A Novel Method for Strategy Acquisition and its
Application to a Double-Auction Market Game

Steve Phelps, Peter McBurney, Simon Parsons,

S. Phelps is with the Centre for Computational Finance areh&mic Agents, University of Essex, United Kingdom, e-maphelps@essex.ac.uk.

P. McBurney is with the Department of Computer Science, ehsity of Liverpool, United Kingdom, e-mail: mcburney@ipool.ac.uk.

S. Parsons is with Department of Computer and Informationer8e, Brooklyn College, City University of New York, USA,-reail: par-
sons@sci.brooklyn.cuny.edu.



A Novel Method for Strategy Acquisition and its
Application to a Double-Auction Market Game

Abstract—We introduce a novel method for strategy- The outline of this paper is as follows. In section Il we
acquisition in non-zero-sum n-player games, and empiric# give an overview of game-theory and discuss the use of co-
validate it by applying it to a well-known benchmark problem evolutionary algorithms and empirical game-theory to cear

in this domain, viz the double-auction market. Many existirg f imati f h i ilibria. | Al
approaches to strategy-acquisition focus on attempting tdind Or approximatons of game-theoretic equilibra. in sec

strategies that are robust in the sense that they are good all We describe in detail the specific problem domain we will
round performers against all-comers. We argue that in many attack, viz. the double-auction. In section IV we descrite t

economic and multi-agent scenarios the robustness criten is  search space of strategies for this game, and in section V we
inappropriate; in contrast, our method focusses on searcig o empirical game-theory to analyse the strategic-ictiera

for strategies that are likely to be adopted by participating - . o - : .
agents. We conclude by discussing several potential appiions between existing strategies within this space with a view to

of our algorithm, including the mechanism design problem fom  identifying potential candidates for optimisation. In sec VI
economics. we describe a novel method for strategy acquisition, and in

section VII we present the results of an empirical validatio
of our technique. In section VIII we discuss generalization
. INTRODUCTION and applications of our approach, and then conclude with a

discussion of strengths and weaknesses in section IX.
The automatic discovery of game-playing strategies hag lon

been considered a central problem in Artificial Intelligenc !l CO-EVOLUTION AND EMPIRICAL GAME THEORY
The most promising technique from evolutionary computing. Nash Equilibrium

for discovering new strategies &o-evolution, in which the  The failure of certain types of co-evolutionary algorithms
fitness of each individual in an evolving populatiaf strate- 1o converge on robust strategies in certain scenarios is wel
gies is assessed relative to other individuals by computieg known [2], [3], [4], and has many possible causes; for exampl
payoffs obtained when the selected individuals interact: Cihe population may enter a limit cycle if strategies leamt i
evolution can sometimes result arms-races in which the earlier generations are able to exploit current opponends a
complexity and robustness of strategies in the populatien icyrrent opponents have “forgotten” how to beat the revived
creases as they counter-adapt to adaptations in their epf®n |iving fossil. Whilst many effective techniques have been d
Often, however, co-evolutionary learning can fail to congeloped to overcome these problems, there remains, however
verge on robust strategies. In this paper we explore sonfesof § deeper problem which is only beginning to be addressed
limitations of current co-evolutionary algorithms, andliesv a  successfully. In some games, such as Chess, we can safely
field known asempirical game theoryvhich combines game- pet that if playerA consistently beats playeB, and player
theoretic analysis together with simulation methods ineord B consistently beats play&?, then playerA is likely to beat
to analyse the strategic interaction amongsteaisting set player C. Since the dominance relationship is transitive, we
of strategies. We then introduce a novel technique based &h build meaningfulating system$5] for objectively ranking
empirical game-theory that is able to acquirew strategies players in terms of ability, and the use of such ranking syste
for the game at hand. can be used to assess the “external” fitness of strategies
This paper focuses on a specific problem domain — tkgolved using a co-evolutionary process and ensure that the
double auction. The double auction has come to be recognizsspulation is evolving toward better and better stratedies
as an importanbenchmark problemin both economics and many other games, however, the dominance graph is highly
multi-agent systems. In particular, a landmark workshdp heintransitive, making it impossible to rank strategies oingle
in Santa Fe [1] motivated much contemporary research in thisale. In such games, it makes little sense to talk about™bes
area by highlighting the difficulty of agents’ decision plems or even “good”, strategies since even if a given strategysoea
in non-idealized variants of this type of marketplace, andrge number of opponent strategies there will always beyman
the Santa Fe double-auction tournament was one of the fispoonents that are able to beat it. The best strategy to play i
studies which used advanced agent-based simulation i orgéch a game is always dependent on the strategies adopted by
to explore the properties of a realistic economic mechanisshe’s opponents.
[1]. To this day the double-auction still represents an ingott Game theory provides us with a powerful concept for rea-
benchmark problem by simultaneously admitting of precismning about the best strategy to adopt in such circumstance
representations whilst stretching the bounds of both dicaly the notion of aNash equilibrium A set of strategies for a
tractability and computational brute-force. given game is a Nash equilibrium if, and only if, no player can
improve their payoff by unilaterally switching to an altative
10r sometimes several populations. strategy.



If there is no dominant strategy (a strategy which is alwaysdl Lyapunov stable states [8] and interior limit states als®
the best one to adopt no matter what any opponent does) Kash equilibria [9, pp. 88—88)]
the game, then we should play the strategy that gives us th&hus the Nash equilibrium solutions are embedded in the
best payoff based on what we believe our opponents will plastationary points of the direction field of the dynamics spec
If we assume our opponents are payoff maximisers, then vfied by equation 1. Although not all stationary points are
know that they will play a Nash strategy set lductio ad Nash equilibria, by overlaying a dynamic model of learning
absurdum if they did not play Nash then by definition aton the equilibria we can see which solutions are more likely
least one of them could do better by changing their strategy, be discovered byoundedly-rationalagents. Those Nash
and hence they would not be maximising their payoff. Thisquilibria that are stationary points at which a larger ean§
is very powerful concept, since although not every game himitial states will end up, are equilibria that are more ko
a dominant strategy, every finite game possesses at least loaeeached (assuming an initial distribution of strategfied
equilibrium solution [6]. is uniform).

Note, however, that the Nash strategy is not alwaysotet This is all well and good in theory, but the model is
strategy to play in all circumstances. In 2-player zero-suof limited practical use since many interesting real-world
games, the minimax theorem tells us that even if there agames arenulti-staté. Such games can be transformed into
multiple equilibria, any equilibrium strategy is guaraedeto normal-form games, but only by introducing an intractably
obtain a certain payoff known as the security-level of thenga large number of pure strategies, making the payoff matrix
regardless of the opponent’s actions. Thus in these sasparimpossible to compute.
we have a clear metric for thebustnes®f a strategy since if
a particular course of action yields less than the value ef t% c luti
game we can infer that we are being exploited. However, this o-evolution
result does not hold when we generalise to n-player non-zeroBut what if we were to approximate the replicator dynamics
sum games; in such games, if there are multiple equilibd® using an evolutionary search over the strategy space?
they may yield different payoffs to the same player, andather than considering a very large population consistfray
thus the outcome is not clear-cut. Additionally, in any gam@ixture of all possible pure strategies as per evolutiogarye
constant-sum or otherwise, players may be able to obtairfhgory, we use a small finite population of randomly sampled
better payoff than their security-level by countering a -norstrategies to approximate the game. By introducing mutatio
equilibrium strategy with another non-equilibrium stgyte ~ @nd cross-over, we can search hitherto unexplored regibns o

the strategy space. Might such a process converge to some
B. Beyond Nash equilibrium kind of approx_imation pf a trt_Je_Nash equilib_rium? Indee_ds th
i is one way of interpreting existing co-evolutionary algoms;
Stgndard game _thec_)ry doe_s not tell us which Of_ the m"’“ﬂyness-proportionate selection plays a similar role tordpdi-
possible Nash eq“'“_b”a are likely to be_playﬁjzolutlonary_ cator dynamics equation in ensuring that successful giese
game theory [7] and its variants attack this problem by pugit . \25ate and genetic operators allow them to search over
that, rather than computing the Nash strategies for a gam&,e| sets of strategies. There are a number of problems with

using brute-force and Fhen selecting one Of, these t.o play, Yich approaches from a game-theoretic perspective, howeve
opponents are more likely to gradually adjust their stateq hich we shall discuss in turn

over time in response to repeated observations of their OW"FirstIy, the proportions of the population playing diffate

and others’ payoff_s. One apprpach to ev_olut|onary Y9aM&irategies serve a dual role in a co-evolutionary algor{ttdh
theory uses thegpllcat_or dynamms[?] equation to SPECY 5 the one hand, the proportion of the population playing a
the frequency YVIth which different Pure strategies shouwdd %iven strategy represents the probability of playing thatep
played depending on our opponents strategy: strategy in a mixed-strategy Nash equilibrium. On the other
hand, evolutionary search requires diversity in the pamra
in order to be effective. This suggests that if we are seagchi
where 771 is a mixed-strategy vectow (i, ) is the mean for Nash equilibriainvolving mixed-strategies where ofithe
payoff when all players play strategyi, u(e;,m) is the pure strategy components has a high frequency, corresppndi
average payoff to pure strategywhen all players playn, t0 a co-evolutionary search where a high percentage of the
and 1; is the first derivative ofm; with respect to time. population is adopting the same strategy, then we may be
Strategies which gain above-average payoffs become métedanger of over-constraining our search as we approach a
likely to be played, and this equation models a simpte Solution.
evolutionary process of mimicry learning, in which agents Secondly and relatedly, although the final set of strategies
switch to strategies that appear to be more successful.  in the converged population may be best responses to each

