ing such complications are: after every announcement of an executed protocol,

it is publicly known that Cath is ignorant, and after the execution of the en-

tire protocol it is commonly known to Anne and Bill that: Anne knows that

Bill knows her hand of cards, and Bill knows that Anne knows his hand of

cards. Also using that Cab(Kba knows bs ∧ Kab knows as) is equivalent to
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Cab(a knows bs ∧ b knows as). The correct solution condition and the safety

condition are formalised as

Cab(a knows bs ∧ b knows as)

Cabcc ignorant

The solution given in Section 6.4.1 consists of the successive announcements

a announce ::= 012a ∨ 034a ∨ 056a ∨ 135a ∨ 246a

b announce ::= 6c

To verify whether this is indeed a solution, it amounts to the DEL model

checking problems in Figure 6.4.2. Note that the safety condition should hold

after any announcements.

i. Mrus , 012.345.6 |= [a announce][b announce]Caba knows bs

ii. Mrus , 012.345.6 |= [a announce][b announce]Cabb knows as

iii. Mrus , 012.345.6 |= [a announce]Cabcc ignorant

iv. Mrus , 012.345.6 |= [a announce][b announce]Cabcc ignorant

Figure 6.3: DEL model checking for solutions of Russian Cards Problem

6.4.3 Russian Cards in DEMO

In DEMO, one is restricted to propositional letters starting with lower case p, q

and r , so we cannot write, for example, 0a for the atomic proposition that Anne

holds card 0, as in Section 6.4.1. Instead, we use atoms {p, . . . , p6, q, . . . , q6,

r, . . . , r6} to represent such atomic propositions, for example proposition p1

stands for ‘Anne holds card 1’.

An implementation of Russian Cards Problem is given in DEMO in Figure

6.4. We explain this implementation as follows.

The Models The initial state model mrus can be specified in a natural way.

The set of card deals, i.e. deals in Figure 6.4, is a collection of elements in the

form of (d0, d1, d2, d3, d4, d5, d6) where d0, d1, d2 represents three cards for agent

Anne, d3, d4, d5 for agent Bill and d6 for Cath. The elements in deals are then

associated with numbers in [0..139] by function zip,
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module RUS

where

import DEMO

deals = [(d0,d1,d2,d3,d4,d5,d6)|

d0<-[0..6], d1<-[d0+1..6],d2<-[d1+1..6],

d3<-[0..6], d4<-[d3+1..6],d5<-[d4+1..6],d6<-[0..6],

d0/=d3, d0/=d4,d0/=d5,d0/=d6,

d1/=d3, d1/=d4,d1/=d5,d1/=d6,

d2/=d3, d2/=d4,d2/=d5,d2/=d6,

d3/=d6, d4/=d6,d5/=d6]

ideals = zip [0..139] deals

mrus:: EpistM

mrus = (Pmod [0..139] val acc [0])

where

val=[(w,[P d0, P d1, P d2, Q d3, Q d4, Q d5, R d6])|

(w, (d0,d1,d2,d3,d4,d5,d6))<-ideals]

acc=[(a,w,v)|(w,(d0,d1,d2,d3,d4,d5,d6))<-ideals,

(v,(d0’,d1’,d2’,d3’,d4’,d5’,d6’))<-ideals,

d0==d0’,d1==d1’,d2==d2’]++

[(b,w,v)|(w,(d0,d1,d2,d3,d4,d5,d6))<-ideals,

(v,(d0’,d1’,d2’,d3’,d4’,d5’,d6’))<-ideals,

d3==d3’,d4==d4’,d5==d5’]++

[(c,w,v)|(w,(d0,d1,d2,d3,d4,d5,d6))<-ideals,

(v,(d0’,d1’,d2’,d3’,d4’,d5’,d6’))<-ideals,

d6==d6’]

a_announce =public( K a (Disj[

Conj[Prop (P 0), Prop (P 1), Prop (P 2)],

Conj[Prop (P 0), Prop (P 3), Prop (P 4)],

Conj[Prop (P 0), Prop (P 5), Prop (P 6)],

Conj[Prop (P 1), Prop (P 3), Prop (P 5)],

Conj[Prop (P 2), Prop (P 4), Prop (P 6)]]))

b_announce= public (K b (Prop (R 6)))

a_knows_bs = Conj[Disj[K a (Prop (Q i)), K a (Neg(Prop (Q i)))]| i<-[0..6]]

b_knows_as = Conj[Disj[K b (Prop (P i)), K b (Neg(Prop (P i)))]| i<-[0..6]]

c_ignorant = Conj[Conj[Neg (K c (Prop (P i))), Neg (K c (Prop (Q i)))]| i<-[0..6]]

checki = isTrue mrus (Up a_announce (Up b_announce (CK [a,b] a_knows_bs)))

checkii = isTrue mrus (Up a_announce (Up b_announce (CK [a,b] b_knows_as)))

checkiii = isTrue mrus (Up a_announce (CK [a,b,c] c_ignorant))

checkiv = isTrue mrus (Up a_announce (Up b_announce (CK [a,b,c] c_ignorant)))

check1 = isTrue mrus (Up a_announce b_knows_as)

check2 = isTrue mrus (Up a_announce (K b (Prop (R 6))))

check3 = isTrue mrus (Up a_announce (CK [a,b] b_knows_as))

Figure 6.4: Russian Cards in DEMO



138 CHAPTER 6. MODEL CHECKING KNOWLEDGE DYNAMICS

ideals = zip [0..139] deals

The ideals represents the 140 different deals. Each deals is associated with seven

propositional letters – the valuation of facts in that state. The first two deals

correspond to the valuations

(0,[P 0,P 1,P 2,Q 3,Q 4,Q 5,R 6]),

(1,[P 0,P 1,P 2,Q 3,Q 4,Q 6,R 5])

The deal numbered 0 stands for actual deal 012.345.6. A pair of two integers is

in the accessibility relation for an agent i , if that agent holds the same cards in

both deals. Two such pairs for Anne are (a, 0, 0), (a, 0, 1) where a is short for

Anne.

Anne’s public announcement a announce corresponds to the following sin-

gleton action model named a announce, which is produced by the function

public.

public( K a (Disj[Conj[p,p1,p2],Conj[p,p3,p4],Conj[p,p5,p6],

Conj[p1,p3,p5],Conj[p2,p4,p6]]))

Similarly, we have an action model b announce for Bill’s announcement b announce.

The Specifications The postcondition that Anne knows Bill’s hand of cards,

a knows bs, is represented as

aknowsbs = Conj[ Disj[K a q, K a (Neg q) ],

Disj[K a q1, K a (Neg q1) ],

Disj[K a q2, K a (Neg q2) ],

Disj[K a q3, K a (Neg q3) ],

Disj[K a q4, K a (Neg q4) ],

Disj[K a q5, K a (Neg q5) ],

Disj[K a q6, K a (Neg q6) ] ]

Similarly for b knows as and c ignorant.

