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Abstract

Model checking is a well-established technique for the formal verification of concur-
rent and distributed systems. In recent years, model checking has been extended and
adapted for use in multi-agent systems, primarily to enable the formal analysis of BDI
systems. While this has been successful, there is a need for more complex logical
frameworks in order to verify realistic multi-agent systems. In particular, probabilistic
and real-time aspects, as well as knowledge, belief, goals, etc., are required.

However, the development of new model checking tools for complex combinations of
logics is both difficult and time consuming. In this paper, we show how model checkers
for the constituent logics can be re-used in a modular way when we consider combined
logics involving different dimensions. This avoids the re-implementation of model check-
ing procedures. Within this work we define a modular approach, prove its correctness,
establish its complexity, and show how it can be used to describe existing combined
approaches.

1 Introduction

Model checking is a powerful approach for the formal verification of computer systems. In the
area of verification, model checking acquired considerable attention with a stream of results
for a variety of temporal logics. Verification of reactive systems by means of model checking
techniques is now a well-established area of research [8].

In recent years similar ideas have been applied to the verification of multi-agent systems.
Multi-agent systems comprise many different facets, which often makes their formal descrip-
tion hard. Their verification is also difficult, principally because there are often many different
dimensions to look at simultaneously, including: autonomous behaviour of agents; beliefs,
desires and intentions; teamwork, collaboration and coordination; organizations, norms, so-
cietal interactions; uncertainty in sensing and communications; real-time aspects; etc. Thus,
we may want to represent not just the basic dynamic behaviour of a multi-agent system, but
also several of the various aspects mentioned above. Modal logics can specify some of the
concepts such as knowledge, beliefs, intentions, norms, and temporal aspects. However,
the application of existing model checking tools developed for standard temporal logics, like
LTL [32] or CTL [11], to the verification of multi-agent systems [23] is not straightforward. In
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order to overcome this problem, researchers have attempted to extend the model checking
techniques by adding further operators. These extensions have been carried out based on
sophisticated models of autonomous behaviour, uncertainty and interaction [41].

1.1 State of the Art

The model checking of temporal-epistemic aspects of multi-agent systems has received con-
siderable attention. However, the large amount of individual aspects of multi-agent systems
has resulted in an unmanagable set of their combinations in the literature.

In [37], for example, the theoretical properties of the model checking problems for epis-
temic linear temporal logics for interpreted systems with perfect recall are presented. In [35]
an approach to model checking for a temporal logic of knowledge, CKLn (which combines
LTL with epistemic logic), was developed. With this approach, local propositions provide
a means to reduce CKLn model checking to LTL model checking. In [23] an extension of
the method of bounded model checking (one of the main SAT-based techniques) to CTLK
(a language comprising both CTL and knowledge operators) is defined, implemented, and
evaluated. Work in [18] describes a tool for model checking the logic of knowledge, MCK,
which supports a range of knowledge semantics and choices of temporal language. In [33] a
tool for model checking epistemic formulae in multi-agent systems is presented. The paper
shows how a model checker for temporal models (NuSMV) may be used in the verifica-
tion of epistemic properties. In [42], approaches to the model checking for the logic CKKn

(which combines CTL and epistemic logic) are provided and algorithms for model checking
epistemic operators based on SMV are presented. The work in [28] presents a tool for the
automatic verification of temporal and epistemic operators in interpreted systems, MCMAS,
supporting ATL operators. A multivalued µK-calculus, an expressive logic for specifying
knowledge and time in multi-agent systems, is presented in [24]. In [34], based on the se-
mantics of interpreted systems with local propositions, the authors develop an approach to
symbolic CKLn model checking via Ordered Binary Decision Diagrams (OBDDs) and im-
plement the corresponding symbolic model checker, MCTK. A technique for verifying an
epistemic logic of branching time, CTLK, based on the model checker NuSMV, is presented
in [27]. In [2] multi-agent systems are verified by means of a special action-based temporal
logic, ACTLW. Using temporal and epistemic operators, appropriate formulae are created to
perform model checking for the system. On the theoretical side [13, 36] study combinations
of the epistemic modal logic S5n and temporal logics. Finally, Bordini et al. have developed
a practical framework for model checking BDI properties of multi-agent programs [6].

Real-time and epistemic aspects of multi-agent systems have also been considered. A
real-time temporal knowledge logic, called RTKL, which is a combination of real-time tempo-
ral logic and knowledge logic is introduced in [7], and a model checking algorithm for RTKL

is presented. Furthermore, cooperation modalities are added to RTKL, obtaining the new
logic RATKL that can express not only real-time temporal and epistemic properties but also
cooperation properties. Lomuscio, et al. [29] present TECTLK, a logic to specify knowledge
and real-time in multi-agent systems, together with an algorithm for bounded model checking
based on a discretisation method.

The relations between knowledge and probability were also investigated in the domain of
multi-agent systems. In [19] the relations between knowledge and probability were studied,
with the work in [9] providing a simplified framework. Delgado et al. proposed an epistemic
extension of the probabilistic CTL temporal logic, called KPCTL, allowing epistemic and tem-
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poral properties as well as likelihoods of events [10], where, the authors also describe how to
extend the PRISM model checker [22] to verify KPCTL formulas over probabilistic multi-agent
system models.