For any initial mixed-strategy we can find the eventual ougther, there is no guarantee that the final mix of strategies
come from this co-evolutionary process by solvimg= 0V, cannot be invaded by other yet-to-be-encountered stestegi
to find the final mixed-strategy of the converged population,
i.e., the stationary points of the process. This model has th ?It is important to note, nevertheless, that it is not the ¢hatall stationary

. : . s points are Nash equilibria

attractive properties that: (i) all Nash equilibria of thange

: . ) ] : . 3The payoff for a given move at any stage of the game dependien t
are stationary points under the replicator dynamics; and (history of play.

g = [u(ej, m) — u(m,m)] m; 1)



in the search space, or even by strategies that becametextine game; variations in payoffs due to different playeretyp
in earlier generations because they performed poorly agaite.g., private valuations) or stochastic environmentatdis
an earlier strategy mix that differed from the final convergg(e.g., PRNG seed) are averaged over many samples of type
strategy mix. Genetic operators such as mutation or crogsformation resulting in a single mean payoff to each player
over will be poor at searching for novel strategies that doufor each cell in the payoff matrix. Players’ types are assime
potentially invade the newly established equilibrium hessa to be drawn independently from the same distribution, and an
of the dual role played by population frequencies. If theseent's choice of strategy is assumed to be independerg of it
conditions hold, then the final mix of strategies is implaiesi type, which allows the payoff matrix to be further comprekse
as a true Nash equilibrium or Evolutionay Stable State (ESS)nce we simply need to specify the number of agents playing
since there will be unsearched strategies that could patignt each strategy to determine the expected payoff to each.agent
break the equilibrium by obtaining better payoffs for cigrta Thus for a game witly strategies, we represent entries in the
players. We might, nevertheless, be satisfied with the firal mheuristic payoff matrix as vectors of the form
of strategies as an approximation to a true Nash equilibdom
the grounds that if our co-evolutionary algorithm is unatale = (p1,...,pj)
f".]d equilibrium-breaking strateg|e_s, then no other akgoni wherep; specifies the number of agents who are playing the
W'." b_e able to do SO. However, as dlscu'_ssed aboye,we erepe%;h strategy. Each entry € P is mapped onto an outcome
priori that_co-evolutlonary aIgo_nthms will be partlculalﬂrpor vectorq € ( of the form
at searching for novel strategies once they have discovered
(partial) equilibrium. 7=(q1,---,4;)

Finally, co-evolutionary algorithms employ a number ofhere,. specifies the expected payoff to th# strategy. For

different selection methods, not all of which yield popidat game withn agents, the number of entries in the payoff
dynamics that converge on game-theoretic equilibria [11]. - trix is given by

These problems have led researchers in co-evolutionary ,
computing to design new algorithms employing game- s = w 2)
theoretic solution concepts [12]. In particular, Ficicidan nl(j —1)!
Pollack [10] describe a game-theoretic search technique feor smalln and smallj this results in payoff matrices of
acquiring approximations of Nash strategies in large syrmanageable size; fgr= 3 andn = 6, 8, and10 we haves =
metric 2-player constant-sum games with type independe@s 45, and 66 respectively. Although this technique is only
payoffs. In this paper, we address n-player non-constamt-stractable for small numbers of simultaneous playershese
multi-state games with type-dependent payoffs. In suchegamare precisely the scenarios that are typicafigre difficult to
playing an equilibrium strategy (or an approximation tliye analyse. Interactions amongst small numbers of agentsdaffo
does not guarantee a participant security against exptmita more opportunity for individual agents to have a large dffec
if there are multiple equilibria, and thus there is no cleapn the final outcome, whereas systems with large numbers of
cut notion of a scalar robustness metric for assessingréiffe interacting agents can be more readily modelled as a cioliect
strategies and ranking them on a single scale. In SectioneVl wf homogeneous particle-like entities. The constraint mals
introduce a new metric for ranking equilibrium strategiaséd j is more limiting; we shall return this issue in Section VAI-
on their likelihood of actually being played. Meanwhile lret ~ Once the payoff matrix has been computed we can subject
next section we give an overview of an existing technique fifr to a rigorous game-theoretic analysis, search for Nash
obtaining approximate versions of game-theoretic equdlib equilibria solutions, and apply different models of leagand
upon which our algorithm is based. evolution, such as the replicator dynamics model, in order t
analyse the dynamics of adjustment to equilibrium.

In this paper, we use the framework described above to
search for a novel strategy for a specific trading game, viz:

Reevest al.[13] and Walshet al.[14] obviate many of the the double-auction. In the next section we describe thisegam
problems of standard co-evolutionary algorithms by restg in detail.
attention to small representative sample of “heuristicatst-
gies that are known to be commonly played in a given multi- Ill. THE DOUBLE AUCTION MARKET
state game. For many complex n-player games representativA double-auction is a generalisation of the more commonly-
of real-world economic interactions, such as the doublknown single-sidedauctions in which a single seller sells
auction, unsurprisingly none of the strategies commonly goods to multiple competing buyers (or the reverse). In a
use can be proven to be dominant over the others. Given tfmubleauction, as well as multiple buyers competing against
absence of a dominant strategy, it is then natural to askeifich other resulting in price rises, multiple sellers ofshme
there are mixtures of these “pure” strategies that cornstittcommodity compete against each other resulting in prids.fal
game-theoretic equilibria. Institutions of this type are also known as exchanges, and

For small numbers of players and heuristic strategies, \aee typically used to trade commodities whose valuatioes ar
can construct a relatively small normal-form payoff matrisubject to much uncertainty and can vary rapidly over time;
which is amenable to game-theoretic analysis. Ttasristic for example, equity shares traded on stock exchanges. We now
payoff matrix is calibrated by running many iterations opresent a formal model of a double auction.

D. Empirical Game-Theory



A. The resource allocation problem

The market place is populated by a finite numbetrafiers I = pay({c},T)
represented by the set = {a1,az,...a,}. A single class here:
of resource? is traded in the market place. The resource is
divided up intounits ¥ = {1, s, ... }. Each individual unit

of the resource is indivisible. Each tradewnsa certain subset ['(cj) = T(¢)+cp
of the resourcel defined by the function M) = T(a)—c
O:A— 9% For multiple transactions theay function is defined recur-

sively as per therans function.
where{)(a;) C ¥ denotes the units of resource to which trader Typically, traders enter in mutual transfers of cash and
a; has exclusive access, and with which it is free to do wittesource. If a tradet; transfers cash to trader, and in return

as it pleases. tradera; transfers resource to tradey, then we say that;
The resource ison-sharablethat is: buysresource, and that tradey sellsresource.
Each tradera; has differentpreferencesover the possible
Q(a;) N Q(a;) = 0 Vizj(ai,a;) € A? allocations of casli" and resourcél. Preferences are defined

. . . by the trader'autility function
The function Q defines theallocation of the resourcel y y

amongst the tradergl. Traders cannot be coerced into re- _

A ; ui (T, Q) = u(a;, T, Q) 3)
linquishing ownership of resources, but they may volunteer

transfera certain number of units of resource to another trad&r trader i prefersan allocation(I”, ') over an alternative
which results in a new allocation. A transaction involvilgt allocation(T", 2) if, and only if:

resource is represented by a tuple= (r; € A,r; € A,ry €

2¥) € R representing a transfer of, units from trader; to uwi (I, Q) > uw;(T,Q)

traderr;. The function mapping from an original allocatiéh

. . . . A trader i is indifferent over two allocations(I”, ') and
to the allocation resulting from a transactiore R is:

(T, Q) if, and only if:

Q/ = trans({r}, Q) ui(rl7 QI) g ’LL,L(F, Q)

where: Our model of utility is simplified by dividing traders into tw
distinct setsbuyers represented by the sBt C A; andsellers
V(a;) = Qa)uT represented by the sétc A, such thatSU B = A andS N
V(a) = Qa)-T B = (). Both sets of traders are indifferent to their allocation

, of commaodity: their utility is soley a function of cash. Wesal
V(az) = Qaz)Vorizjae € A assume that traders are risk-neutral (utility increasesalily
For multiple transactions therans function is defined With increased cash). Our utility function is then:
recursively. Given a set of transactionr8S C R =
{rsi,rss,...,7s,}, and an initial allocatiorf, the allocation (O Rt X)) 4)
resulting from the sequence of transactiongtifi is given by gyyers cancash intheir allocation of resource. If buyer

b; € B cashes in, then
|RS| >1 = Q' =trans(RS, Q)

where: Qi) = 0
Tip1(bi) = Te(bi) + v
w(i = ¢ Sellers canproduce additional resource. If selles; € S
@ = w produces a single unit of resourg¢gg € ¥ then
wi = trans({rs;},w;—1) Vrs; € RS
Traders participate in the market in order to exchange units Qr1(si) = Qu(si) Uty
of ¥ for cash The amount of cash owned by an trader is Digi(si) = Ti(ss) —vs

given by the functiol : A — R. Traders cannot be coerced
into relinquishing cash, but they may volunteer to transfer
certain amount of cash to another trader, which again eBult In general, traders will only perform actions that incretissr
a new allocation. A transfer of cash is represented by a tumen utility. We will refer to such actions amdividually-
c=(c; € A,c; € A ¢, € R) meaning that trade; transfers rational actions.