In the last part, we present the model checking problems. The first one is:

checki=isTrue mrus (Up a_announce (Up b_announce (CK [a,b] a_knows_bs)))



6.4. CASE STUDY: RUSSIAN CARDS PROBLEM 139

Here checki is just the name that refers to this problem, serving as a shortcut;

mrus corresponds to the initial pointed model (Mrus , 012.345.6); and the rest

part corresponds to [a announce][b announce]Caba knows bs. The checki,

checkii, checkiii and checkiv correspond to four model checking problems

(i), (ii), (iii) and (iv) in Figure 6.4.2 respectively. The last three, check1, check2

and check3, check that “After Anne’s announcement Bill knows Anne’s card”,

“After Anne’s announcement Bill knows that Cath’s card is 6”, and “After Bill’s

announcement it becomes common knowledge among Anne and Bill that Bill

knows Anne’s card” respectively.

These problems are verified in DEMO, and we get all confirmative results,

which are desired. The performance of DEMO is compared with other model

checker in Section 6.4.7.

6.4.4 Modelling in Temporal Epistemic Logic

The Russian Cards Problem is now studied in TEL. We have two main tasks: (1)

model this problem as an interpreted system, and (2) specify solution conditions

and safety conditions in temporal epistemic formulas.

We use the interpreted system introduced in Chapter 2, not the action-based

interpreted system in Chapter 5, because the action-based interpreted system is

not yet supported by MCK and MCMAS. We need to specify an interpreted

system Irus = (R, π) with R a set of runs and π an interpretation function.

A run consists a sequence of global states, and each global state consists of an

environment state and a local state for each agent. The representation of global

states and local states is different in MCK and MCMAS. In MCK, a system

has a set of variables, and agents have access to a subset of these variables; an

instance of these variables represents a global state, and a local state of an agent

is then an instance of the variables that it can access. In MCMAS, agents’ local

states are atomic objects, and a global state is simply a tuple of all agents’ local

states. The runs are generated by agents’ protocols and the system transition

program in MCK, but in MCMAS runs are generated by agents’ protocols and

their own evolution programs. The interpretation function is specified naturally.

The solution conditions and safety conditions should be expressed as temporal

epistemic formulas. As we have shown in Chapter 5, an action modality in DEL is

associated with an action-labelled next-time modality in NTEL. We make a simi-

lar analogy without action labels, so [a announce][b announce]Caba knows bs
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is associated with © © Caba knows bs. Of course, they are not the same, as

the modality [a announce] certainly holds more information than just ©; but

under certain interpreted systems, they can express the same meanings. We will

discuss it in the next section.

We now proceed to specify and verify the Russian Cards Problem in MCK

and MCMAS in the next two sections respectively.

6.4.5 Russian Cards in MCK

In MCK, we have to reinterpret the dynamic epistemics of Section 6.4.1 in tem-

poral epistemic terms. An implementation is presented in rus.mck2. We now

explain this implementation.

We introduce environmental variables and initialize those; we create three

agents A, B, and C with corresponding protocols "anne", "bill" and "cath"; the

main part of the program specifies the (temporal) transitions, induced by card

dealing and the announcements, that relate different information states for these

players; finally rus.mck contains various properties to be verified.

A hand of cards of an agent is encoded by a list of seven booleans, for example

a hand : Bool[7] specifies for all of the cards 0, ..., 6 whether they are held

by Anne or not, such that anne cards[0] is true when Anne holds card 0, etc.

Initially, such variables are set to false.

Agent A, for Anne, is created by

agent A "anne" (a_hand, a_announce, b_announce, stage)

The name of the agent is A. It uses protocol "anne". It can interact with, and

potentially observe the variables between parentheses. The first of those is, ob-

viously, only observable by Anne, the others will reappear in the other agent

definitions, as they are publicly observable. The variable stage is the ‘clock

tick’.

The transitions part of rus.mck specify what happens in different stages of

the execution of the protocol. We distinguish stages (clock ticks) 0, 1, 2, and 3.

In stage 0 the cards are dealt to the players, in the order 0, ..., 6. We show it up

to the dealing of card 0.

stage == 0 ->

2Available to download: http://ac.jiruan.net/thesis
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begin if

na < 3 -> begin a_hand[0]:=True; na:= na+1 end []

nb < 3 -> begin b_hand[0]:=True; nb:= nb+1 end []

nc == 0 -> begin c_hand[0]:=True; nc:= 1 end

fi;

Variables na, nb, and nc are counters to record how many cards agents have, and

[] means nondeterministic choice. In this part of the transitions, 140 different

deals are created, represented as 140 different timelines.

In stage 1, Anne announces that her hands is one of 012, 034, 056, 135, and

246. This is done indirectly by executing the protocol "anne", that contains a

condition corresponding to these five deals, which causes the action Announce to

be executed. This then results in the atom a announce becoming true.

stage == 1 /\ A.Announce -> a_announce := True

In stage 2, Bill announces that Cath holds card 6. Alternatively, one can

model that Bill announces Cath’s card – whatever it is. Bill’s announcement is

by way of an action B.Announce, and results in the variable b announce to become

true. This is the transition to stage 3, the final stage. We can imagine that the

whole system consists of 140 different runs. Whether variables a announce and

b announce are true in stage 2 and stage 3, respectively, depends on the deal in

that run.

The protocol for Anne is:

protocol "anne" (cards: observable Bool[7],

a_announce: observable Bool, b_announce: observable Bool,

stage: observable Counter)

begin

skip; if

( (cards[0] /\ cards[1] /\ cards[2]) \/

(cards[0] /\ cards[3] /\ cards[4]) \/

(cards[0] /\ cards[5] /\ cards[6]) \/

(cards[1] /\ cards[3] /\ cards[5]) \/

(cards[2] /\ cards[4] /\ cards[6]) )

-> <<Announce>>

fi

end
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The ‘begin-end’ part of this protocol specifies for each of the stages 0, 1, and 2

what happens in that stage. In stage 0 nothing happens: skip. In stage 1, the

action Announce – that is, whatever is found between << and >> – is executed.

Actually, the value or instance of cards for Anne is a cards; see above, where

Anne is created. Alternatively to five actual hands, a much longer protocol creates

five arbitrary hands of cards based on Anne’s actual hand. Nothing is specified

for stage 2: this is therefore skip again by default. Bill has a similar protocol but

his protocol starts with skip ; skip, as his announcement is in stage 2. And

Cath does not act at all, which carries the protocol skip ; skip ; skip.

The knowledge of the agents evolves with every stage, via the agents’ limited

access to the environment. Initially, they only observe their own hand of cards,

and Anne’s and Bill’s public announcement is accessed by all agents. Anne cannot

distinguish two states iff her observations are the same in those states. For

example, in stage, 1 Anne cannot distinguish the timelines for deals 012.345.6 and

012.346.5, because: both have the same a hand values (for all seven variables),

a announce is true in both cases, and b announce is false is both cases. But in

stage 3, Anne can distinguish these timelines, since b announce is true for the

former and false for the latter.

A final part of rus.mck lists various temporal epistemic properties to be

checked. They are translated from the solution and safety conditions in Figure

6.4.2. For example, we want to translate and verify that

Mrus , 012.345.6 |= [a announce][b announce]Caba knows bs.

The latest version of MCK does not support common knowledge operators for

specifications in the perfect recall module. Therefore we verify instead that in

stage 3, a knows bs is valid in the model. This corresponds to the following in

DEL semantics

Mrus ⊗ a announce ⊗ b announce |= a knows bs

which ensures that

Mrus ⊗ a announce ⊗ b announce, 012.345.6 |= Cabca knows bs.
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And in this specific model

Caba knows bs ↔ Cabca knows bs

is also valid.

spec_spr_xn = X 3 ( (a_announce /\ b_announce) =>

( (((Knows A b_hand[0]) \/ (Knows A neg b_hand[0]))) /\

(...)