1.2 Contribution

The main drawback of the research mentioned above is that numerous combined logics have
been introduced to represent different views on multi-agent systems, and this has required
the implementation of many different verification systems.

In this paper we present a different approach to model checking multi-agent systems.
Instead of introducing new logics for combinations of different aspects, analyzing the model
checking problem, and implementing a new checker for a particular combination, we combine
logics representing different aspects, using a generic model checking method suitable most
of these different combinations of logics. In this way, many aspects of multi-agent systems,
such as knowledge and time, knowledge and probability, real-time and knowledge, etc., can
be represented as a combination of logics, and a combined model checking procedure can
be synthesized from model checkers for the component logics. The component logics we
have in mind are the logics that refer to the key aspects of multi-agent systems, including:

• logics of time (CTL, LTL, ATL, etc);
• belief/knowledge logics (modal logics KD45, S5, etc);
• logics of goals (modal logics KD, etc);
• probabilistic temporal logics (PCTL, etc); and
• real-time temporal logics (TCTL, etc).

While the formal description of multi-agent systems is essentially multi-dimensional, we gen-
erally do not have verification tools for all the appropriate combinations. For example, we
might have separate verification tools for logics of knowledge, logics of time, real-time tem-
poral logics, or probabilistic temporal logics, yet we have no tool that can verify a description
containing all these dimensions.

In this paper we study results and methods for the model checking of combined log-
ics. This can be seen as an extension of the work by Franceschet et al. [16] where model
checking for combinations of modal and (simple) temporal logics are considered. Their work
deals with combinations of logics whose semantics are defined as standard Kripke Struc-
tures 〈W,R, V 〉, where W is the underlying set of worlds/states, V is a valuation function
describing the propositions true at each world/state, and R is the accessibility/transition re-
lation between elements of W . The main drawback of the work in [16] is that their framework
does not capture more complex logics whose semantics are not of the above form. Specifi-
cally, models of probabilistic temporal logics can also be represented in the 〈W,R, V 〉 form,
but here R is not just a simple relation between pairs of states/worlds, but also includes a
probability distribution for the transitions. Similarly, real-time temporal logics have a relation
R that is extended with a set of clock constraints, and the model itself is extended with a
finite set of clocks. It may well be that some probabilistic/real-time temporal logics can be
transformed into standard propositional temporal logics, allowing for the application of the
techniques of Franceschet et al. [16], but it is likely that even in this case the increase in size
in structure will be prohibitive.
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In this paper, we extend the framework from [16] such that it can be used for more com-
plex combinations of propositional logics. This allows us to combine logics of time, logics of
belief, logics of intentions, probabilistic temporal logics, and real-time temporal logics, etc.,
in order to provide a coherent framework for the formal analysis of multi-agent systems. We
provide a generic model checking algorithm which synthesizes a combined model checker
from the model checkers of simpler component logics. We show that the method terminates,
and is both sound and complete. We also analyze the computational complexity of the re-
sulting method, and show that the complexity of the synthesized model checker is essentially
the supremum of the complexities of the component model checkers. This result suggests
that modularity is easier to achieve in model checking than in deductive approaches, where
combination often leads to exponential (or worse) complexity.

We also show that our combined method is quite useful in determining model checking
complexities of some existing logics without the need to study the combined logic. We prove
the model checking complexities of the following logics: polynomial bound for the branching
time epistemic logic, CTLK [31], PSPACE bound for the linear time epistemic logic, CKLn [35],
polynomial bound for the probabilistic epistemic logic KPCTL [10], and PSPACE bound for a
fragment of the real-time epistemic logic TECTLK [29].

Organization of the paper. In Section 2, we provide a brief review of logical combination
methods. In Section 3, we present the combined model checking algorithm, and establish
its completeness and complexity. In Section 4, we apply our method to some existing logics,
and present some complexity results. In Section 5, we provide concluding remarks and
discuss potential future research directions.

2 Combinations of Logics

Much work has been carried out on the combination of various modal/temporal logics. Tem-
poralization, fusion (or independent combination), and product (or join) are among the pop-
ular forms of logic combination [15, 3, 17, 26].

To provide an overview of different combination forms, let us first imagine we have two
logics to combine, Logic1 and Logic2. Further, let us assume that Logic1 is a temporal logic
of some form. Let us represent these graphically as

Temporalization. This is a method which adds a temporal dimension to another logic sys-
tem. In this method an arbitrary logic system is combined with temporal modalities to create
a new system. Basically a combination of two logics, A and B, resulting in a logic A(B) where
a pure subformula of B can be treated as an atom within A. Consequently, the combination
is not symmetric — the logic A is the main one, but at each world/state described by A we
might have a formula of B describing a ‘B-world’.
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Temporalization is investigated in [14], where the logical properties soundness, complete-
ness and decidability are analyzed. In [16] a model checking procedure is presented for
temporalized logics. However, the procedure only covers combining modal propositional
temporal logics.

Fusion (or ‘Independent Join’). The independent combination of two logic systems put to-
gether the expressive power of the two component logic systems in an unrestricted way [14].
In other words, independent combination of two logics over a set of atomic propositions is
obtained by the union of the respective sets of connectives and the union of the formation
rules of both logics. Unlike temporalization, the fusion of two logics A and B, denoted A⊕B,
is symmetric. That is, at any state/world we can either take an ‘A-step’ or a ‘B-step’.