¢cp to traderc;. The functionpay maps from an original cash  Note that since, in the general case

allocationT" to the new allocatiol” resulting from a cash

transfer thus: (3b:)B(3sj)s vi > v,

Vi1 = YUY,



there may exist the possibility for traders to increaserthedimilarly, let V.S = {vs1, vsa, ...} denote the multiseV (.5)
utility by entering into mutual transfers of cash and reseur where, wherevs; denotes thdowestvaluation of any seller,
That is, in general, there are potentigins from trade andvs; denotes the'" lowest valuation of any seller.

V'S is called thesupply scheduleand V' B is the demand
schedule These have corresponding natural graphical repre-
) ) o __sentations which, in the continuous case (eWgB = [a, b

A natural question then is how we can maximise the utilityhere w and b are arbitrarily constants R), can be repre-
of all agents by selecting a set of transactions of cash agghied as smooth curves known as the supply and demand
resource that are individually-rational for individualeads. -,rves. We retain this nomenclature for the discrete gaphi
More formally, given an initial allocatiorI’, §2), we need to representation of supply and demand.
solve the following optimization problem: Let M B and M S denote the subsets B andV S where
buyer valuationsnatchseller valuations; that is, where buyer

B. Optimal allocations and the equilibrium price

|A] . X
arg maxz wi(pay(Cx, T), trans( R+, 2)) valuations are greater than seller valuations:
(C*,Rx) i—1
We restrict attention to scenarios in which sellers produce MB = {mby,mbs,...} CVB
resource which they then sell to buyers. Accordingly, fastea MS = {msy;,mss,...} CVS
tuple c € C
such that:
ci €B
c. €S mb; > ms; Vi
J
¢, €R mby > mby > mbs > ...
msy < msg < mss < ..
and
Claim 3.1The maximum possible gain from trade is:
VeeosTrers Ti = ¢j A5 = ¢ (5) |MB|
VreRxJecox C; = riNc; =Ty (6) TP = Z mb; — ms; (8)
=1
Let v,(c) denote the valuation of the buyer involved in !
X . Proof:
the transaction, and let;(c) denote the valuation of the : . . : .
. We will prove this claim using a Reductio ad Absurdum
corresponding seller:
argument.
Let b; denote the buyer whose valuation«is; and lets;
wle) = v, denote the seller whose valuatiomis;.

Suppose that the optimal gain from trade can be obtained
through a set of transactioris$«x involving at least one trans-
action involving a pair of traders; ands; wherei # j. Then

Assumingvs(c) < ¢, < wvy(c), the gain in utility to each €quation 7 will contain a term
trader involved in a transactionis v, (c) — ¢, for the buyer,

and ¢, — vs(c) for the seller. Therefore, the total gain from mb; —ms;
trade for a solutiorC's is:

vs(c) = wg

However, ifi < j, then we could obtain a larger value of
E, since we could choose a set of transactiéiisin which

E(Cx) = Zc vp(€) = vs(c) ™ we pairo; with b;, instead ofb; ands; and
ceCUx*
We can solve this maximisation problem by choosing the o
elements of”* so that buyers with higher valuations are paired t<J = ms;<ms;
with sellers with lower valuations. Let the functién: 24 — = E(C') > E(Cx)

2R denote the multiset of valuations corresponding to a given

set of traders: This contradicts our original assertion th@k is optimal,

and thus the result holds by Reductio ad Absurdem.

[ |
V) ={v:aieT) The ratio
Let VB = {vby, vbs, ...} denote the multise¥’ (B), where
vby denotes the highest valuation of any buyer, ahddenotes EA(C) = @ 9)
the i*" highest valuation of any buyer. So that we have TP

is known as thefficiencyof the market. The market &fficient
Vij i <j = vb; > vb; if, and only if, EA = 1.



1) The Equilibrium Price: Of particular interest are solu-

tions to the maximisation problem in which all transactions min(MS’) < px < max(MB') (15)
share a common pricg« so that we havegvc)c. p(c) = px.

Faced with any given price, any given buyeb; € B will Inequalities 13, 14 and 15 can be solved by choosing
voluntarily buy from any selles; € S at the specified price

provided thap < v;, otherwise they will refrain from entering p* € [eqa, eqp) (16)

into a transaction. Similarly, any given selley € S will

voluntarily sell to any buyeb; € B at the specified price where

provided thatp > v;. Thus given any our transaction sef’

consists of all transactions satisfying the following doaisit;

eqa = max(max(MS), max(MB")) (17)

C = {(ar,a5,p) a5 €S Aoy € BAw <p<v;) eqy = min(min(MS"), min(M B)) (18)

The total increase in utility across all traders is thus give! NUS YieldingS(px) = T'P. - _

by: The solutionpx is known as thequilibrium price Although
in the general case there are a range of possible solutions,
by convention when we refer to the equilibrium price we

S(p) = Z p—uv + Z Vi =P arbitrarily take a value from the middle of this range; that
aiESNp>v; a; EBAp<v; is:
(10) =
a;€BAa;eSAp<v; Ap>v; Pk = w (19)
. . . 2
We refer to this metric as thsocial welfareof the market,
and our maximisation problem is .
C. The auction model
arg max S (p*) In this section we give a formal description of the variant of
px the double-auction used in this paper. This model is adapted
We can solve from [15], [16], [17], [18], and is an attempt to describe
these different market scenarios within a unified model. In
S(px) =TP (11) this model, time is represented in discrete slices N. We

will follow the convention of representing the value of any

from equations 10 and 8: time-dependent variable X at timeby subscripting witht:

X:.
B |45 b 12 1) Rounds:Trading in the market proceedstiounds Each
Z Vi == Z mb; —msi  (12) round may consist of variable number of time slices. During
a;€EBAa;ESApx<viApx>v; i=1

each round, every trader in the market-place is given the
by noting that we must choosgx so that the induced opportunity to submit ashoutto the auctioneer. During any
transactions include only those agents with valuationshé tgiven time-slice only one trader may placeslaout

match sets\M/ B and M S. 2) Shouts:A shout is a commitment to buy or sell a pre-
In order to include allM B we must constraimps: specified quantity of commodity at a particular price. Skout
are divided into two sub-classes. An offer to sell is called a

p* > min(MB) (13) ask and an offer to buy is calledlsid. Shouts are represented

and in order to include alM .S we must constraipsx: as tuples of the form:

p < max(MS5) (14) ) = (p. € {bid, ask,0}, po € A, p, € R, py € N, p € N) € P

The above inequalities are necessary conditions for achiev

ing TP, however we must also take care to exclude ageﬁ/@?repc Is the class of offerp, is the trader making the offer,

with valuations not in the match sets. L&fB’ and M’ Pr'S the price that the trgder is willing to buy or sell a, is
denote the unmatched buyer valuations and unmatched seqﬂgr que_mtlty Of_ commodlyy that they are commlttgd o trade,
valuations respectively: and pi s the time at which the_ shout was s_ubmltted_ to the
auctioneer. A buyer who submits a bide P is committed
to buying at any price < b,. Similarly, a seller who submits
MB'" = VB-MB an aska € P is committed to sellingz, units at any price
MS = VS—MS p > a,. A trader may submit aull shoutby settingp. = 0
meaning that the trader does not currently wish to trade and
will not be held to buying or selling at any price.
In order to exclude valuations from these sets we must alscAlternatively, we also use the following functions to demot

ensure that the subfields of a shout tuple



6) Shout processingThe auctioneer maintains four sets of
shouts. The set8/S; and M B, represent the set of matched

price(p) Pp asks and matched bids respectively. These are analogous to
class(p) = pe the setsM S and M B defined in Section IlI-B. .
agent(p) = pa We denote the®" highest matched bid at timeby mb; ,,
. where
time(p) = py
3) Active traders: The finite setK; = {k¢1, k2, ..., kin} price(rﬁb(t ) > price(wib(t %) > price(w}b(m)) >

denotes the traders who are eligible to place shouts in the
auction at timet. We pick the next trader whose turn it is to imilarly, for matched asks we have:
shout,;, randomly from this set:

price(wis(t,l)) < price(nis(m)) < price(nis(tg)) <

7 = ks, The match sets are maintained such that the following con-
where 0; € N is a discrete random variable distribute&tralnts hold: A
according to a uniform distribution on the intenval |K;|], Vi price(mbi; ;) > price(nis( ) (20)
and we then remove this trader from the active set: |J\/fSt| _ |MBt| 1)