(((Knows A b_hand[6]) \/ (Knows A neg b_hand[6]))) ))

The part spec spr xn means that we are using the perfect recall module of MCK,

and X 3 is the triple ‘next state’ temporal operator, counting from stage 0. There-

fore, the formula bound by the operator is checked in stage 3. Similarly, other

conditions for the five hands protocol are verified.

6.4.6 Russian Cards in MCMAS

We implement the Russian Cards Problem in MCMAS (see rus.mcmas3). In

MCMAS, the global state is represented as a tuple of the local states of the

agents. Let agents Anne, Bill, and Cath represent players, and let an agent

Env (the environment) represent the card deal. The local state of agent Anne

requires five components, that can be seen as variables; three represent her hand

of cards, and two the status quo and outcome of the two announcements. The

version 0.6 of MCMAS, which is being used here, does not support variables in

the description of agents’ local states, but the newer version 0.9.6 has addressed

this issue and does support variables. Therefore we encode the variable parts in

a single string. For example, one local state for Anne is a012tf. This means that

Anne holds cards 0,1, and 2, that Anne’s announcement a announce has been

(truthfully) made in the global state of which this local state is a component,

and that Bill’s announcement b announce could not be made (was false) in

that global state. Similarly, we have five variables for Bill, and three variables for

Cath. The local state of the agent Env has seven variables, because it represents

a card deal. An example is e0123456. This stands for the actual deal 012.345.6.

The information changes take the usual steps: (1) the cards are revealed to the

agents, (2) Anne announces a announce, and (3) Bill announces b announce.

3Available to download: http://ac.jiruan.net/thesis



144 CHAPTER 6. MODEL CHECKING KNOWLEDGE DYNAMICS

All reachable global states will be included in the next stage. An example initial

global state is (annnnn, bnnnnn, cnnn, e0123456); an ‘n’ essentially means

that the agent has no information on the value of corresponding variable, mod-

elled by giving the variable that value n. So, bnnnnn means that Bill’s local state

is that he does not know his cards yet (the first three n’s), that Anne has not

made her announcement yet (the fourth n) and that Bill has not made his an-

nouncement yet (the last n). The above global state (annnnn, bnnnnn, cnnn,

e0123456) then transits to (a012nn, b345nn, c6nn, e0123456), where each

agent knows what cards it holds. Anne’s a announce is then made, causing

the transition to (a012tn, b345tn,c6tn, e0123456) and b announce finally

results in (a012tt, b345tt,c6tt, e0123456) – this time, Bill’s announcement

is successful. These state transitions are specified in the program. For example,

for agent Anne, the transition for step one is as follows; Lstate is the local state

of (current) agent Anne, and Env.Lstate is the local state of Env.

a012nn if (Lstate=annnnn and

( Env.Lstate=e0123456 or Env.Lstate=e0123465 or

Env.Lstate=e0123564 or Env.Lstate=e0124563 ));

The environment Env does not change during transitions, but this has to be made

explicit as

e0123456 if Lstate=e0123456;

In the ‘valuation’ part of an MCMAS program we define what can be seen as

(the denotation of) atomic propositions. For example, the following

ab_d0123456 if (Anne.Lstate=a012tt and Bill.Lstate=b345tt and

Cath.Lstate=c6tt and Env.Lstate=e0123456);

is an atom that is (uniquely) true in the global state (a012tt, b345tt,c6tt,

e0123456). Similarly, atoms expressing card ownership such as 0a for ‘Anne

holds card 0’ are defined by enormous expressions starting as (and consisting of

60 alternative card deals)

a0 if (Env.Lstate=e0123456 or Env.Lstate=e0123465 or ...
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Groups of agents can be named too. This is useful when checking com-

mon knowledge. For example, expression “ABC={Anne, Bill, Cath;}” gives the

group consisting of Anne, Bill, and Cath the label ABC. The common knowledge

formula Cabc(0a → Ka0a) is then represented as GCK(ABC,a0->K(Anne,a0)). We

conclude this short exposition with the postcondition Cabcc ignorant that veri-

fies that Cath remains ignorant after both announcements have been made – ‘!’

stands for negation.

ab_d0123456 -> GCK(ABC,(

( !K(Cath,a0) and !K(Cath,b0) ) and

( !K(Cath,a1) and !K(Cath,b1) ) and

( !K(Cath,a2) and !K(Cath,b2) ) and

( !K(Cath,a3) and !K(Cath,b3) ) and

( !K(Cath,a4) and !K(Cath,b4) ) and

( !K(Cath,a5) and !K(Cath,b5) ) and

( !K(Cath,a6) and !K(Cath,b6) ) ));

6.4.7 Experimental Results and Comparison

The experiments were made with these three model checkers in two different

system configurations. The first system, sysa, is configured with GNU/Linux

2.4.30 i686, 800Mhz Pentium 4 CPU and 2GB RAM, and the second, sysb, is

configured with GNU/Linux 2.6.20 i686, 2.13Ghz Core 2 CPU and 3GB DDR

RAM.

Model Checkers sysa sysb Number of States
DEMO 9 seconds 5 seconds 163
MCK 109 seconds 50 seconds 420

MCMAS 117 seconds 52 seconds 420

Figure 6.5: Experimental Results for Russian Cards Problem

Rough performance for the implementations in previous sections, are pre-

sented in Figure 6.5. It takes around half of the time to finish the checking tasks

for all three model checkers in the faster system, i.e. sysb. This shows that the

improvement of hardware does help.

These results cannot be straightforwardly interpreted as indicative of the rel-

ative performance of the model checkers, as they are based on rather different
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modellings and model checking questions. One clear difference is the number of

states in the models. The column “Number of States” indicates the number of

states that will be produced by each model checker. The DEMO will have 163

different states, because the original state model has 140 states, and after Anne’s

announcement, there are 20 states left, and after Bill’s announcement, there are

only 3 states left. The MCK and MCMAS both have 420 states because they

are based on an interpreted system which has 140 different runs, and in each run

there are essentially three different time points.

Another difference is in the time measured by model checkers. The time

measure for MCK and MCMAS is from the whole model checking process, i.e.,

both model construction and formula checking. DEMO operates on slightly

different principles: first, the Haskell interpreter compiles RUS.hs and related

modules DPLL and DEMO; only then, DEMO check individual formulas; we

measured the combined autogeneration, compilation and checking steps.

6.5 Case Study: Sum And Product Problem

This section studies the Sum And Product Problem. We first model this problem

in PAL and solve it using model checker DEMO. We then study different vari-

ations of this problem, and discuss the complexity issues involved. Finally, we

discuss the inherent difficulties to specify this problem in MCK and MCMAS.

6.5.1 The Problem

The following problem, or riddle, was first stated in the Dutch-language mathe-

matics journal Nieuw Archief voor Wiskunde in 1969 by H. Freudenthal [23] and

subsequently solved in [24]. A translation of the original formulation is:

A says to S and P : I have chosen two integers x , y such that 1 < x < y

and x + y ≤ 100. In a moment, I will inform S only of s = x + y ,

and P only of p = xy . These announcements remain private. You are

required to determine the pair (x , y).

