
An XML Mapping Language for Dynamic Semantic
Workflow Harmonisation

Martin Szomszor a,1, Terry R. Payne c,∗, Luc Moreau b

aCity University, Northampton Square, London EC1V 0HB, UK
bUniversity of Southampton, Southampton, SO17 1BJ, UK

cUniversity of Liverpool, Liverpool, L69 3BX, UK

Abstract

Service-oriented architectures have evolved to support the composition and utilisation
of heterogeneous resources, such as services and data repositories, whose deployment can
span both physical and organisational boundaries. The Semantic Web Service paradigm fa-
cilitates the construction of workflows over such resources using annotations that express
the meaning of the service through a shared conceptualisation. While this aids non-expert
users in the composition of meaningful workflows, sophisticated middle-ware is required
as service providers and consumers often assume different data formats for conceptually
equivalent information. When syntactic mismatches occur, some form of workflow har-
monisation is required to ensure that data format incompatibilities are resolved, a step we
refer to as syntactic mediation. Current solutions are entirely manual; users must consider
the low-level (i.e. data format) interoperability issues and insert Type Adaptor components
into the workflow by hand, contradicting the Semantic Web Service ideology. By exploiting
the fact that services are connected together based on shared conceptual interfaces, it is pos-
sible to associate a canonical data model with these shared concepts, providing the basis
for workflow harmonisation through an intermediary data model. To investigate this hy-
pothesis, we have developed a formalism to express the mapping of elements between data
models in a modular and composable fashion that facilitates mapping reuse. We present our
mapping language (FXML-M) and give both its precise semantics, the rules that define the
transformation process they dictate, and present an evaluation of an implementation of the
approach with respect to other mapping mechanisms.

Key words: Semantic Web Services, XML Transformation, Lifting/Lowering, Grounding,
Workflow Harmonisation, Syntactic Mediation

Technical Report UCLS-10-009, Department of Computer Science, University of Liverpool

1 Introduction

The continuing uptake of the World Wide Web as a platform for the dissemination
and sharing of products, services, and information, has pushed both the boundaries
and uptake of distributed systems. Approaches such as Service Oriented Architec-
tures, Multi-Agent Systems, and the Semantic Web, have evolved to support the
growing complexity of interaction and co-ordination between parties. Much of the
success of these computing paradigms can be attributed to their adoption of stan-
dard markup languages, such as XML, which are designed to support the mutually
intelligible interchange of data. However, whilst this may support easier access and
reuse of third-party services, they have failed to address many of the knowledge-
based problems associated with the integration of disparate services, such as in-
terface and data model heterogeneity. It has been argued [33,32] that while Web
Service architectures have provided an effective infrastructure at the physical and
syntactic level, they force application designers to make simplifying assumptions,
such as the a-priori agreement of interface specifications and data models [36].

(a) A simple bioinformatics task: get se-

quence data from a database and perform

a sequence alignment on it.

(b) The output from the DDBJ-XML Service is not compatible for input

to the NCBI-Blast Service.

Fig. 1. Semantic similarity between services does not guarantee syntactic compatibility.

In an effort to increase interoperability, automation, and ease-of-use, recent re-
search in the field has concentrated on aligning service description methodologies
with Semantic Web ideologies [7], for example, through the use ontologies that
capture the semantics of a service interface. Essentially, this annotation approach
provides users with conceptual definitions of what a service does using domain
specific terminology, supporting more intuitive service discovery and composition.

∗ Corresponding author. Tel: +44 (151) 795 4251
Email addresses: martin.szomszor.1@city.ac.uk (Martin Szomszor),

T.R.Payne@liverpool.ac.uk (Terry R. Payne),
l.moreau@ecs.soton.ac.uk (Luc Moreau).
1 This research is funded in part by EPSRC myGrid project (reference GR/R67743/01)

2

With the introduction of semantically annotated Web Services [3,28], Workflow
composition has shifted to a higher-level design process: users can choose to in-
clude services in a Workflow to achieve particular goals based on the conceptual
service definitions. While this makes Workflow design more accessible to untrained
users, it does lead to more complex architectural requirements. The situation often
arises where users wish to connect two services together that are conceptually com-
patible but have different syntactic interfaces. To harmonise these data incompati-
bilities, some form of data translation is required, often taking the form of a trans-
lation script, bespoke application, or the use of another Web Service or mediator
[17,31,27]. In current systems, these Type Adaptor components must be discovered
manually and inserted into the Workflow by hand, necessitating additional effort
by the user. Thus, end users are distracted from the task of composing Workflows
by the need to engineer and resolve incompatibility and interoperability issues be-
tween services.