Analogous toM S’ and MB’, the setsMS’, and M B/,

contain all unmatched shouts at tinae Intuitively, the sets
4) Events: Some of our state variables change in respondéS: and M B, can be thought of as the potential “winning”

to events The possible types of event in our market aréhOU'fS at time, and the setd/.S’, and M B/, as the “runner-

represented by the set: up” or “outbid” shouts at time:.
Let p denote the shout submitted to the auctioneer by

the trader who is currently shouting. These sets are updated

Kt+1 =Ky —1

e = {eor, eod, sp, clr}

as follows:
These events denote “the end of a round”, “the end of a
day”, “shout placed” and “market clearing” respectivelpda pe=bid A\ (3a € MS, pp > a,) =
are defined formally later. Events are time-stamped acagrdi
to the time-slice at which they occurred. We denote this by MSt“ My U {a} (22)
subscripting events thus: ANMS'py = MS', — {a}

AN MBt+1 :MBtU{p}
e = {eory,eody, ...} A
pe = bid A (Pa € M S, Cpp > ap) =

_ A A 23
Thus, we have: MB'y 1 = MB'; U{p} (@3)

€1 = {eory,eods, ...} pe=askA(3b € MB, : by > pp) =
ea = {eorq, eods, ...} MBt_H = MB,U {b} (24)
ANMB' 1 = MB', — {b}
The setE; denotes the set of events thatcurred at time A MBiy1 = MB; U {p}
t, as well as the set of events that were previously active in "
prior time slices. An event, occurredat timet if, and only pe = ask A (I € {WBt »bp ZAPp) = (25)
if ry € Ey. MS/tJrl =MB', U {p}
5) The end of round evenfThe end of round eventor,
is defined thus: pe # (26)
Sp € Et+1
K ={} = 7) Quotes: Analogous to definitions 18 and 17, we have:
€eoriy1 € Et+1 ) . . n . ~
cor, € B, —> €q,(t) = min(min(MS’;), min(M B;)) (27)
Ky = A €qp(t) = max(max(MS;), max(M B';)) (28)
Aroundi, = rounds + 1 The pair(eg, (t), €g,(t)) is called themarket quoteand is pub-

lic information to all traders participating in the mark#tall
That is, the end of round event occurs once all traders havaders bid truthfully, then we hawgy, = eq, andéeg, = eg.
submitted offers, and when this event occurs we régepb Thus the market quote encapsulates the hypothesised range o
allow all traders to submit shouts in the next round. equilibrium prices assuming truthful bidding.



8) Trading days: A trading day consists of a number of
rounds of trading. Different events may take place at the end

of a day depending on the scenario we are modelling. For clri € By =

example, in many scenarios we will allocate new randomly Cy={ec1,c2,...}
drawn valuations for traders at the end of each trading day.
These conditions will be introduced later. For now, we iatro IV. SEARCH SPACE

duce the variabléay, which denotes the current trading day: |n the previous section we described in detail the game to
which we apply our method for strategy acquisition. In this
section we describe a space of strategies for this game.
Each agents; has an associated trading strategy, which
dayitr = day; +1 specifies a mapping between its valuatiom; and the shout
—eod; € By = p € P that it will place at timet. For simplicity, we shall
assume that: buyers always submit bids, sellers alwaysisubm
asks, each agent only submits shouts for a single unit, and
9) The clearing operationThe key role of the auctioneeronly the active traders; place shouts (see I1I-C3) . Thus:
is to compute a payment sé€; and a transaction sdt; as a
function of the auction stateV/ Sy, M B,, M S’;, MB',). Dif- , _ ,
ferent variants of the double-auction mechanism comglte Z(i,t) = (bid, ai, C(i,1),1,t) <= a; € BNa; € Ky
differently in order to bring about different design objees.  Z(i,t) = (ask,a;,((i,t),1,t) <= a; € SANa; €K,
The specific variant we discuss in this paper is ¢hearing- Z(i,t) = (0,a;,0,0,t) <= a; ¢ K,
house (CH) mechanism [16, p. 5] with uniform-pricing, in . ] . )
which the auctioneer batches up shouts from multiple tsadé¥nere¢ is a function that sets therice of the shout according
before computing a clearing price which applies to all teadel© the strategy being deployed.
These rules are formalised as follows.
A uniform pricing policy specifies that all traders withA. The Truth-Telling Strategy
matched offers (that is, all the potentially efficient trade  The truth-telling strategy (abbreviatiorm) simply places
should all trade with each other at the same price computgghuts equal to the agent’s valuation:
as a function of the market quote (as determinedtdgy and
€q,). Thus, at any given time, all traders are transacting at the C(5,t) = v; (29)
same global market price (which may change over time):

eod; € By —

dayi+1 = day,

Although it is extremely simple, the truth-telling strayeig
of fundamental importance, since in arcentive-compatible

cry € By = mechanism by definition this strategy is guaranteed to obtai
T'iir = pay(Cy,Ty) the optimal payoff for agent; no matter what strategies are
AQu = trans(Re, Q) adopted by the other agents [19].
AMS,, = {}

B. The Gjerstad-Dickhaut strategy

The Gjerstad-Dickhaut (abbreviati@p) strategy estimates
the probability of a shout being accepted based on historica

AMBy = {}
—clry € By =

G = {} observations and then places its shout to maximise the 'agent
ARy = {} expected profit [20].
Agents using theGD strategy make use of a memory
where: mechanism that records the shouts that gave rise to the last

n transactions in the market, where = GDy € N is
_ o 5 the parameter that determines the size of the memory. The
V. _12ip G = (agent(mbg; ), agent(mis .4 ), R i
isinip| ¢ = (agent(mbq.p), agent(ms ), pe) memory is divided into four sets:

and: )
HS, C P The history of accepted asks up until time

pr = €q,(t)k + €q,(t)(1 — k) H:Bt C P The history of accepted bids up until time
HS’, ¢ P The history of unaccepted asks up until time

wherek € [0, 1] is a constant chosen by the marketdesignerHB,t C P The history of unaccepted bids up until time
In this paper we use & = % mechanism.

In a cH mechanism, the clearing operation is scheduled at

the end of every round: 4There are many single-sided auctions which are incentivepatible;
however, most double-auction mechanisms, including thfumn price &k =
% CH discussed in this paper, an®t incentive-compatibile and hencer is
eor; € By = not dominant. However, it is is important to note that inca auction an
homogeneous population of agents usimgwill bring about high-efficiency
clriys € Byyy outcomes LA = 1).



The history is empty at the start of trading: « the number of rejected asks in the history at prices less
than or equap;

HSy=HBy=HSy=HB'y={} (30) /
As shouts ar@laced(Section 111-C6) they are recorded in the GDRrarpt) ={p:p € HS, A pp < p}| (41)
history of unacceptedshouts: « the number of accepted bids at prices less than or equal
to p;
HS' 1 =HS Up < pe MS/, (31) A
- N . GD = : HB; N\ p, < 42
HB'yjy = HB' Up <= pe MB, (32) rorpn = Hpipe HBiNpp <pil - (42)

« the total number of asks in the history at prices less than

As shouts aranatched(Section 111-C6) they are recorded in )
or equal top;

the history ofacceptedshouts:

A A
Itht+1 _ ffStUp — pe Mst (33) GDAL(p,t) =[{p:pe (HS:UHS,) Ap, <p}| (43)

HBiy1 = HB,Up < pe MB, (34) « and the number of rejected bids at prices greater than or

. : : _ equal to
Note that the history is unaffected by the clearing openatio q Pr

(Section 111-C9), hence once a shout is recorded as accepted X
it remains so, unless it is removed due to memory-size  GDrpapsy = |{p:p € |{p € HB, Ap, >p}| (44)

restrictions as defined below. N _ _
Let Where we have recorded an ask at pgide the history (i.e.,

p:pe (HS U IfS;) A pp = p), the estimated probability
hs; = {(hs.0, RS@tys - hS@Dwt) } (35) of a new ask being accepted at the same price is given by the

following equation:
where hs(; ;) € N represents the total number of asks that

were recorded before thHé! most recent transactions s ¢) is aD L GD
the total number of asks before the? most recent transaction G Dy, ¢ = TAGpY) BG(p.t)
etc " GDracps +GDapry + GDRAL(p.,t>(

- )
Similarly let Similarly, where we have recorded a bid at prjcén the

- history, the estimated probability of a new bid being acedpt
Wby = {hba.e), hbaays - > oy} (36) y P y g aceep
wherehb(; ;) € N represents the total number of bids that were
recorded before t.hest most rec?int transactionp, ;) is the ap. B GDrprpy + GDargp
total number of bids before tHE*® most recent transacticat pa(p,t) =
GDrBrp,t) + GDarp,) + GDRrBG(p1)
cetera (46)

Let the scalan, € [0, GDy) represent the current transactiorgg, prices not recorded in the history, the function
number defined as follows