They act as said. The following conversation now takes place:

i. P says: “I do not know it.”

ii. S says: “I knew you didn’t.”
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iii. P says: “I now know it.”

iv. S says: “I now also know it.”

Determine the pair (x , y).

The announcements by the agents appear to be about ignorance and knowledge

only. But actually the agents learn numerical facts from each other’s announce-

ments. For example, the numbers cannot be 2 and 3, or any other pair of prime

numbers, nor for example 2 and 4, because in all those cases Product would

immediately have deduced the pair from their product. As a somewhat more

complicated example, the numbers cannot be 14 and 16: if they were, their sum

would be 30. This is also the sum of the prime numbers 7 and 23. But then,

as in the previous example, Product (P) would have known the numbers, and

therefore Sum (S )—if the sum had been 30—would have considered it possible

that Product knew the numbers. But Sum said that he knew that Product didn’t

know the numbers. So the numbers cannot be 14 and 16. Sum and Product learn

enough, by elimination of which we gave some examples, to be able to determine

the pair of numbers: the unique solution of the problem is the pair (4, 13).

The knowledge that agents have about mental states of other agents and,

in particular, about the effect of communications, can be important for solv-

ing problems in multi-agent systems, both for cooperative and for competitive

groups. Dynamic epistemic logic was developed to study the changes brought

about by communication in such higher-order knowledge of other agent’s and of

group knowledge [10, 27]. The Sum And Product Problem presents a complex

illustrative case of the strength of specifications in dynamic epistemic logic and

of the possibilities of automated model checking, and both can also be used in

real multi-agent system applications.

6.5.2 Sum And Product in Public Announcement Logic

We give a specification of the Sum And Product Problem in PAL. Modulo inessen-

tial differences, explicitly mentioned below, this specification was first suggested

by Plaza in [61], and in this section we elaborate on his results.

First we need to determine the set of atomic propositions and the set of agents.

In the formulation of the problem, x , y are two integers such that 1 < x < y and

x + y ≤ 100. Define I ::= {(x , y) ∈ N
2 | 1 < x < y & x + y ≤ 100}.

Consider the variable x . If its value is 3, we can represent this information as the
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(truth of) the atomic proposition ‘x = 3’. Slightly more formally we can think

of ‘x = 3’ as a propositional letter x3. Thus we create a (finite) set of atoms

{xi | (i , j ) ∈ I } ∪ {yj | (i , j ) ∈ I }.

Concerning the agents, the role of the announcer A is to guarantee that the

background knowledge for solving the problem is commonly known among Sum

and Product. The announcer need not be introduced as an agent in the logical

modelling of the system. That leaves {S ,P} as the set of agents. Agents S and

P will also be referred to as Sum and Product, respectively.

The proposition ‘Sum knows that the numbers are 4 and 13’ is represented

as KS (x4 ∧ y13). The proposition ‘Sum knows the (pair of) numbers’ is described

as KS (x , y) ::=
∨

(i ,j )∈I KS (xi ∧ yj ). Similarly, ‘Product knows the numbers’ is

represented by KP(x , y) ::=
∨

(i ,j )∈I KP(xi ∧ yj ). Furthermore, note that the

‘knew’ in announcement ii, by Sum, refers to the truth of KS¬KP(x , y) in the

initial epistemic state, not in the epistemic state resulting from announcement i ,

by Product.

Because of the property that all known propositions are true (‘Kiϕ → ϕ’ is

valid), announcement i is entailed by announcement ii . Because of that, and as

Product’s announcement iii is a response to Sum’s ii , and Sum’s iv to Product’s

iii , the initial announcement i by Product is superfluous in the subsequent anal-

ysis. 4 This is sufficient to formalise the announcements made towards a solution

of the problem:

i. P says: “I do not know it”: ¬KP (x , y)

ii. S says: “I knew you didn’t”: KS¬KP(x , y)

iii. P says: “I now know it”: KP(x , y)

iv. S says: “I now also know it”: KS(x , y)

We can interpret these statements on a state model SP (x ,y) ::= 〈I ,∼,V 〉 con-

sisting of a domain of all pairs (x , y) ∈ I (as above), with accessibility rela-

tions ∼S and ∼P such that for Sum: (x , y) ∼S (x ′, y ′) iff x + y = x ′ + y ′, and

for Product: (x , y) ∼P (x ′, y ′) iff xy = x ′y ′; and with valuation V such that

Vxi
= {(x , y) ∈ I | x = i} and Vyj

= {(x , y) ∈ I | y = j}.

4Additional to this justification that announcement i is superfluous, we cannot formalise
that announcement ii follows announcement i in our logical language, as we cannot refer to
the past. In dynamic epistemic logic with assignment one can indirectly model such past tense
epistemic statements [101].
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We can describe the solution of the problem as the truth of the statement5

SP (x ,y), (4, 13) |= 〈KS¬KP(x , y)〉〈KP(x , y)〉〈KS(x , y)〉⊤

This expresses that, if (4, 13) is the initial state, then it is possible to publicly

announce ii , iii , and iv , in that order. This statement does not express that

(4, 13) is the only solution. We can express more properly that (4, 13) is the only

solution (and from here on our observations go beyond [61] again) as the model

validity

SP (x ,y) |= [KS¬KP(x , y)][KP(x , y)][KS(x , y)](x4 ∧ y13)

This expresses that in all other points of the model than (4, 13) the sequence

of three announcements cannot be truthfully made. Technically this relates to

the well-known modal property that formulas of form �ϕ are true for all ϕ in

all worlds where there are no accessible worlds. If all announcements are true,

three consecutive epistemic state transformations result in a final epistemic state

(M ,w) (namely (SP (x ,y)|ii |iii |iv ,w)) wherein x4 ∧ y13 should hold. Clearly, this

is only the case when w = (4, 13). In all other states of the domain I of model

SP (x ,y), at least one announcement cannot be truthfully made; but that means

that any postcondition of the dynamic ‘necessity-type’ modal operator corre-

sponding to that announcement, even ‘false’, is true in that state.

For example, we observed that in state (7, 23) Product would know the num-

bers (as they are both prime). Therefore, ¬KP(x , y) is false in (SP (x ,y), (7, 23)),

and therefore KS¬KP(x , y) (announcement ii) is also false in (SP (x ,y), (7, 23)).

The semantics gives us

SP (x ,y), (7, 23) |= [KS¬KP (x , y)]( [KP(x , y)][KS(x , y)](x4 ∧ y13) )

and SP (x ,y), (7, 23) |= [KS¬KP(x , y)]⊥.

6.5.3 Sum And Product in DEMO

We implement the Sum And Product Problem in DEMO (see Figure 6.6) and

show how the implementation finds the unique solution (4, 13).