Note that the two logics are essentially independent (hence the name). This makes enforcing
axioms such as ⊢ OPAOPBφ⇔ OPBOPAφ, where OPX is an operator in logic X, impossi-
ble. For tighter linking of this kind we use the product combination. The logical properties of
fusion, such as soundness, completeness and decidability, are analyzed in [14], while [16]
tackles the model checking problem for the fusion of modal temporal logics.

Product (or ‘Join’). In both the temporalization and independent join, formulas are evalu-
ated at a single node of a model. On the other hand, in the join of two temporal systems
flows of times are considered over a higher dimensional plane. Thus, with the join method
it is possible to produce higher-dimensional temporal logics by combining lower dimensional
temporal logics.

This product combination is similar to fusion, but with a much tighter integration of the
logics. The join of two logics A and B is denoted A ⊗ B, and can be visualized as follows.

Specifically, the operators of the constituent logics tend to be commutative. That is, we
add axioms such as ⊢ OPAOPBφ ⇔ OPBOPAφ. The product construction is investigated
in [14], where logical properties of soundness, completeness and decidability are analyzed.
In [16] a combined model checking procedure for modal temporal logics is presented.

The decision problem for product logics is typically more complex than that for fused
logics, with products of relatively benign logics even becoming undecidable. For this reason,
product logics are rarely used in practice, with fusions being the main tool for combining
logics in a deductive way. However, we argue that this disadvantage does not extend to
model-checking product logics, and that model checking products of logics now becomes a
feasible approach.
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We end the section by giving some results for the combining methods mentioned above.
Most of the work carried out on combining logics has been from a deducibility or expressivity
point of view. To generalize many years of important research, we can say that usually, de-
cidability and axiomatizability properties transfer to both temporalizations and fusions from
the constituent logics [5, 21]. Thus, the independent combination of two decidable normal
polyadic polymodal logics is decidable [39]. The same result holds for modal logics with the
converse operator interpreted over transitive frames [38]. As for one-dimensional tempo-
ral logics, it is known that PLTL(PLTL) and PLTL⊕PLTL are decidable [14, 15]. In the case
of join we have worse results. For instance, the modal logic S5 is NP-complete, S5⊗S5
is NEXPTIME-complete [30], and S53 is undecidable and does not have the finite model
property [25]. Moreover, PLTL⊗Km is decidable, but PLTL⊗PLTL is not recursively enumer-
able [40].

3 Modular Model Checking

In this section we generalize the model checking algorithms for combined logics given in [16]
to cover more complex cases, such as knowledge, belief, real-time, and probability, etc. As
mentioned above, the semantics of these logics are defined over more general structures
than standard Kripke structures. In our extended model checking algorithm, the different
model types of combined logics are therefore assumed to have an appropriate hybrid model
type.

In the sequel, the following general definition can be used for a propositional logic (we
assume a propositional extension of modal logic). The language is built from a countable
signature of propositional letters P = {p1, p2, ...}, the boolean connectives ∧ and ¬, a set of
operators OP = {Oi11 , .., O

in
n } with arities i1, ..., in (for n ∈ N), respectively, and the following

formation rules:

1. every propositional letter p ∈ P is a formula;
2. if φ1, φ2 are formulas, so are ¬φ1 and φ1 ∧ φ2;
3. if Oikk ∈ OP and φ1, ..., φik are formulas, so are Oikk (φ1, ..., φik ) (for k ∈ N).

The other boolean connectives ∨,→,↔ and the constants ⊥ and ⊤ can be derived in a
standard way. Depending on the type of the logic, e.g., modal, real-time, probabilistic etc.,
the semantics is defined over different structures, such as Kripke structures, Markov deci-
sion processes, timed automata, interpreted systems etc. This will be discussed further in
Section 4.

It is important to mention that in this section we assume the models with explicit sets of
states, as in the case of Kripke structures with a discrete labeling function. In Section 4.3,
we will discuss the case of models with non-explicit states, such as timed automata. For
simplicity, we also do not denote the initial states in the structure of a model. This can be
added without any problem.

3.1 Temporalization

Let A and B be two propositional logics with OP (A) ∩ OP (B) = ∅. Given that 〈S1, T1〉 is
frame for the logic A and 〈S2, T2〉 is frame for the logic B, a model M for A(B) is the tuple

6



〈S1 ∪S2, T1, T2, V 〉 with a restriction that s ∈ S1 is not reachable from s ∈ S2\S1. V : S2 → 2P

is a valuation function assigning S2 to sets of proposition letters. This restriction ensures
that the combination is not symmetric. Another restriction is that the logic A should have a
temporal operator in order to temporalize the logic B.

Note that T1 (resp. T2) is an n-tuple denoting a relation with an (possibly empty) arbitrary
labeling of states and accessibility relations on states. T1 (resp. T2) gets a different form
according to the type of logic A (resp. B). For example, if A (resp. B) is modal logic, then
T1 (resp. T2) is defined simply as the accessibility relation R. If, however, A (resp. B) is a
probabilistic logic, T1 (resp. T2) will be the transition relation with probability labels on edges.
In Section 4 we show how T1 (resp. T2) can have different forms according to the type of the
logic.

For a given finite A(B)-model M and A(B)-formula ψ, the model checking problem for
A(B) is to check whether there exists s ∈ S such that M, s |=A(B) ψ.