GD a =« 3 +« 2 + o + o
cry € By = hyp1=h+|Ci| mod GDy  (37) palpt) = S@HE T HEAP T ELHDT AN

is obtained using cubic-spline interpolation over the pair
defined by the functiorts D s,y +)-
Jp:pr=tAp.=ask = Now that we have an estimate of the probability of a shout
being accepted at a particular price, we are in a position to
estimate the expected surplus as a result of bidding ateliffe
Agents using thesbD strategy use the history data to form amprices. For buyei:
estimate,GG D,y of the probability of a shout with pricg

hs(hy41,t41) = hS(het1,6) + 1 (38)

being accepted, based on: GDgpin) = (Vi — Pp)GDpap) (47)
« the number of asks accepted at prices greater than or _
equal top; and for selleri:
GDracpn =Hp:p€ HS: Apy>p}| (39 GDp.in = (Pp = 0i)GDpa(p) (48)
« the total number of bids in the history at prices greatérinally, the GD strategy chooses prices in order to maximise
than or equal t; expected surplus:
C(Za t) = argmax GDE(p*,i,t) (49)

A ~_ !
GDpgpyy =Hp:p € (HBUHB,)Ap, > p}| (40) P
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C. Reinforcement-learning Strategies the RE, are then updated based on the experience function

Reinforcement-learning strategies rely only on the immedft e’
ate feedback from interacting with the mechanism; the sisrpl
that each agent was able to obtain in the most recent round
of trading (thus they are general-purpose enough to be used
in any auction-mechanism, even where we do not have access + RE(0,a;)

to market-data, for example, in repeatshled-bidauctions). . .
where the experience function depends on the most recent

These strategies choose their markup over their valuation . :
price thus: k P reward signalRL, and the last action chosen by the agent

RE,(0,a;,t) = (1 — RE,,)RE;(6,a;,t — 1) (57)

REl(t — 1):
¢(i,t) =v; + RLx,(t)RL,, <= a; €S (50)
C(i,t) = v; — RLx,()RL,, <= a; € B (51) RE(0,0i,t) = RLp,(t = 1)[1 — REy]
< 0 =RE;(t—1) (58)
based on aeward signalRL,, (t) which represents the most
recent profits of agent;: RE
REE(97 ai, t) = RL,, (t - 1) RLk_nil
RL,, (t) = Ti(a;) — Ti—1(a;) (52) < 0# RE;(t 1) (59)

The functionR Ly, : N — ©; represents the output of leamingy g then normalized to produce a vector of probabilities; le
algorithm\ where®; = [0, RLy,) C N is the set of possible Q:, denote the sum of all the propensities for agent
outputs from. '

Parameter name| Semantics Qi, = Z RE,(0, ai, 1) (60)
RLy,(t) | A function specifying the output from a 0€O;
reinforcement learning algorithm
RL,, | Ascaling factor used to map learning outputs ThenVvl € ©, andVa,; € A:
onto actual prices
RLy, | The number of possible outputs froRL )
k p: p A RE-(0.a t) _ REq(G,ai,t) (61)
TABLE | p(0,ai,t) = 0
REINFORCEMENTFLEARNING PARAMETERS &
. ) Parameter name] Semantics
1) The Dumb-Random learning algorithmThe dumb- RE), | The number of possible outputs
random learning algorithm (abbreviatiobr) is a control ggpi me recency pet\réti_meter "
. . . . i e experimentation parametgr
algorithm that in fact performs no learning and choose®asti RE.. | The scaling parameter

randomly:
TABLE I

PARAMETERS FOR THEROTH-EREV LEARNING ALGORITHM

RLy, =6, (53)

whereJ;, is a discrete random variable distributed uniformly

in the_ rangel0, RLy,). _Th!s al_gorlthm can be used in COMI O} e

experiments by subst!tu'ur_\g it for one of the oth_er algcmih _ RE; () | The output of the Tearing algorthm at finie
below; if an observation is preserved under this subsbituti| RE, (0, a;,t) | The probabiiity distribution over each possible actipn

we can conclude that our observation is not likely to be due f€6i _ _ _

to learning behaviour. RE4(0,a;,t) ;’leggpensnyfor each possible action
2) The Roth-Erev learning algorithmThe Roth-Erev al- [RE.(0,4;,0) | The e;(perience function

gorithm (abbreviatiomRE) is designed to mimic human game- TABLE Il

playing behaviour in extensive form games [21]. Agents bid STATE VARIABLES FOR THE ROTH-EREV LEARNING ALGORITHM
probabilistically according to:

RL,,(t) = RE;(t) = 6;, (54) _3) Nicolaisenet al’s mod_ified Roth-Erev glg_oritthico-
laisen, Petrov and Tesfatsion [17] (abbreviatiorTr) used a
whered;, € ©; is a discrete random variable distributed:  modified version of the Roth-Erev algorithm for their traglin
strategy which they used to explore market power effects in a
P(6;, = z) = REp(z,i,1) (55) simulated electricity market:

The propensities are initialised based on the scaling petem ,
RE,; Va; € A andV0 € ©;: RLy,(t) = RE;(t) (62)

RE;, (56) where RE/(t) is computed identically taRF;(¢) but for a

RE,(0, i, to) = RLy, modification to the experience function:
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as sellers. For each run of the game, valuations are drawn as

in [14]:
RE.(0,ai,t) = RL,,(t —1)[1 — RE,,]
< 0=RL;(t—1 63
I( ) ( ) Vv, o~ U(a,a—i—b)
RE,,. a ~ U(161,260)
RE€/(97ai,t) = REq7 RLkizl b o~ U(60 100)
< 0#RE;(t—1) (64)

4) The Stateless Q-Learning algorithnThe Stateless Q- p; yajuations remain fixed across periods in order to al-
learning algorithm (abbreviatiosQ) is a single-state ver- |, agents to attempt to learn to exploit any market-power
sion ofatempor_al-diﬁerence reinforc_ement-le_arni_ng)dt@m advantage in the supply and demand curves defined by the
called Q-Learning [22]. The algorithm maintains a tablgyit prices for that game. Additionally, although we disga
SQq(0, s, 1) which can be thought of as an estimate of gt nrices which do not yield an equilibrium price, we do
payoff to each possible actioft < ©;. The estimates are o ensure that a minimum quantity exists in competitive
updated using the rule: equilibrium as this introduces a floor effect which fails to

expose the inferior efficiency of aba. The 64-bit version
SQq(0,a;,t+1)= SQq(f,a;,t) of the Mersenne Twister random number generator [23] was
+5Qu, [RL,, + SQ, max SQq (¢, ai,t) — SQq (6, a;,t)] used to draw all random values used in the simulation and
o’ all floating point calculations were performed usimgE 754
(65) double-precision arithmetic [24]. Each entry in the heigis
whereSQ.,, € R is a discount factor anfQ,,, is a parameter payoff matrix was computed by averaging the payoff to each

controlling the rate of convergence. strategy acros$0* simulat!ons. _ _
Actions are chosen to maximise estimated payoff using anWe use the representative strategiesrE, GD as described
e-greedy rule: in table V: theTT strategy was chosen since it is the simplest

strategy that is able to achieve high efficiency outcomes in a
homogenous population in tleed mechanism; theb strategy
RLy\ () =0u <= ¢ < SQ, was chosen as a representative of the class of highly-ptetti
RLy,(t) = argmax SQq(0*,a;,t) < €, > SQ., and highly-engineered strategies that analyse histamieaket
0 data, and finally therRe strategy was chosen to represent
wheree!, € R is a random variable distributed uniformly onnaive human-like behaviour, and thus was configured with
the interval[0,1] and§;; € N is a discrete random variableparameters that best-fit human game-playing [25]:
distributed uniformly on the intervaD, RL;, — 1].

Parameter name| Semantics vi REki = 50
SQe, | The exploration paramete Vi RE,, = 0.1
SQ~, | The discount factor .
SQa, | The leaming rate Vi RE,, = 02
TABLE IV Vi RE;, = 9
PARAMETERS FOR THE STATELES$)-LEARNING ALGORITHM i RLM - 1

In a conventional game-theoretic analysis, we solve the
V. INTERACTION BETWEEN STRATEGIES game by finding either a dominant strategy or the Nash equilib
ia; the sets of strategies that are best-responses to daah o
owever, because classical game-theory is a static apalysi
it is not able to make any predictions about which equilibria

using the empirical game-theory methodology described e more likely to occur in practice. Such consideratiores ar

Section 1I-D. As in [14], at the start of each game half th@ vital importance in analysing real-world problems. For

agents are randomly assigned to be buyers and the remained(é’}mple.’ if we are interested in using game-theory to a_aalys
economic outcomes, we should give more consideration to

outcomes that are more likely than low probability outcomes

In the previous section we described a space of strateglf
for the double-auction. In this section we analyse the esfjiat
interaction between a representative subset of thesegitat

Abbreviation | Description _ if there is a Nash equilibrium for our mechanism which yields
il The truth-telling strategy, (section IV-A) _ very low allocative efficiency, we should not worry too much
RE The reinforcement-learning strategy (section IV-C), . . el e . . .
configured with Roth-Erev (section IV-C2) if this equilibria is extremely _unllkely to occur in pracicOn
GD The Gerstad-Dickhaut strategy (section IV-B) the other hand, we should give more weight to equilibria with
TABLE V high probability. _ _
THE INITIAL HEURISTIC STRATEGIES CHOSEN FOR THE ANALYSIS As in [14], we will use evolutionarygame-theory [7] to

model how agents might gradually adjust their strategies ov
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time as they learn to improve their behavior in responsedw threpresent the trajectories that terminate at each codedina
payoffs. We use the replicator dynamics equation (Equdtjpon the n-dimensional unit-simpleR™ C R", so that we have:
to recap:

T(Z,M C A™) =
{F: 7€ MAmMO)=FAItm(t) = Am(t) =0} (66)

g = [ulej, m) —u(m, m)]m;

wherem is a mixed-strategy vector,(,m) is the mean
payoff when all players play?, andu(e;, ni) is the average where M is a set of starting points and is a limit state.
payoff to pure strategy when all players playn, andr; is  Let 3(Z, M) denote theproportion of the elements ofi/ that
the first derivative ofn; with respect to time. Strategies thaterminate atz:
gain above-average payoff become more likely to be played,
and this equation models a simple-evolutionaryprocess of (7, M) (@ M) (67)
mimicry learning, in which agents switch to strategies that ’ | M|

appear_tp be_ m.ore.successful. Since mixed strategies BWIeR e choose a random sampled C A that is distributed
probability distributions, the componentsi@fsum to one. The uniformly over the simplex, the functio will provide us

ggorTetrlA(:nccirol@ry otltr.ns IS that tj‘e vecto?ﬁlle in the%n't_' with an estimate of the probability of arriving at any given
simplex~ _h{x < .[R S Z%izggx? =1} Iz_t € case IO I_ stationary point, assuming that all starting points in thepex
3 strategies the unit-simplex” is a two-dimensional plane o equally likely; that is, it will provide an estimate ofeth

triangle embedded in three-dimensional space which Pas§Rs hasin size of the limit staté denoted by3(Z), and:
through the coordinates corresponding to pure strateggsnix ' ’ '

(1,0,0), (0,1,0), and(0, 0, 1). We shall use a two dimensional lim (%, M) = B(&)
projection of this triangle to visualise the replicator dymics MoATY
) It:r;? grel))/(tir?i?igtllori]ixed—strategy we can find the eventual out- F|gl_1re 1 shows the d|rect|or_1-f_|eld of the_rephcator_— dynasni
. . . equation for our three heuristic strategies. In this and the
come from this co-evolutionary process by solving m; = o . S .
: ) ) ._subsequent direction-field diagrams, the points in the &rp
0to f_|nd the f|r_1al m|x¢d—strategy_ of the conver ged pOFJUI"’morr‘epresent alternative mixed and pure strategies, and the/sr
As discussed in Sect|o_n II-B, this has a significant adv‘mta%dicate the direction of convergence when any such styateg
over non-game-theoretic co-evolutionary search, sucl2éis [ is adopted. The three pure strategies (heme,RE and G)
in that we cargua_rgnFee[Q, pp. 88_89]:_ are represented by the three vertexes of the simplex. A point
« all Nash equilibria of the (approximated) game are st@y, an external edge of the simplex represents a mixed syrateg
tionary points under the replicator dynamics; and comprising two of the three pure strategies, and a poirtthtri
« allinterior limit states are Nash equilibria; and - inside the simplex represents a mixed strategy comprised of
« all Lyapunov stable states [8] are Nash equilibria. all three pure strategies. Thus, for example, the point en th
Thus the Nash equilibrium solutions are embedded in t']'tﬁt-most edge between the vertexes labaledand RE which
stationary points of the direction field of the dynamics speg one-third the way from the vertex labeled represents
ified by Equation 1. Although not all stationary points ar@ mixed strategy where strategy is chosen 66.7% of the
Nash equilibria, by overlaying a dynamic model of learningme, strategyre is chosen 33.3% of the time, and strategy
on the equilibria we can see which solutions are more likelyp not chosen at all; this position on the simplex is denoted
to be discovered byoundedly-rationalagents. Those Nash (6.7, 33.3, 0). A vector (a line with an arrow) shows the
equilibria that are stationary points at which a larger En§ Jikely direction of strategic play from any given initial pition.
initial states will end up, are equilibria that are more ke |n other words, if the arrows converge on some point in the
to be reached (assuming an initial distributionrof that is simplex, this strategy represented by that point is theidt
uniform); in the terminology of dynamic systems they havgf repeated interactions as the game proceeds.
a |arger basin of attraction The basin of attraction for a Looking at Figure 1, we can see there are two points where
stationary point is proportion of mixed strategies/inwhich  the direction vectors converge: these two points correspon
have flows terminating at that pofnfThe larger the basin, the ajternative equilibrium solutions of the evolutionary garfihe
larger the region of strategy-space which leads to thecattra first such point is the vertex at the bottom right, labeten!
and hence the stronger the attractor, and the ratiggnable sjnce this point represents a pure strategy, the fact thgt th
the corresponding equilibrium [27]. This intuitive defioit of  point is also a convergence point indicates thatis a best-

basin size is formalized as follows. Let the function response strategy to itself, i.e., a pure-strategy edqiifit.
An We can also see that this point has a very labgein of
T:A"x2% =N attraction; for any randomly-sampled initial configuration of
5See [9, pp. 3-7] for a more detailed exposition of the gegyatmixed- the population most of the ﬂOWS, en,d up In, the bottom-
strategy spaces. right-hand-corner. The second point in the simplex where

6In many cases this will be theolumeof the state space which terminatesdirection vectors converge is on the left-most edge between

at the attractor, and this provides a useful intuition fanking about attractor the points labeledrT and RE. This point corresponds to a
strength. However, in the general case this definition kzred@wn. For

example, if we have chaotic dynamics then a strange attracty capture Seconq equ"ibrium* but is a mixed.-stra'gegy equilibriun’rl‘,hN
many flows, but the volume of its basin will be zero. co-ordinates of (0.88, 0.12, 0). This point represents &b 88
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mix of strategyTT and a 12% mix oRE. However, the basin after performing a perturbation where 2.5% of the payoffs
of attraction for this equilibrium is much smaller than folare removed from each of ther and GD strategies and
the pure-strategyD equilibrium; only 6% of random starts an additional +5% payoffs added to thre strategy. This
terminate at this mixed equilibrium vs. 94% for puad. peturbation results in a qualitatively different set of iiguia.
Hence, according to this analysis, we would expect mostef tthe two new equilibria are shown in Figure 2: one is a pure
population of traders to adopt tht@D strategy. Note also that RE strategy, and the other a mix @D and RE strategies.
neither of the vertexes labeled or RE are the convergence The RE strategy thus becomes a best-response to itself with
points of direction flows; this indicates that neither #tgptis a large basin of attraction (some 61%). We conclude from

the best response to itself. this peturbation analysis that the initial equilibrium bsés is
sensitive to small changes or errors in payoff estimated, an
RE so our initial prediction of widespread adoption @b may

not occur if the payoffs t®eE have been under-estimated.

If we observe a mixture of all three strategies in actual
play, however, the perturbation analysis also suggestsitba
could bring about widespread defection k& if were able
to tweak the strategy by improving its payoff slightlthe
perturbation analysis thus points tRe as a candidate for
potential optimization

VI. STRATEGY ACQUISITION

In the previous section we saw how heuristic-strategy ap-
proximation could be used to identify a potential candidate
strategy for optimization. We also introduced an intriguin
metric for ranking strategies on a single fully-orderedlesca
———— viz, the size of the strategy’s basin of attraction under the
™ ) replicator dynamics. In this section we shall use this roetri

to perform a heuristic search of a space of strategies glosel
Fig. 1. The original replicator dynamics direction field fer12-agent q|ated to therE strategy. In the following we shall define the
clearing-house auction with the original unoptimized RBtev strategy . .
(labeledRE). space of strategies that are to be searched, and the ddtails o
the search algorithm.
The RE strategy discussed in the previous section be-
RE longs to a more general class of strategies: those based on
Equilbrium 1 reinforcement-learning. This class of strategies is diesdrin
detail in section IV-C. To recap, these strategies adjusir th
markup in response to the most recent profits obtained in
the market using one of the following reinforcement leagnin
algorithms: the Roth-Erev algorithrRE), NPT's modifications
to RE (NPT), the stateless Q-learning algorithmsq), and
the control algorithm §RrR). The parameters governing these
algorithms are detailed in Tables | to IV.

Individuals in this search space were represented as at50-bi

string, where:

« bits 1-8 coded for parametetL,, in the range(1,10);

« bits 9-16 coded for the paramete$s). or RE, in the
range(0, 1);

« bits 17-24 coded for paramet&, in the rang€ 2, 258);

™ ) « bits 25-32 coded for paramete$s)., or RE, in the range

Fig. 2. Replicator dynamics direction field for a 12-agergtacing-house o é?{sl):?)3_40 coded for parameteRE, in the range

auction perturbed with +5% payoffs to the Roth-Erev stratégbeledRE’) (1, 15000);

bits 41-42 coded for the choice of learning algorithm

amongsiRE, NPT, SQ or DR; and

bits 43-50 coded for parametsiQ),, in the range(0, 1).