5Modality 〈ϕ〉 is the dual of [ϕ].
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module SNP

where

import DEMO

upb = 100

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=upb]

numpairs = llength(pairs)

llength [] =0

llength (x:xs) = 1+ llength xs

ipairs = zip [0..numpairs-1] pairs

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2 ]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2 ]

fmrs1e = K a (Conj [Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

Neg (K b (Conj [Prop (P x),Prop (Q y)]))]| (x,y)<-pairs])

amrs1e = public (fmrs1e)

fmrp2e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K b (Conj [Prop (P x),Prop (Q y)]) ] )|(x,y)<-pairs]

amrp2e = public (fmrp2e)

fmrs3e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K a (Conj [Prop (P x),Prop (Q y)]) ] )|(x,y)<-pairs]

amrs3e = public (fmrs3e)

solutione = showM (upds msnp [amrs1e, amrp2e, amrs3e])

fmrs1 = K a (Neg (Disj [ (K b (Conj [Prop (P x),Prop (Q y)]))| (x,y)<-pairs]))

amrs1 = public (fmrs1)

fmrp2 = Disj [K b (Conj [Prop (P x),Prop (Q y)])|(x,y)<-pairs]

amrp2 = public (fmrp2)

fmrs3 = Disj [K a (Conj [Prop (P x),Prop (Q y)])|(x,y)<-pairs]

amrs3 = public (fmrs3)

solution = showM (upds msnp [amrs1, amrp2, amrs3])

Figure 6.6: The DEMO program SNP.hs. The last part, starting from fmrs1,
implements a less efficient variant.

Representing the state models

The set I ::= {(x , y) ∈ N
2 | 1 < x < y & x + y ≤ 100} is realized in DEMO as

upb = 100

pairs = [(x,y)| x<-[2..100], y<-[2..100], x<y, x+y<=upb]

upb is the maximal sum considered, in this case upb=100; pairs is a list of pairs:

a list is a standard data structure in Haskell, unlike a set. Thus, { and } are

replaced by [ and ], ∈ is replaced by <-, and instead of I we name it pairs. A

pair such as (4,18) is not a proper name for a domain element. In DEMO,

natural numbers are such proper names. Therefore, we associate each element in

pairs with a natural number and make a new list.

ipairs = zip [0..numpairs-1] pairs
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Here, numpairs is the number of elements in pairs, and the function zip pairs

the i -th element in [0..numpairs-1] with the i -th element in pairs, and makes

that the i -th element of ipairs. For example, the first element in ipairs is

(0,(2,3)). The initial model of the Sum And Product Problem is

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)|(w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2 ]++

[(b,w,v)|(w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2 ]

Here, msnp is a pointed state model, that consists of a domain [0..numpairs-1],

a valuation function val, an accessibility relation function acc, and [0..numpairs-1]

points. As the points of the model are the entire domain, we may think of this

initial epistemic state as the state model underlying it.

The valuation function val maps each state in the domain to the subset of

atoms that are true in that state. This is different from Section 2.2.4, where the

valuation V was defined as a function mapping each atom to the set of states

where it is true. The correspondence q ∈ val(w) iff w ∈ V (q) is elementary.

An element (w,[P x, Q y]) in val means that in state w, atoms P x and Q y

are true. For example, given that (0,(2,3)) is in ipairs, P 2 and Q 3 are true

in state 0, where P 2 stands for ‘the smaller number is 2’ and Q 3 stands for

‘the larger number is 3’. These same facts were described in Section 6.5.2 by

x2 and y3, respectively, as that gave the closest match with the original problem

formulation. In DEMO, names of atoms must start with capital P ,Q ,R, but

the correspondence between names will be obvious.

The function acc specifies the accessibility relations. Agent a represents Sum

and agent b represents Product. For (w,(x1,y1)) and (v,(x2,y2)) in ipairs,

if their sum is the same: x1+y1==x2+y2, then they cannot be distinguished by

Sum: (a,w,v) in acc; and if their product is the same: x1*y1==x2*y2, then

they cannot be distinguished by Product: (b,w,v) in acc. Function ++ is an

operation merging two lists.

Representing the announcements

Sum and Product’s announcements are modelled as singleton action models, gen-

erated by the announced formula (precondition) ϕ and the operation public.

Consider KS¬
∨

(i ,j )∈I KP(xi∧yj ), expressing that Sum says: “I knew you didn’t.”
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This is equivalent to KS

∧

(i ,j )∈I ¬KP(xi ∧ yj ). A conjunct ¬KP(xi ∧ yj ) in that

expression, for ‘Product does not know that the pair is (i , j )’, is equivalent to

(xi ∧ yj ) → ¬KP (xi ∧ yj ).
6 The latter is computationally cheaper to check in the

model, than the former: in all states but (i , j ) of the model, the latter requires a

check on two booleans only, whereas the former requires a check in each of those

states of Product’s ignorance, that relates to his equivalence class for that state,

and that typically consists of several states.

This justifies why the check on KS¬
∨

(i ,j )∈I KP(xi ∧yj ) can be replaced by one

on KS

∧

(i ,j )∈I ((xi ∧ yj ) → ¬KP(xi ∧ yj )). Similarly, using a model validity, the

check on
∨

(i ,j )∈I KP(xi ∧ yj ) (Product knows the numbers) can also be replaced,

namely by a check
∧

(i ,j )∈I ((xi ∧ yj ) → KP(xi ∧ yj )).
7 Using these observations,

and writing an implication ϕ→ ψ as ¬ϕ ∨ ψ (because DEMO does not support

implication directly), we represent the three problem announcements ii , iii , and

iv listed on page 146 as fmrs1e, fmrp2e, and fmrs3e, respectively, as listed in

Figure 6.6. The corresponding singleton action models are obtained by applying

the function public, e.g. amrs1e = public (fmrs1e). This is also shown in the

figure. The line with solutione abbreviates the computation of the successive

model restrictions. In other words, (upds msnp [amrs1e, amrp2e, amrs3e])

stands for state model SP|ii |iii |iv . The final part of Figure 6.6 encodes the

less efficient version of the public announcements discussed above, e.g., fmrs1

stands for KS¬
∨

(i ,j )∈I KP(xi ∧ yj ). In Section 6.5.4 we will discuss the precise

computational properties of the different versions.

DEMO’s interaction with the implemented model

We continue by showing a relevant part of DEMO interaction with this imple-

mentation8.

The riddle is solved by updating the initial model msnp with the action models

corresponding to the three successive announcements. Below, showM (upds msnp

[amrs1e, amrp2e, amrs3e]) is user input and the lines from ==> [0] is the

system response to that input.

*SNP> showM (upds msnp [amrs1e, amrp2e, amrs3e])

6We use the T -validity ¬Kϕ ↔ (ϕ → ¬Kϕ), that can be shown as follows: ¬Kϕ iff
(ϕ ∨ ¬ϕ) → ¬Kϕ iff (ϕ → ¬Kϕ) ∧ (¬ϕ → ¬Kϕ) iff (ϕ → ¬Kϕ) ∧ (Kϕ → ϕ) iff (in T !)
(ϕ→ ¬Kϕ).

7We now use that ϕ∨ψ—where ∨ is exclusive disjunction—entails that ( Kϕ ∨ Kψ iff
(ϕ→ Kϕ) ∧ (ψ → Kψ) ).

8The full (three-page) output of this interaction can be found on, http://ac.jiruan.net/thesis
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==> [0]

[0]

(0,[p4,q13])

(a,[[0]])

(b,[[0]])

The function showM displays a pointed state model as:

==> [<points>]

[<domain>]

[<valuation>]

[<accessibility relations represented as equivalence classes>]

The list [p4,q13] represents the facts P 4 and Q 13, i.e., the solution pair (4, 13).

Sum and Product have full knowledge (their access is the identity) on this single-

ton domain consisting of state 0. That this state is named 0 is not a coincidence:

after each update, states are renumbered starting from 0.