Let MCA and MCB be model checkers for the logics A and B, respectively. The algorithm
in Figure 1 can be used for model checking A(B) with the input M and ψ. The procedure
first computes the set of maximal subformulas ms(ψ). ms(ψ) is a set of subformulas of ψ
with the following condition: Assume O1O

′
1φ andO′

1φ are subformulas of ψ, whereO1, O
′
1 are

operators of a component logic. If O1O
′
1(φ) ∈ ms(ψ), then O′

1(φ) 6∈ ms(ψ). The procedure
then model checks formulas in ms(ψ) in increasing order wrt. their lengths, and accordingly
it extends the valuation V within M. Formulas whose main operator in the language of the
logics A and B are resolved by taking advantage of the corresponding model checker.

Figure 1 describes the model checking algorithm for the two logics A and B . Note that,
in Figure 1, we consider model checkers as procedures. Namely, a model checker takes a
model and a formula ψ as input, and extends the valuation function V within the model to V ′

such that V ′ maps states to sets of subformulas of ψ as follows: for every subformula φ of
ψ and every node s, V ′(s) contains φ if, and only if, φ is true at s in the model. Thus, model
checking is here a procedure that extends the valuation within the model to include new truth
values for the sub-formulas in question.

3.2 Independent Combination

Let A and B be two propositional logics with OP (A) ∩OP (B) = ∅. A structure M for A ⊕ B
is a tuple 〈S, T1, T2, V 〉, where T1 (resp. T2) is a tuple whose elements depend on the type
of A (resp. B). Given that M is a finite A ⊕ B-structure and ψ is a A ⊕ B-formula, the model
checking problem for A ⊕ B is to check whether there exists s ∈ S such that M, s |=A⊕B ψ.
The algorithm in Figure 1 can again be used for model checking A⊕B with the input M and
ψ.

3.3 Join

Let A and B be two propositional logics with OP (A) ∩ OP (B) = ∅. Given that 〈S1, T1〉 is a
frame for the logic A and 〈S2, T2〉 is a frame for the logic B, a structure M for A⊗B is a tuple
〈S1 × S2, T̂1, T̂2, V 〉, where T̂1 (resp. T̂2) denotes the relation on S1 × S2 (resp. S2 × S1), and
V : S1 × S2 → 2P is a valuation function.

Given that M is a finite A ⊗ B-structure and ψ is a A ⊗ B-formula, the model checking
problem for A ⊗ B is to check whether there exists a s1 ∈ S1 and a s2 ∈ S2 such that
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MCAB

Input: M = 〈S, T1, T2, V 〉 and ψ

compute ms(ψ)
for every s ∈ S, set V̄ (s) = V (s)
for every φ ∈ ms(ψ) (increasing order of |φ|)

case on the form of ψ
φ = p, p ∈ P: skip

φ = φ1 ∧ φ2:
for every s ∈ S if φ1 ∈ V (s) and φ2 ∈ V (s) then

set V (s) = V (s) ∪ {φ}; V̄ (s) = V̄ (s) ∪ {Pφ}

φ = ¬φ1:
for every s ∈ S if (not φ1 ∈ V (s)) then

set V (s) = V (s) ∪ {φ}; V̄ (s) = V̄ (s) ∪ {Pφ}

φ = O(φ1, ..., φn), O ∈ OPA :
let φ′ = φ

for every j ∈ {1, ..., n} replace φj ∈ φ′ with Pφj

for every s ∈ S set V ′(s) = V (s)
compute S1 ⊆ S wrt. T1

MCA(〈S1, T1, V
′〉, φ′)

for every s ∈ S

if φ′ ∈ V ′(s) then set V (s) = V (s) ∪ {φ};
V̄ (s) = V̄ (s) ∪ {Pφ}

φ = O(φ1, ..., φn), O ∈ OPB :
;; Similar to the case φ = O(φ1, ..., φn), O ∈ OPA

Figure 1: A model checking algorithm MCAB for the combination of the logics A and B.

M, s1, s2 |=A⊗B ψ. The algorithm in Figure 1 can again be used for model checking A ⊗ B
with inputs M and ψ.

3.4 Correctness and Complexity

Theorem 3.1 (Termination). Let M = 〈S, T1, T2, V 〉 be a finite structure for the combined
logic AB. Assume the model checkers MCA and MCB are terminating. Then, the combined
model checker MCAB also terminates.

Proof. MCAB computes the set of formulas ms(ψ) in a finite time. The procedure also ex-
tends the valuation function V mapping a state to a set of proposition letter to V̄ mapping a
state to a set of subformulas of ψ in a finite time. Since the model checkers MCA and MCB

are also terminating, the combined model checker MCAB terminates.

Theorem 3.2 (Soundness and Completeness). Let M = 〈S, T1, T2, V 〉 be a finite model for
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the combination of the logics A and B, ψ be a combined formula, and V̄ be the extended
valuation function of V (after the termination of MCAB). Assume the model checkers MCA

and MCB are sound and complete. Then, there exists s ∈ S such that ψ ∈ V (s) if, and only
if, M, s |=AB ψ.

PROOF. In order to prove the theorem it will be sufficient to show for every subformula φ
of ψ and every state s ∈ S, V̄ contains φ if, and only if, φ is true at s.