How much confidence can we give to this analysis given *
that the payoffs used to construct the direction-field pletav
estimates based on simulation? One approach to answering
this question is to conduct a sensitivity analysis; we pértu )
the mean payoffs for each strategy in the matrix by a smé Search algorithm
percentage to see if our equilibria analysis is robust torerr A genetic-algorithm ¢A) was used to search this space of
in the payoff estimates. Figure 2 shows the direction-fiddd p strategies, where the fitness of each individual strateghen
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search space was computed by estimating its basin size urejgseared intermittently as the fittest individual five times

the replicator dynamics under interaction with our exigtinthe previous 10 generations, and thus this was taken as the
three strategiessD, TT andRE. As in Section V, basin size output from the search.

was estimated using the functigirdefined in Equation 67, but
since we recompute all entries in the heuristic-payoff matr

in support of each candidate strategy, we used lower sam L L x x

. . g B X X
sizes in order to facilitate evaluation of many strategigse oor < T X T XX 1
sample size for the number of games played for each en ol x i

in the heuristic payoff matrix was increased as a function !
the generation numbet0 + int(1001n(g + 1)) allowing the
search-algorithm to quickly find high-fitness regions of th
search-space in earlier generations and reducing noise .
allowing more refinement of solutions in later generation
We used a constant number of replicator-dynamics trajestor 04
|M| = 50 in order to estimate the basin size from the payo 03
matrix once it had been recomputed for our candidate syate
Thus our fithess function is:

Mean fithess
o
(9]

F(i,S,[H) = > Bum(@ M) =z (68) N ‘ ‘ ‘ ‘ ‘
N 0 5 10 15 20 25 30 35
TE€€[H]s Generation

where: i is the index of the candidate heuristic strategy
being evaluated from amongst the set of heuristic stradefjie Fig. 3. Mean fitness of thea population with one standard deviation
with heuristic payoffgH], 5y denotes the basin size of an
equilibrium in the game defined by payoffd] as specified by
Equation 67 (p. 12), and 5 is the set of heuristic equilibria:

- --o0s
—TT
- —GD

RE

eims = {7 € AV By (7, M) > 2 x 1072}

Since we are comparing with our three existing strategies,
this experiment we have: : e e mm e mm C_

S = {s*, TT,GD,RE}

P(strategy)

where s* is our candidate strategy (i.ei,= 1). Thus the
fitness function estimates the expected frequency with kwhi
our candidate strategy will be played in equilibrium outesm
The entire search process is summarised in pseudo-cods
Algorithm 1; we call this the=i SH algorithm, since we will
use it to “fish” for a new heuristic strategy.

A GA was chosen to search the spade of potential Time
variations onRE, principally because of its ability to cope
with the additional noise that the lower sample size inta@li fig 4. Replicator dynamics time series plot for a 12-agdearing-house
into the objective function. Thea was configured with a pop- auction showing interaction between optimised strates) (/ersusGp, TT
ulation size of 100, with single-point cross-over, a crosef 2and the original Roth-Erev strategge)

- - ) ' -
rate of 1, a mutation-rate of0™" and fitness-proportionate The optimised strategy that evolved used the stateless Q-

selection. TheGA was run for 32 generations, which toolﬁearnin algorithm $0) with the following parameters:
approximately 1800 CPU hours on a dual-processor Xeon g alg Q ap :

3.6Ghz workstation.

J
1000 1500

RL, = 1.210937
VIl. RESULTS RL, = 6
Figure 3 shows the mean fitness of the population for SQ. = 0.18359375
each generation. As can be seen, the variance in fithesssvalue 5Q, = 0.4140625
in later generations is still large. However, inspectionaof SQ. = 0.1875

random sample of strategies from each generation revealed a

partial convergence of phenotype, but with significant fiuct

ations in fitness values due to small sample sizes (see aboveYhe notable feature of this strategy is the small number of
Most notably, the fittest individual at generation 32 hadalgpossible markup$:L;, and the narrow range of the markups
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Algorithm 1. FiSH

input : A set of heuristic strategieS = {s1, $2,...8n}
output: A new heuristic strategpS
[H] < GetHeuristicPayoffMatrix(S);
F—o0;
for i — 1ton do
[H]" < perturb payoffs ifH] in favour of s;;
if F(i,S,[H])) > F then
F —F(i, S, [H]);
0S «— Sit
end
end

II — create a search space based on generalisation§8f
OS «— argmaxgcp F(1,5%U S, GetHeuristicPayoffMatrix(s* U .S));

[0,(RLy; — 1)RL,] as compared with the distribution ofour optimised strategy(OS,TT,GD) and (OS, GD,RE)
valuation distribution widths. This feature was shared By aespectively.
of the top five strategies in the last ten generations, and is
another factor that indicated convergence of the search. VIIl. DISCUSSION

We proceeded to analyze our specimen strategy under a ful
heuristic-strategy analysis using* samples of the game for
each of the 455 entries in the payoff matrix. UsilgSA the
Java Auction Simulator APldeveloped by the first author

[28], this analysis was completed in under twenty-four lsoupredominated byosers (T appears to bearasitic on os).

using a dual-processor 3.6Ghz Xeon workstation. . . . .
9 b What accounts for the ability of smails mixes to invade high-

Figure 4 shows twenty trajectories of the replicator bability mi ¢ histicated adaoti trat
dynamics plotted as a time-series graph for each strategy, Frobability mixes ot a sophisticated adaptive stra egy)(

shows the interaction between the new, optimised strateg)y, Wh'IStf remammg v1tj_lnerf;1blte to |2v23|on bgl a Iovvl-protl_aaw_ll
together with the existing strategiesbd, TT andRE. MIX Of a non-adaptive strategy< A possible explanation 1

It is somewhat remarkable that our fairly simplistic op-
timised strategy is able to gain defectors from a highly
sophisticated strategy likeb, whilst at the same time truth-

Felling is able to retain a share of followers in a population

Taking M C A% : |M| = 103 randomly sampled initial &% follows.
mixed-strategies, we calculate that there are two attrsicto
1‘1’ = (O, O, 1, O) Equilibrium A
B (0.67,0.32,0,0)
over (OS, TT, GD,RE). Attractor A captures only
B(A, M) =0.03

that is, three percent of trajectories, whereas attra@or
captures virtually the entire four-dimensional simplex:

B(B, M) = 0.97

Although this basin is very large, our optimized strateggrsk os ==
this equilibrium with the truth-telling strategy (TT), ging us
a final total market share

GD

Fig. 5. Replicator dynamics direction field for a 12-agergacing-house
auction showing interaction between optimised strateng) {fersusTT and

F=0.67x097=0.65 GD

This compares favourably with a market-share of 32% for ] ) o
truth-telling and 3% for GD. The originake strategy is As c_hscussed_ earlier, we use the same method of assigning
dominated by our optimised strategy. Figures 5 and 6 show ffguations as in [14]; that is, for each run of the game,

direction field for two of the 3-strategy combinations insialy thg lower-boundp, of the valuation distribution is selected
uniformly at random from the rangé1, 160] and the upper-

http://freshmeat.net/projects/jasa boundd’ is similarly drawn from[b+ 60, b+ 209]. For that run
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oo generations of ougA: they all use a small number of possible
markups, each of them small in comparison to the possible
valuation bounds. The reinforcement-learning componént o
the strategy is then able to fine-tune the markup depending on
where the trader finds themselves on the supply or demand
curve after valuations are drawn. If the trader’s valuat®n
far away from the equilibrium-price, the trader can adjtst i
margin close to zero, whilst if the trader’s valuation is mea
the equilibrium-price, the trader can find a small margirt tha
does not impinge on its nearest-neighbour. This hypothgsis
also consistent with parasitic truth-telling; it is easy dee
| that truth-telling is a best-response for a 2nd-lowest hedc
/ ) \\ bidder to a lowest matched bidder playing.
os . T e In future work we will examine this hypothesis in more
detail and conduct a statistical analysis in which we deter-
mine the distribution ofAmb for different parameters of
Fig. 6. Replicator dynamics direction field for a 12-agerdadng-house e \q|yation distribution range, and attempt to correiate
auction showing interaction between optimised stratens) (ersusGb and . -
the original Roth-Erev strategyr€) with the parameters of the evolved strategy. Meanwhile, we
have demonstrated that the search technique presenteéhere
capable of finding a new strategy that not only has a large
of the game, each agent’s valuation is then drawn uniform#tractor, but also has interesting properties worthy othier
from [b,b']. However, it is possible that this results in analysis.
statistical correlation between the meta-bounds and tbage
slope of truthful supply and demand schedules— that isgiv@. An iterative approach
these distribution parameters there is insufficient vasgaim
the difference between valuations of traders who are neighb
on the supply or demand curve. Since we are using a unifor