For another example, (upds msnp [amrs1e,amrp2e]) represents the model

that results from Product’s announcement (iii) “Now I know it.” Part of the

showM results for that model are

*SNP> showM (upds msnp [amrs1e,amrp2e])

==> [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

(...)

(0,[p2,q9])(1,[p2,q25])(2,[p2,q27])(3,[p3,q8])(4,[p3,q32])

(5,[p3,q38])(6,[p4,q7])(7,[p4,q13])(8,[p4,q19])(9,[p4,q23])

(...)

(a,[[0,3,6],[1,9,14,23,27,32,37,44,50],[2,10,17,24,28,38,45,46,51],[4

,11,18,29,33,39,47,55,60,65],[5,12,25,35,41,48,52,56,57,62,67,70,73],

[7],[8,22,36],[13,20,26,42,53,58,63,68,71,74,76,79,81],[15,19,30,34,4

0,61,66],[16,21,31,43,49,54,59,64,69,72,75,77,78,80,82,83,84,85]])

(b,[[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],

(...)

After two announcements, 86 pairs (x , y) remain possible. All remaining states

are renumbered, from 0 to 85, of which part is shown. Product’s (b) access

consists of singleton sets only, of which part is shown. That should be obvious,

as he just announced that he knew the number pair. Sum’s (b) equivalence

class [0,3,6] is that for sum 11: note that (0,[p2,q9]), (3,[p3,q8]), and
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(6,[p4,q7]) occur in the shown part of the valuation. Sum’s access has one

singleton equivalence class, namely [7]. That corresponds to the state for pair

(4, 13): see (7,[p4,q13]) in the valuation. Therefore, Sum can now truthfully

announce to know the pair of numbers, after which the singleton final epistemic

state (that was already displayed) results.

Versions of the riddle in DEMO

How versatile the model checker DEMO is, may become clear by showing how

easily the program SNP.hs in Figure 6.6 can be adapted to accommodate different

versions of the riddle. The least upper bound for the Freudenthal version is 65.

This we can check by replacing upb = 100 in the program SNP.hs by upb =

65. More precisely we then also have to run the program for upb = 64 after

which it will appear that the model computed in solutione = showM (upds

msnp [amrs1e, amrp2e, amrs3e]) is now empty. The McCarthy version of the

riddle can be checked by replacing

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=upb]

by

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<=y, x<=upb, y<=upb]

Of course, the additions x<=upb, y<=upb are now superfluous, but, for another

example, it is also easy to check that the least upper bound for which the Mc-

Carthy version has a solution (and now we can not remove x<=upb, y<=upb) is

upb = 62. This we find when also changing the upper bound from 100 into 62

(and checking that upb = 61 gives an empty model).

The interpreted system version of the model can be implemented by construct-

ing the domain differently, namely as

pairs = [(v,w)|x<-[2..100],y<-[2..100],x<y,x+y<=upb,v=x+y,w=x*y]

and now, accessibility, later on, is simply defined as correspondence in the first

argument for Sum and in the second argument for Product:

acc = [(a,w,v)| (w,(x1,y1))<-ipairs,(v,(x2,y2))<-ipairs,x1==x2]++

[(b,w,v)| (w,(x1,y1))<-ipairs,(v,(x2,y2))<-ipairs,y1==y2]
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In principle, one can also check that, when increasing the upper bound, more

solutions or different solutions from (4, 13) may emerge. One is then likely to run

quickly into complexity problems; for that see the next section. The Plaza version

with an unlimited model cannot be checked, as DEMO requires models to be

finite. Also, as already mentioned, the epistemic formulas would be infinitary,

which is not allowed either.9

Other epistemic riddles consisting of public announcements being made in

some initial epistemic state, such as the Muddy Children problem, are similarly

implemented by adapting the domain construction and the announcement for-

mulas. For many examples, see [94].

6.5.4 Complexity

In this section, we analyse the complexity of finding solutions using our DEMO

implementation. We first cover the theoretical boundaries, and then we present

our experimental results. Computational complexity of epistemic model check-

ing is currently a focus of the research community; for temporal epistemic model

checking we refer to [84, 83, 46, 80]. These results are as such inapplicable to our

setting, because even apart from the different logical (namely temporal) setting,

they also focus on other modelling aspects, e.g. [46] is not based on actual epis-

temic models but on succinct descriptions of such models in concurrent programs,

and [84] is more concerned with the complexities involved when reformulating

planning problems in a model checking context.

Theoretical analysis

The Sum And Product Problem is solved by updating the initial model with a

sequence of three public announcements, i.e. by upds msnp [amrs1e, amrp2e,

amrs3e]. Each such update requires determining the set {w ∈ D(M ) | M ,w |=

ϕ}. Given a model M , a state w , and a formula ϕ, checking whether M ,w |= ϕ

can be solved in time O(|M |×|ϕ|), where |M | is the size of the model as measured

in the size of its domain plus the number of pairs in its accessibility relations,

and where |ϕ| is the length of the formula ϕ. This result has been established

by the well-known labelling method [34, 21]. This method is based on dividing

ϕ into subformulas. One then orders all these subformulas, of which there are at

9Obviously, Plaza used some finite approximation of the problem, but although [61] mentions
‘a program’, it gives no details.
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most |ϕ|, by increasing length. For each subformula, all states are labelled with

either the formula or its negation, according to the valuation of the model and

based on the results of previous steps. This is a bottom-up approach, in the sense

that the labelling starts from the smallest subformulas. So it ensures that each

subformula is checked only once in each state.

In DEMO v1.02, the algorithm for checking whether M ,w |= ϕ does not

employ the bottom-up approach described above. Instead, it uses a top-down

approach, starting with the formula ϕ and recursively checking its largest sub-

formulas. For example, to check whether M ,w |= Kaψ, the algorithm checks

whether M ,w ′ |= ψ for all w ′ such that w ∼a w ′, and then recursively checks the

subformulas of ψ. This algorithm is O(|M ||ϕ|), since each subformula may need

to be checked |M | times, and there are at most |ϕ| subformulas of ϕ. So, in the

worst case, DEMO’s algorithm is quite expensive.

In practice it is less expensive, because the Haskell language and its com-

piler and interpreter support a cache mechanism: after evaluating a function, it

caches some results in memory, for reuse. For a study on the cache mechanism in

Haskell programs we refer to [54]. Since it is hard to predict what results will be

cached and for how long, we cannot give an estimate how much the cache mecha-

nism influences our experimental results. But we can still show some meaningful

experimental results on the DEMO algorithm.