(Soundness) For every φ ∈ ms(ψ) and s ∈ S, φ ∈ V̄ implies M, s |=AB φ. We prove this by
structural induction on φ:

φ = p (p ∈ P): Trivial.
φ = φ1 ∧ φ2: In the combined model checking procedure, the formulas in ms(ψ) are model

checked in increasing order with respect to their lengths. Therefore, if φ ∈ V̄ (s), then
φ1 and φ2 were already model checked, and it was found that φ1, φ2 are true at s, and
therefore φ1 ∈ V̄ (s) and φ2 ∈ V̄ (2). Therefore, M, s |=AB φ.

φ = ¬φ1: Similarly, if φ ∈ V̄ (s), then we know that φ1 6∈ V̄ (s) and φ1(s) is not true. Hence,
M, s |=AB φ.

φ = O(φ1, ..., φn) (O ∈ OPX), X ∈ {A,B}): Let ψ′ be a formula obtained by replacing every
φi with Pφi

(1 ≤ i ≤ n). That is, φ′ =O(Pφ1
, ..., Pφn

). If φ ∈ V̄ (s), then the model checker
MCX found out that φ′ is true. Since MCAB model checks the formulas in increasing
order with respect to their lengths, we know that Pφ1

, ..., Pφn
are already true. Hence,

M, s |=AB φ.

(Completeness) We now show that for every φ ∈ ms(ψ) and s ∈ S, φ 6∈ V̄ (s) implies
M, s 6|=AB φ. Again, we prove this on the structure of φ as follows:

φ = p (p ∈ P): Trivial.
φ = φ1 ∧ φ2: Since φ 6∈ V̄ (s), V̄ does not contain either φ1, φ2, or both. This means that φ1

and φ2 were model checked, and at least one of them was found to be false. Therefore,
M, s 6|=AB φ.

φ = ¬φ1: If φ 6∈ V̄ (s), then φ1 ∈ V̄ (s). This means that φ1 was model checked and it was
found to be true. Thus, M, s 6|=AB φ.

φ = O(φ1, ..., φn)(O ∈ OPX), X ∈ {A,B}): Let φ′ = O(Pφ1
, ..., Pφn). If φ 6∈ V̄ (s), then the

model checker MCX found that φ′ is not true. Hence, M, s 6|=AB φ. �

We now analyze the computational complexity of the model checker MCAB. The complexity
of the combined model checker is the sum of component model checking cost, which is the
cost of performing component model checkers, and interaction processing cost, which is the
sum of the cost of processing inputs and outputs of the component model checkers and the
cost of operations on the extended valuation function.

Theorem 3.3 (Complexity). Let M = 〈S, T1, T2, V 〉 be a finite model for combination of the
logics A and B, ψ be a combined formula, and CA and CB be the time complexity of the
model checkers MCA and MCB, respectively. Then, provided that CA and CB are at least
linear in the size of the specification, we can model check the validity of ψ in M in time

O
(

max{CA(|M|, |ψ|), CB(|M|, |ψ|)}
)

.
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Proof. We first calculate the time required for model checking, which is obviously bounded by
∑

φ∈ms(ψ)

CX(|M|, |φ|), where X is the appropriate model checker for the respective subformula

φ ∈ ms(ψ). By a simple inductive argument along the structure of the fromula, we can show
that the sum of the length

∑

φ∈ms(ψ)

|φ| < 2|ψ| of their related simplified subformulas is smaller

than twice the length of ψ itself, and each individual.
For m = max{CA(|M|, |ψ|, CB(|M|, |ψ|)}, this provides us (together with the trivial as-

sumption that the cost of model checking is at least linear in the size of the specification)
with the straight forward estimation

∑

φ∈ms(ψ)

CX(|M|, |φ|) < 2m.

We now calculate the interaction processing cost. The computation time of ms(ψ) is
linear in the size of ψ, and is therefore bounded by O(|ψ|). The cost factor of computing
or updating the valuation functions V and V̄ depends on the form of φ. As can be easily
seen, the cost factor of the form O(φ1, ..., φn) is higher than those of the forms p, φ1 ∧ φ2 and
¬φ1. According to the model checking algorithm V is updated

∑

φ∈ms(ψ)

∑

s∈S

times. The outer

sum operator is bounded by O(φ), and the inner two sum operators are bounded by |S|.
Hence, the processing time of V is bounded by O(|ψ|.|S|). V̄ is updated

∑

s∈S

+
∑

φ∈ms(ψ)

∑

s∈S

times, which is bounded by O(|ψ|.|S|). In addition, the replacement of subformulas in φ′ with
proposition letters costs O(|φ|), which is bounded by O(|ψ|). Finally, finding the subset S1 of
S wrt. T1 costs |S|.|T1|, and similarly finding the subset S2 of S wrt. T2 costs |S|.|T2|. Thus,
the interaction processing cost is dominated by the component model checking cost. Thus,
the total cost of the combined is bounded by O

(

max{CA(|M|, |ψ|), CB(|M|, |ψ|)}
)

.

Remark. We note that the combined model checking cost of ‘join’ is in general higher than
either ‘temporalization’ or ‘fusion’. First of all, the state space of the combined model is the
product of state spaces of the component logics while, in ‘temporalization’ and ‘fusion’, the
combined state space is the union of two constituent state spaces. Secondly, the model
checking of join has an extra overhead cost while calculating T̄1 and T̄2 (See Section 3.3).
This cost is bounded by |T1|.|S2| + |T2|.|S1|, which does not change the overall complexity;
but requires extra computation time.