Equilibrium B

We started out by asking whether our original equilibrium
analysis of 7T, GD and RE was sensitive to small pertur-
Bhitions in payoff estimates. By doing so, we identified that

price k = 0.5 clearing rule, the mechanism is vul.nerable YRypothetical variations on thee strategy might be able to
price-manipulation from the least efficient trades; the dmyeasily invade our existing equilibria. We then identifiedeavn

with the lowest matcheq bid, anq the seIIer_With the.,higheéhtrantos that was able to penetrate the original mix of
match_ed ask can potentially manipulate the .flnal Clea”"@prstrategies and displace the ancestral incumisantforming
- provided that they do not overstate their value claim 90 new equilibria comprising mixes obs, TT and GD
the extent that it impinges on the 2nd-lowest matched blﬁ,]us by performing this analysis we hasefinedour original

or the 2nd-highest matched askor example, in the case of g iliprium analysis, since our original equilibria did tno
buyera; € B who finds themselves with the lowest matchablpake into account the existence of. This process can be

valuation, and if we assume .that t.he oth.er agents are trugé'neralised to an arbitrary set of initial heuristic-sga¢s, as
tellers then our competitors’ bids will be given by a subdet Thown in Algorithm 1, theFi SH Algorithm.
MB = {mby,mb,...,mby}. The 2nd-lowest matched bid \ye haye validatedi SH empirically by applying it to a
will be mb,,—, and our valuation will be givemb,. Let: highly complex game, the double-auction, and demonstrated
that it is capabl® of finding a new strategy with interesting
Amb = mby1 — mbp properties, as demonstrated in the previous section. Hervev
one might ask whether our new stratenyy, or more accurately
ur new set of equilibria ove®S U S, is not susceptible to
he same process of systematically searching for an in®ader
fOf course, the answer is that this is indeed a possibility. We
could straightforwardly test for this by applying exacthet
same analysis to our new set of equilibria; that is, we could
perform another sensitivity analysis to see whether our new
equilibria are stable under payoff perturbation. If theyreve
then we might conclude that our equilibria are comparativel
i . , i o . stable for the time being. If they are not stable, however, we
Given sufficient variance in the distribution akmb this = ., 4 then perform another systematic search for variation
feature of the market is not easily exploited. However, 'the current strategies which are good candidates for patent
a m_ark_et with a small number of tra_ders and a narroffyaders of the status quo; that is, new strategies whicim for
distribution for Amb there is an opportunity to trade at smal quilibria with estimated large basin size in interactioithw

margin above truth if you find yourself with a valuation closr{zhe incumbents. By performing this process repeatedly vlle wi
to the equilibrium pricep«. This is precisely the behaviour of

the strategies that we observe to be predominant in the late¥for at least one set of initial strategigs= {TT, GD, RE}

This is a random variable. However if we know the distribotio
of Amb, we can calculate the probability of our bid bein
accepted as a function of its pric&ccep:(v;). Since our
profit will be v; — ;, given knowledge of the distribution o
Amb it would be straightforward to choose a bid prigethat

maximises our expected profit:

argmax E(U;(0;)) = (vi — ;) Paccept (U;)

Vi
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eventually end up with a refined set equilibrium stratedié® provided that this strategy l&kely to to be adoptedHowever,
pseudo-code for this process is shown in Algorithm 2, called many cases it will be difficult to demonstrate that a single
the Fi SH+ Algorithm. existing strategy has a high probability of adoption. Hie&SH
algorithm can be used in precisely such a situation in oraler t
search for highly-adoptable strategies [28].

Finally, there is a sense in which our algorithm may be
J .2 useful for searching for robust strategies in non-zero-sam
for. sFrateg|es that are generaligbqst when played ","ga,'ns,t player games. In 2-player zero-sum games the Nash solgtion i
existing S”"’Tt‘?g'es- However, as Q|sc_ussed n Sect|0rj e Itguaranteed to yield the security level of the game, and is thu
extremely difficult to formul_ate preCt'Ve metrics for rang demonstrably robust. As discussed in Section Il this refngs
the robust_ness O.f strategies |n_the non-zero-sum n-pla)_z]%rt generalise to n-player non-zero-sum games. In suchgiame
games which typify interactions in marketplaces ano! mu_ltfhe best we can do is play a best-response to the strategies
agent systems. In contrast, our method for stra_ltegy atupasi adopted by other agents; however, in the general case (i.e.,
fodcuss%sb onhsearch}n.g for str;l.teg;]es that Ilklely tc;l bg with multiple equilibria) there is no unequivocal methodth
adopted by the participants. This has several applicationgy, o) ys which strategies will be selected by our oppotsen

in both economics and computer science, which we disCugse Fj gy algorithm escapes from this logic by searching for

belqw. . . hitherto unconsidered strategies that are likely to be &bp
Firstly, the level of adoption of a particular strategy may bby agents wholearn. Thus if we modify Equation 68 to

a re(_’:\l-world design cqn5|derat|on in and of itself. For egém incorporate payoff maximisation in addition to basin size:
the inventor of a trading strategy such ae [15] may have

intellectual property rights that generate revenue in propn

to its level of adoption. In a wider context, many other saitev F'(i,8,[H]) = Z u(es, @) - By (2, M) -2;  (69)
artifacts exist in a competitive ecology, and as Papadimoitr Feems

notes:

“If an artifact (a new congestion control proto-
col, a new caching scheme, a new routing algorithm,
etc.) is demonstrated to have superior performance,
this does not necessarily mean that it will be success-
ful. For the artifact to be ‘fit’, there must existath
leading from the present situation to its prevalence.

B. Applications
Many algorithms for strategy-acquisition focus on searghi

we can then use the algorithm to find strategies that are
simultaneously payoff-maximising and are also likely to be
adopted by one’s opponents (provided that they choose from
the available strategies using a learning-process sindar
that modelled by the replicator dynamics). In future work we
will explore this application of our algorithm to more geaker

This path must be paved with incentives that will games.

motivate all kinds of diverse agents to adopt it,

implement it, use it, interface with it or just tolerate IX. CONCLUSION

it. In the absence of such a path, the most clever, fast  |n this paper, we have introduced a novel method for acqui-
and reliable piece of software may stay just that.  sition of strategies in non-zero-sum n-player games, and ha
[29] empirically validated this approach by applying it to a well

Secondly, the primary economic application of our methdchown benchmark problem, the double-auction market. Many
is to the mechanism desigproblem [19], [30], [31]. In a existing approaches to strategy acquisition focus on g
mechanism design problem one attempts to define marketfind strategies that are robust in the sense that they are
“mechanisms”, that is, the rules of the market (SectiorCljJ- good all-round performers against any other strategy. We ha
in such a way that design objectives such as maximisiaggued that in many economic and multi-agent scenarios the
the market efficiency£ A are achieved when agents followrobustness criterion is inappropriate and impossible sess
their utility-maximising strategies. The revelation miple due to the large number of possible strategies and the non-
[19, p. 82] states that we can restrict this search problemttansitive relationships between these strategies. ddsteur
mechanisms in which agents directly reveal their valuatiomethod focusses on searching for strategies thatilely to
to the auctioneer; it then suffices to demonstrate that the adoptedy agents participating in the interaction, and then
TT strategy (Section IV-A) is a dominant strategy undeteveloping effective responses to these strategies.
our candidate mechanism (this property is caliedentive- The key strength of our proposed method for strategy
compatibility), and that efficiency, or other design objectivesacquisition is its ability to be applied in realistically roplex
are maximised when all agents adopt. However, real- games, such as the double-auction. However, just as the
world considerations mean that it is rarely possible toglesidomain to which we have applied it suffers from a lack of
incentive-compatible mechanisms in which a simple stgategnalytic tractability, one potential weakness of the mdtio
such asrT is unequivocally dominant (and hence likely to be¢he lack of an analytical proof demonstrating its efficacthia
adopted), especially in the case of double-sided mechanisgeneral case. However, this is mitigated by the fact that the
or when we have legacy constraints on design [32]. In susingle-iteration algorithm calleBi SH combines two fields in
scenarios it may more practical to demonstrate that designvery simple way, each with a growing analytical literature
objectives such as high efficiency are satisfied when agentamely, empirical game-theory and optimisation. Addiily
use an existing non-truthful strategy suchzas [15] or GD, we have demonstrated that this algorithm works effectively
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Algorithm 2. FiSH+

output: A refined set of heuristic-strategies

[H] < GetHeuristicPayoffMatrix(S, u);
repeat

F — maxX;—=1...n F(Z, S, [H]),
for : — 1ton do
[H]" « perturb payoffs inNH] in favour of s;;
if F(i,S,[H])) > F then
F— F(i,S,[H]);
i* g
0S « s;;
end
end

if /' < F(i*, S, [H]) then return S;

OS «— argmaxgcpp F(1,5%U S, GetHeuristicPayoffM

S—0SUS;
[H] < GetHeuristicPayoffMatrix(S, u);

until forever ;

input : A set of heuristic strategieS = {s1, s2, ... s, } for some mechanism

II — create a search space based on generalisation®8f

S « eliminate dominated strategies frofhbased onH];

atrix(s* U S, p));

in at least one highly complex setting, thereby presenting] S. G. Ficici and J. B. Pollack, “Challenges in coevolugioy learning:

an existence proof that the algorithm can be effective in
realistically-complex domain. For the empirical study st

paper we have used a general purpose optimisation methqd,
i.e., a genetic algorithm. In future work we will attempt to

find a specialised optimisation algorithm for the purposks
maximising attractor size by interleaving the optimisatand

heuristic-strategy analysis steps in a similar manner & th

proposed by Walslet al. [33].

5
We have not attempted to validate the proposed iterativ[e

version of the algorithm, thEi SH+ Algorithm, in this paper.
Again, this algorithm is a fairly simple elaboration on thenn
iterative version, so the lack of analytical validation shb

not detract from its potential. However, the fact that thg7)
approach is highly computationally intensive for a single
iteration warrants an analysis of how the algorithm migh{8

converge prior to investing in a full empirical case study.
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