Experimental results

Our experimental results were based on a system configured with Windows XP,

AMD CPU 3000+ (1.8Ghz), 1GB RAM. We used DEMO v1.02, and the Glasgow

Haskell Compiler Interactive (GHCi) version 6.4.1, enabling the option “:set +s”

to display information after evaluating each expression, including the elapsed time

and number of bytes allocated.10

Formula efficiency In Section 6.5.3 we observed that checking a formula such

as KS

∧

(i ,j )∈I ((xi ∧yj ) → ¬KP (xi ∧yj )), fmrs1e in Figure 6.6, is computationally

cheaper than checking its (in T) logically equivalent form KS¬
∨

(i ,j )∈I KP(xi ∧

yj ), fmrs1 in Figure 6.6. Our experiments confirm this result. In Table 6.1

10The allocation figure is only accurate to the size of the storage manager’s allocation area,
because it is calculated at every garbage collection. The RAM occupation is normally 60
Mbytes for GHCi when loading the SNP.hs and DEMO modules. For evaluating a particular
expression, the figure might be quite large, for example in table 1, in the case of upb=80 and
fmrs1e, the result is around 3219 Mb, due to the repeated garbage collection.
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fmrs1e fmrs1

upb time(secs) space(bytes) time(secs) space(bytes)
20 0.66 13,597,832 3.13 14,430,216
40 75.30 141,967,304 954.41 172,666,424
60 714.80 858,501,572 21,389.60 1,074,424,452
80 7,232.69 3,374,852,696 not available not available

Table 6.1: Experimental results on formula checking

upb | msnp | time(secs) space(bytes)
65 23,367 1,609.03 1,325,890,048
80 43,674 7,288.08 3,150,903,744
86 54,298 10,636.03 3,905,964,300
94 70,936 20,123.02 6,048,639,068
100 85,406 34,962.38 9,047,930,216

Table 6.2: Experimental results on the trend of time-space consumption

we show the results for time and space consumption of function upds msnp

[public(fmrs1e)] and upds msnp [public(fmrs1)] for different upper bounds

upb in the initial model msnp: namely for upb 20, 40, 60 and 80. It is easy to see

that checking with fmrs1e is substantially less costly than checking with fmrs1

in terms of time, and slightly less costly in terms of space. We estimate that it

may take more than a week to run the case fmrs1 with upb=80. Cases 80 and

100 are only feasible for the more efficient form fmrs1e. Our next experiment is

based on the more efficient fmrs1e,fmrp2e,fmrs3e only.

Trends for time and space consumption The smallest upb for which the

Freudenthal version of the problem has a solution is 65. We investigated the

trend of time-space consumption between upb=65 and upb=100, as this relates

to the size of the initial model msnp. The results for running solutione (see

Figure 6.6) are shown in Table 6.2. In this table, | msnp | is the size of the model

msnp, measured as the number of states in the domain plus the number of pairs in

the accessibility relations (for Sum and for Product). The proportional increase

of the figures in Table 6.2 is clearer in Table 6.3, wherein they are normalised

to the case upb=65. Note that time consumption increases faster than space

consumption when the size of the model increases.

Finally, we also investigated the computational differences between the stan-
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upb | msnp |/N time/N space/N
65 1 1 1
80 1.87 4.53 2.38
86 2.32 6.61 2.95
94 3.04 12.51 4.56
100 3.65 21.73 6.82

Table 6.3: Normalisation of the experimental results in Table 6.2.

dard ‘smaller/larger number’ modelling of the puzzle (Section 6.5.2) and the ‘in-

terpreted system’ modelling of the puzzle. In this case we did not find significant

results.

6.5.5 Other Model Checkers

As mentioned in the introduction of Section 6.3.1, other epistemic model checkers

with dynamic features include MCK [25] and MCMAS [67]. The question is

whether we could also implement this problem in those model checkers. For the

latest versions of these model checkers in both case the answer appears to be ‘no’.

In MCK, a state of the environment is an assignment to a set of variables

declared in the environment section. These variables are usually assumed to

be partially accessible to the individual agents, and agents could share some

variables. The change of the state of a multi-agent system is either made by

agents or the environment, in the form of changing these variables. There are two

ways to make such changes. One is to send signals to the environment using the

action construct by agents in conjunction with the transitions construct by the

environment, which provides a way to describe how the environment variables

are updated. The other is a specialised form for actions from the perspective

that environment variables are shared variables, by providing read and write

operations on those shared variables. In both cases, we need guarded statements

to make the change. For example, a simple deterministic statement has the form:

if cond → C [otherwise → Co ] fi

where command C is eligible for execution only if the corresponding condition

cond evaluates to true in the current state. Otherwise, the command Co will be

executed. If we would like to model the Sum And Product Problem in MCK, the
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effect of a public announcement should be recorded in a variable which is acces-

sible to all agents. Suppose the effect of P ’s public announcement : “I now know

it” (KP(x , y)) is recorded in variable v . Then in a state just after this announce-

ment, the variable v will be set to True if KP(x , y) holds in the previous state,

and otherwise to False. Clearly, we need that statement in the above epistemic

form, with cond involving knowledge checking. Unfortunately, even though in

MCK we can check epistemic postconditions, the current version of MCK does

not support checking epistemic formulas as preconditions, as in cond . Similarly

to MCK, MCMAS also does not support actions with knowledge-based precon-

ditions to transit from one global state to another global state. The difficulty of

enabling knowledge-based preconditions in MCK and MCMAS might be related

to the interpretation issues of knowledge-based programs in terms of interpreted

systems (see [21]).

6.6 Summary

In this chapter, we first discussed the role of protocols in building multi-agent

systems during the model checking process. In TEL model checking the protocols

are specified in the construction of interpreted systems. In DEL model checking,

the protocols are specified in DEL formulas. Then we introduced three state-

of-the-art model checkers for multi-agent systems verification: DEMO, MCK

and MCMAS. We studied and compared the differences of modelling multi-

agent systems in DEL and TEL through two detailed case studies: the Russian

Cards Problem and the Sum And Product Problem. In the first case study, we

formulated the properties of a communication protocol that solves the Russian

Cards Problem, and then verified these properties in three model checkers. We

also showed that how dynamic epistemic requirements can be reformalised in

temporal epistemic terms. In the second case study, we investigated a protocol

involved with agents’ knowledge and ignorance. It was specified and verified

only in DEMO because only DEMO supports knowledge-based protocols. We

studied the complexity of model checking with DEMO and the experimental

results. Finally, we discussed the inherent difficulties to use MCK and MCMAS

for this case.
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Chapter 7

Looking Backward and Forward

We are coming to the end of this thesis. It is a good time to reflect upon what

we have done, and give some thoughts on what we could do in the future, just

like any reflexive agents would do.

7.1 Looking Backward

Looking backward, I have, with the collaboration of my colleagues, built two

one-way bridges: one is from GDL to ATL, and the other is from DEL to TEL.

Let me again start from the motivations and then give a summary of our main

contributions.

Why logic? Why did I get interested in the logical formalisms in the first

place? Apart from the reasons given in Section 1.2, I give a more personal account

here. Through the years, I observed and learned that there were already many

formalisms modelling multi-agent systems. I was particularly interested in logic-

based approaches because I thought they provided an easy, yet profound way

of understanding multi-agent systems. For instance, in the Sum And Product

Problem, all possible combinations of two numbers are encoded in states; the

agents’ knowledge and ignorance can be naturally encoded in their accessibilities

of these states, and expressed in succinct formulas (e.g. KS¬Kp(x , y) for “Mr.

Sum knew Mr. Product did not know the two numbers”); the solution can be

computed by updating the initial state model with agents’ announcements in a

sequence. The actual computation might be tedious, but the logic formalisms,

DEL in this case, really give us a high-level grasp of the key information flow

161
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going through agents’ interactions. Since we have powerful computers, we do

not need to be bothered by the tedious computation anyway, except studying its

complexity in order to avoid possible endless waiting.