4 Example Combinations

In this section, we show how the combination method can be applied to represent some
combinations of different aspects of multi-agent systems. The examples demonstrate how
simple it becomes with our technique to determine the model checking complexity of these
logics (and to synthesize a model checker for them).

4.1 Time + Knowledge

Let us consider the combination of time and knowledge aspects. A typical example is the
fusion of the temporal logic CTL with the modal logic S5. Typically, the modal operator of
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S5 formalizes epistemic concepts. Thus, the combination CTL ⊕ S5 can be used to reason
about knowledge and time.

Assume the modalities ‘group knowledge’, ‘common knowledge’ and ‘distributed knowl-
edge’ are already defined in S5. The language of CTL ⊕ S5 is the smallest set of formulas
generated by the following grammar:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | EXφ | EGφ | E[φUψ] | Kiφ | EΓφ | CΓφ | DΓφ

Other operators (¬, ∧, EF,AX,AG,AU, and AF, etc) can be derived in the usual way. In this
grammar, p ∈ P is an atomic proposition, and the operators EX, EG and EU are the standard
CTL operators. Given a set of agents A = {1, ..., n}, for any agent i ∈ A, the formula Kiφ is
read as ”agent i knows φ”. Given that Γ ⊆ A denotes a group of agents, the form formula
EΓφ is read as ”everybody in group Γ knows φ”; the formula CΓφ is read as ”φ is common
knowledge in gorup Γ”; the formula DΓφ is read as ”φ is distributed knowledge in group Γ”.

Assume the combined model M for the logic CTL ⊕ S5 is a tuple 〈S,Rt,∼1, ...,∼n, V 〉,
where S = S1×...×Sn is a set of global states, Rt ⊆ S×S is a temporal relation, ∼i⊆ S×S is
an epistemic accessibility relation for i, and V : S → 2P . Here we assume that (s, s′) ∈ Rt iff
s′ is the result of applying a transition function t : S×Act→ S (where Act ⊆ Act1 × ...×Actn
is the set of joint actions) to the global state s and a joint action act ∈ Act. As can easily be
observed, M is an interpreted system, 〈S,Rt〉 is a Kripke frame for CTL, and 〈S,∼1, ...,∼n〉
is a Kripke frame for S5.

Given that σ is a path, which is an infinite sequence of states, the semantics of CTL ⊕ S5

is defined inductively by:

M, s |= p iff p ∈ V (s), for p ∈ P
M, s |= ¬φ iff not M, s |= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= EXφ iff ∃σ s.t. σ[0] = s and M, σ[1] |= φ

M, s |= EGφ iff ∃σ s.t. σ[0] = s and (∀i ≥ 0) M, σ[i] |= φ

M, s |= E[φ1Uφ2] iff ∃σ s.t. σ[0] = s and (∃k ≥ 0) s.t. M, σ[k] |= φ2 and
(∀ 0 ≤ j < k) M, σ[j] |= φ1

M, s |= Kiφ iff (∀s′ ∈ S) s ∼i s
′ implies M, s′ |= φ

M, s |= EΓφ iff (∀s′ ∈ S) s ∼E
Γ s′ implies M, s′ |= φ

M, s |= CΓφ iff (∀s′ ∈ S) s ∼C
Γ s′ implies M, s′ |= φ

M, s |= DΓφ iff (∀s′ ∈ S) s ∼D
Γ s′ implies M, s′ |= φ

where ∼E
Γ =

⋃

i∈Γ ∼i, ∼D
Γ =

⋂

i∈Γ ∼i, and ∼C
Γ = (∼E

Γ )+ (the transitive closure of ∼E
Γ ).

According to our combined model checking procedure, the model checking complexity of
CTL ⊕ S5 transfers the complexity of the component logics CTL and S5. It is trivial to observe
that the model checking problem of CTL ⊕ S5 can be solved in polynomial time.

This is interesting since, because without introducing a complex method we solved the
model checking problem of a combined logic of time and knowledge. Basically, our result
provides an upper bound for the model checking problem of the epistemic logic of branch-
ing time, CTLK [31]. As can be easily observed CTL ⊕ S5 and CTLK are the same logics,
because they have the same grammar and same semantics over the interpreted systems.
The model checking problem of the logic CTLK was previously analyzed by bounded model
checking [31], by unbounded model checking [23], and by building upon an extension of the
model checker NuSMV [27]; but no complexity result was given. So, our result is important
in this perspective.
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Above we applied our method to combine knowledge and branching time aspects. We
can also use our approach to combine knowledge and linear time aspects. Namely, we
can define the fusion of the logic LTL and S5, which will result in the same language of the
logic CKLn [35]. We can easily show that the complexity of the model checking LTL ⊕ S5 is
the same as that of LTL, because the complexity of the LTL model checking is higher than
the complexity of the S5 model checking. This is the same result with that of [35] where
the model checking problem of CKLn is reduced to LTL model checking by a method using
local propositions. The advantage of our approach is that we can prove the model checking
complexity just using results from the component logics.

4.2 Probability + Knowledge

In the case of merging the probability and knowledge dimensions of multi-agent systems, we
can combine probabilistic CTL, PCTL [20], with the modal epistemic logic S5. PCTL ⊕ S5 al-
lows for the expression of epistemic properties, temporal properties and likelihood of events.
In PCTL ⊕ S5 probabilistic uncertainty is expressed using formulas with nested epistemic
and probabilistic operators.

Let A = {1, ..., n} be set of agents. The syntax of PCTL ⊕ S5 is given in terms of state
formulas φ and path formulas ψ that are evaluated respectively over states and paths.

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Prαr[ψ] | Kiφ | EΓφ | CΓφ | DΓφ

ψ ::= φ | φU≤kφ | φUφ

where α ∈ {≤, <,≥, >}, r ∈ [0, 1], k ∈ N, i ∈ A, Γ ⊆ A, p ∈ P is an atomic proposition,
Prαr is the probability operator, Ki, EΓ, CΓ and DΓ are epistemic operators as described in
Section 4.1, and U,U≤k are path formulas.

Assume the combined model M for the logic PCTL ⊕ S5 is a tuple 〈S,Act,Rt,∼1, ...,∼n

, V 〉, where S = S1 × ...× Sn is a set of global states, Act is a set of actions, Rt ⊆ S ×Act×
[0, 1]×S is the transition relation, ∼i⊆ S×S is an epistemic accessibility relation for i, and V :
S → 2P . Associated with each state s is a set of enabled actions Acts ⊆ Act. For each state
s ∈ S, each enabled action a ∈ Acts, and every state s′ ∈ S, we have exactly one transition
(s, a, P(s,a,s′), s

′) ∈ Rt, for some probability P(s,a,s′) ∈ [0, 1], such that
∑

s′∈S P(s,a,s′) = 1.
Thus, at each state, each enabled action determines a probability distribution on the next
state. There are no other transitions, so no transitions on disabled actions. We assume
every state s has some enabled action, so there are no dead ends.

Given that M is a combined model for PCTL ⊕ S5, 〈S,Act,Rt, V 〉 is a Markov Decision
Process (MDP) [12], and 〈S,∼1, ...,∼n, V 〉 is a Kripke structure for S5. The semantics of
PCTL ⊕ S5 is defined as follows:

M, s |= Prαr[ψ] iff ProbAs ({σ ∈ PathAs | M, σ |= ψ}) α r, for all A ∈ AdvM, α ∈ {≤, <,≥, >},
and r ∈ [0, 1]

Assume the set of paths {σ ∈ PathAs | M, σ |= φ} is measurable for any path formula ψ,
state s and adversary A. The semantics of the path formulas is given below:

M, σ |= φ iff σ[0] |= φ

M, σ |= φU≤kψ iff (∃i ≤ k) M, σ[i] |= ψ and (∀j < i) M, σ[j] |= φ

M, σ |= φUψ iff (∃k ≥ 0) M, σ |= φU≤kψ
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The semantics of the formulas p,¬φ, φ1 ∧φ2 and epistemic formulas Kiφ,EΓφ,CΓφ,DΓφ are
defined as in Section 4.1.

According to our combined model checking procedure, PCTL ⊕ S5 transfers complexities
from the component logics PCTL and S5. We know that PCTL model checking over an MDP
has polynomial complexity [4]. Therefore, we can find a polynomial upper bound for the
model checking of the combined logic PCTL ⊕ S5. This is interesting because PCTL ⊕ S5

subsumes the logic KPTCL, which was shown to have polynomial model checking complex-
ity [10]. Thus, with our method we established the same complexity result without devising a
new model checking algorithm.

4.3 Real-time + Knowledge

In the cases “time + knowledge” and “probability + knowledge”, we considered models with
explicit states, and therefore we could consider the model checkers as procedures which ex-
tend the valuation function to map states to sets of subformulas of ψ. However, model check-
ers for real-time logics, in general, receive models with non-explicit states. For example, in
timed automata such states are called locations, which are just abstract representations. The
explicit states can be viewed as the tuples of locations and clock valuations. Therefore, we
can no longer consider such a model checker labeling the locations with subformulas which
are true. This prevents us from using arbitrary nesting of real-time operators in the combined
language. But we can solve this problem partially. We know that if the component real-time
model checker returns true for a formula, that formula has to be true in the initial location.
Using this fact we can combine these two logics with a limitation that arbitrary nesting of
real-time operators are not allowed.

However, we can still use any arbitrary nesting of the operators of the second logic.
This allows us to express many interesting properties, which can be useful in multi-agent
domain. In case of combination of TCTL [1], a real-time extension of CTL, and S5 we cannot
express the formulas such as EF[0,10]KaEF[0,5](p); but we can still express the formulas, like
EF[0,10]KaKb(p), KaKbEF[0,10](p), KaEF[0,10]Kb(p), etc.

We can now consider the combination of real-time and knowledge aspects. We produce
a combined logic, which is the fusion of the logic TCTL and S5. Let us define this combination
by considering the limitation mentioned above. Assume A = {1, ..., n} be set of agents.The
syntax of the resulting logic TCTL ⊕ S5 is defined by the following grammar:

φ ::= ⊤ | p | ψ | ¬φ | φ ∧ φ | Kiφ | EΓφ | CΓφ | DΓφ | EψUαkψ | AψUαkψ

ψ ::= ⊤ | p | ¬ψ | ψ ∧ ψ | Kiψ | EΓψ | CΓψ | DΓψ

where α ∈ {≤, <,≥, >}, k ∈ N, i ∈ A, Γ ⊆ A, and p ∈ P is an atomic proposition. Standard
abbreviations include ⊥, φ, φ ∨ φ, φ⇒ φ, etc. as well as EFαkφ, AFαkφ, EGαkφ and AGαkφ.