Why building bridges? So why building the bridges for these particular

frameworks, and why just one-way? First, we study GDL because it is a well-

defined language for a serious multi-agent research area: the General Game Play-

ing (GGP) Competition, which is supported by AAAI. Games have been an

important part of different cultures. For instance, both Chess and Chinese Chess

were invented to mimic the conflict scenarios to provide entertainment, as well

as to develop players’ strategic reasoning abilities, without them getting into

bloody physical conflicts. The games also provide well-defined settings to study

multi-agent interactions, as they typically consist of a set of rules, an initial con-

figuration, and the goals for players. The GGP systems have to be more flexible

than dedicated chess-playing systems like Deep Blue, and hence will have greater

potential to be used in building more adaptable multi-agent systems. There are

logic-based formalisms developed for reasoning about games. In particular, ATL

can reason about agents’ strategic abilities, and has a complete set of tools from

logical theory to model checking tools. To enable these assets to be reused, we

decided to investigate the possible connections between GDL and ATL, and sub-

sequently built a concrete link between them. The link is only one-way because

GDL is a language for representing games, not for reasoning about the powers

of the coalitions.

Second, we study the connections between DEL and TEL because they both

are capable of modelling multi-agent systems with incomplete information, yet in

different ways. They are very similar in terms of modelling knowledge, but are

different in dealing with the dynamics in the systems. In DEL the dynamics of

the system is solely expressed in the logical language with actions, but in TEL the

dynamics are realized in the semantic model and expressed in the language as well.

Due to such differences, we created a variant of TEL, namely NTEL. The bridges

we built, i.e. the syntactic translation syn, and the semantic transformation

sem, are only from DEL to NTEL, and hence it can be seen as an embedding.

The reason is that the temporal changes modelled in DEL correspond to a special

class of temporal changes modelled in NTEL; hence in TEL.
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Summary of Contributions Here we give a summary of the main contribu-

tions of this thesis made in separate chapters.

In Chapter 3, we studied the axiomatisation of games in GDL. We first

formalised a propositional GDL and associated each GDL description with a

game model. Then we provided a semantics of GDL rules over such game mod-

els. Next, GDL was understood as a specification language of ATL models, i.e.

AATSs. Given a GDL description, on the one hand we built an AATS us-

ing a semantic transformation Tsem , on the other hand, we translated the GDL

description in to an axiom expressed in ATL using a syntactic translation Tsyn .

We showed, in Theorem 3.4, that any AATS that satisfies the translated axiom

is alternating-bisimilar to the AATS built from the GDL description seman-

tically. This means that our axiomatic characterization of GDL descriptions

did capture the agents’ strategic powers completely. As a corollary, we proved

that the complexity of model checking ATL formulas over GDL descriptions is

EXPTIME-Complete (Theorem 3.5).

In Chapter 4, we studied the verification of games defined in GDL more prac-

tically. There were two main contributions. First, in Section 4.2, using ATL, we

characterised a class of game properties that should be held in general: coherence

properties ensure the game has a “sensible” interpretation; fair playability condi-

tions characterise the strategic abilities of coalitions of agents. Then we proposed

another class of properties that characterise different games. Second, in Section

4.3, we developed an automated tool that transforms a GDL description into an

RML specification that is accepted by the ATL model checker, MOCHA. Then,

in Section 4.4, we showed the feasibility of our approach by a detailed case study

on the game Tic-Tac-Toe.

In Chapter 5, we studied a correspondence between DEL and NTEL, a variant

of TEL. Given a state model and a formula in dynamic epistemic logic, we con-

structed an action-based interpreted system relative to that epistemic state and

that formula by using a semantic transformation sem, that satisfied a syntactic

translation syn of the formula into temporal epistemic logic, and vice versa. The

sem involved the protocol implicitly present in the dynamic epistemic formula,

i.e. the set of sequences of actions being executed to evaluate the formula. We

first showed this correspondence for PAL, a special case of DEL, in Theorem 5.1,

and then generalized the case to full DEL in Theorem 5.2.

In Chapter 6, we studied model checking knowledge dynamics for multi-agent

systems both in DEL and TEL. We started with a general discussion of protocol
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and multi-agent system building, and introduced three model checkers DEMO,

MCK and MCMAS. Next, we modelled the Russian Cards Problem both in DEL

and TEL, specified the safety conditions needed for solutions, and verified such

conditions in three model checkers for a specific solution of this problem. Then

we modelled the Sum And Product Problem in DEL, specified it in DEMO and

then found the correct solution; in addition, we studied the complexity related

to DEMO model checking. In the end, we explained the difficulties of modelling

the Sum And Product Problem in the current versions of MCK and MCMAS.

7.2 Looking Forward

Looking forward, I would like to give four possible directions for further research,

some of which have been discussed in the relevant chapters.

• Extending GDL for incomplete information games

The current GDL specification studied in Chapter 3 is only suitable for

describing complete information games, in which agents are fully aware

of the current state of the games. In games like Chess, for instance, the

players know exactly what is on the game board. But there is another large

class of games in which agents can only have incomplete information of the

system. For example, in Poker, agents typically do not know what cards

their opponents hold initially, as they can only observe their own cards. In

reality, incomplete information access for agents is more ubiquitous, due to

their limited observation powers or memories. So an extension of GDL for

incomplete information games seems to be called for.

Meanwhile, there has been already some progress on modelling incomplete

information games using logics. In, [76] van Benthem gave a modelling

of games in DEL. In [86, 43], van der Hoek, Wooldridge and Jamroga

developed epistemic extensions of ATL. In [38], Herzig and Troquard took

another approach based on STIT logic, which is another important temporal

logic. So this topic has certainly attracted many logicians. And after we

have the epistemic extension of GDL, it would be interesting to study its

connections with the above logical frameworks.

• Investigating DEL and Knowledge-based Protocols in TEL

In Chapter 5, we noticed that there is a relation between the protocol
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generated from a DEL formula with the interpreted system built from a

state model with this protocol. Such a protocol is similar to the knowledge-

based protocols proposed in [21]. A further investigation on this relation

will likely reveal more connections between DEL and TEL.

• Improving Model Checkers

In Chapter 6, we compared three state-of-the-art model checkers. Despite

the fact that DEMO had certain advantages when dealing with the Russian

Cards Problem, its scalability is not very promising witnessed by the re-

sults in the Sum And Product Problem. It might be a good idea to explore

the possibility to extend DEMO with OBDD techniques which are already

employed in both MCK and MCMAS. As for MCK and MCMAS, we

find that they have difficulties in dealing with the Sum And Product Prob-

lem because the model specification language does not support knowledge

preconditions. This is related to knowledge-based protocols again, and I

believe it is worthwhile to explore this connection.

• Playing GDL Games via Model Checking

In Section 4.4.3, we briefly explained the possibility of playing Tic-Tac-

Toe via model checking. This might be not very promising due to the

EXPTIME-Complete complexity for such reasoning, but with the rapid

advancement of computational powers it might be still possible to address

games with not too many states. The tasks will likely be exploring the playa-

bility conditions to build agents’ strategies, reducing the variables in the

presentation, and improving the efficiency of the model checker MOCHA.



166 CHAPTER 7. LOOKING BACKWARD AND FORWARD



Bibliography

[1] C. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory

change: partial meet contraction and revision functions. Journal of Sym-

bolic Logic, 50:510–530, 1985.

[2] R. Alur, L. de Alfaro, T. A. Henzinger, S. C. Krishnan, F. Y. C. Mang,

S. Qadeer, S. K. Rajamani, and S. Taşiran. mocha user manual. University
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