Assume the combined model for the logic TCTL ⊕ S5 is a timed automata T A (with epis-
temic relations)

〈S,Act, C,→t, Inv,∼1, ...,∼n, V 〉

where S = S1 × ... × Sn is a set of global states, Act is a finite set of actions, V : S 7→ 2P

is a valuation function, ∼i⊆ S × S is an epistemic accessibility relation for i, C is a finite
set of clocks, and Inv: S 7→ G(C) a function assigning an invariant to any state. The set
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→t⊆ S ×Act×G(C) × 2C × S is a finite set of action transitions: for s
g,C
−−→t s

′, g is the guard
of the transition, and C is the set of clocks to be reset with the transition.

The semantics of TCTL ⊕ S5 can be defined on a real-time interpreted system [29].
Namely, a real-time interpreted system for T A is a tuple M = 〈Q,→, ∼̄1, ..., ∼̄n, V̄ 〉, where
Q ⊆ S × R

|C|, →⊆ (S × R
|C|) × (Act ∪ R) × (S × R

|C|) is the transition relation, ∼̄i ⊆ Q ×Q

is an epistemic relation defined by (s, v)∼̄i(s
′, v′) iff s ∼i s

′ and v ≃ v′, for each agent i and
for valuations v, v′ ∈ R

|C|, and V̄ :7→ 2P is a valuation function such that V̄ (s, v) = V (s) for a
clock valuation v ∈ R

|C|.
Let M be a real-time interpreted system. Assume Exec(q) is the set of all executions

from q. Given ρ ∈ Exec(q), any finite prefix σ leading to a state q′ (denoted q σ
7→ q′) has a

duration, Time(q
σ
7→ q′), defined as the sum of all delays along σ. Let Pref(ρ) be the set of

all prefixes rho. The satisfaction relation |= is defined as follows:

M, q |= EφUαkφ iff ∃ρ ∈ Exec(q) with ρ = σ.ρ′ ∧ q
σ
7→ q′

s.t. Time(q
σ
7→ q′)α k, M, q′ |= φ∧(∀q′′ <ρ q

′) M, q′′ |= φM, q |= AφUαkφ iff ∀ρ ∈ Exec(q),
∃σ ∈ Pref(ρ) s.t. q σ

7→ q′,
Time(q

σ
7→ q′)α k, M, q′ |= φ and (∀q′′ <ρ q

′) M, q′′ |= φ

In EφUαkφ, the classical U is extended by requiring that φ be satisfied within a duration
verifying the constraint “αk”. The semantics of the formulas p,¬φ, φ1 ∧ φ2 and epistemic
formulas Kiφ,EΓφ,CΓφ,DΓφ are defined as in Section 4.1.

The model checking problem of the combination of real-time and epistemic aspects of
multi-agent systems was studied in [29], where the fusion of an existential fragment of TCTL

and the logic S5, called TECTLK, was introduced. One can notice that TCTL ⊕ S5 is a
restricted version of the logic TECTLK, such that arbitrary nesting of the formulas EψUαkψ

and AψUαkψ are not allowed. In [29], it was shown that the model checking problem is
decidable; but no complexity result was provided. Using our combination method we can
prove that that the model checking complexity of a restricted subset of TECTLK, namely
TCTL ⊕ S5, is the maximum model checking complexity of TCTL and S5, which is PSPACE.
Although TCTL ⊕ S5 is a subset, it can still express many important properties of knowledge
and real-time interaction.

5 Concluding Remarks

In this paper, we presented a modular approach to model checking multi-agent systems.
Instead of introducing new logics for combinations of different aspects and studying the re-
sulting model checking problem, we combine logics representing different aspects and use
a generic model checking method for different combinations of logics. In this way, many
aspects of multi-agent systems, such as knowledge and time, knowledge and probability,
real-time and knowledge, etc., can be viewed as simple standard combinations of logics
and, without introducing a new logic, a generic combined model checking procedure can
be synthesized from model checkers of simpler component logics. This avoids the need for
complex re-implementation of model checking procedures. We have also shown that our
combined method is quite useful — and often more precise than previous results — for de-
termining the model checking complexity of existing logics without the need of devising a
new method.
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In Section 4 we showed how our combined model checking method can be used to
describe some existing combined approaches that have been applied to agent verification.
There are numerous others that could be tackled, including alternating temporal logics, logics
of intention, logics of belief, etc. We can also describe new, and as yet un-implemented,
combinations. For example, we can combine the probabilistic and cooperation aspects, real-
time and intention aspects, belief and uncertainty aspects, etc. Due to space limitation we
cannot provide examples of such interactions; but with our modular approach we can analyze
different merged dimensions of multi-agent systems.

We are currently working on extending our method to cover the full grammar of the TCTL

and S5 combination, to apply the method to more complex, and previously unstudied, com-
binations and to implement the algorithm to provide a tool.
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