Consider the following scenario. The MYGRID project provides an open-source
Grid middle-ware that supports the construction of service workflows to support
bioinformaticians. Using a service-oriented architecture, the MYGRID infrastruc-
ture provides a virtual workbench for supporting in silico biological experiments
[14]. Access to data and computational resources is provided through Web Ser-
vices, which can be composed using the workflow language XSCUFL 2 and exe-
cuted with the FreeFluo 3 enactment engine. The biologist is provided with a user
interface (Taverna 4) which presents the services available, enables the biologist to
compose and view workflows graphically, execute them, and browse the results.

A typical bioinformatics task may involve retrieving sequence data from a database
and passing it to an alignment tool to check for similarities with other known se-
quences. Within MYGRID, this interaction is modelled as a simple Workflow, with
each stage in the task being fulfilled by a Web Service, illustrated in Figure 1(a).
Many Web Services are available for retrieving sequence data; the ones used in
this example are DDBJ-XML (http://xml.ddbj.nig.ac.jp/) and XEMBL
(http://www.ebi.ac.uk/xembl/) . To obtain a sequence data record, an ac-
cession number is passed as input to the service, and an XML document is returned.
The documents returned from either service essentially contain the same informa-
tion, namely the sequence data as a string (e.g. atgagtga...), references to
relevant publications, and features of the sequence (such as the protein transla-
tion). However, the way this information is represented differs - XEMBL returns
an EMBL 5 formatted record whereas DDBJ-XML returns a document using their
own custom format. The next stage in the Workflow is to pass the sequence data

2 http://www.ebi.ac.uk/˜tmo/mygrid/XScuflSpecification.html
3 http://freefluo.sourceforge.net/
4 http://taverna.sourceforge.net/
5 http://www.ebi.ac.uk/schema/EMBL common.xsd

3

to an alignment service, such as the BLAST service at NCBI 6 , which consumes a
string of FASTA 7 formatted sequence data.

Intuitively, a bioinformatician will view the two sequence retrieval tasks as the
same type of operation, expecting both to be compatible with the NCBI-Blast ser-
vice. The semantic annotations used by the FETA service discovery engine [23]
support this, as the output types are assigned the same conceptual type, namely
a Sequence Data Record concept. However, when plugging the two services to-
gether, the resulting workflow fails due to data-format incompatibilities, as the out-
put from either sequence data retrieval service is not directly compatible for input
to the NCBI-Blast service (Figure 1(b)). To harmonise the Workflow, some inter-
mediate processing or syntactic mediation is required to massage the data generated
from the first service into a format suitable for input to the second service.

By exploiting the fact that semantically annotated Web Services can be connected
through a shared conceptualisation, we present a scalable mediation approach in
this paper that adopts these ontologies as an intermediate data model through which
different syntactic representations may be converted. To support the specification of
mappings between XML schemas and their corresponding ontology definitions, we
present the declarative and composable XML mapping language, FXML-M, which
includes a suitably rich set of operators to satisfy complex translation requirements
derived from real bioinformatics data sources. A formalism is presented to give
precise semantics for this mapping language, as well as rules to define the transfor-
mation of documents. An implementation of the rules that provide the semantics
of this mapping language have been used as a basis for the creation of a Config-
urable Mediator - a dynamic Type Adaptor that converts instances of XML between
different representations according to a set of composable mapping rules [35].

This paper is organised as follows: Section 2 gives an overview of our mediation
approach and how OWL ontologies can be used to support data translation through
an intermediate representation. In Section 3, we present our mapping language,
FXML-M, utilising the bioinformatic data sources from the use case presented above
to derive transformation requirements. Section 4 gives an overview of our Config-
urable Mediator with details of how an implementation of the mapping language
(FXML-T) can be used to direct the data translation necessary to harmonise the
use case Workflow; and is evaluated in Section 5. Section 6 contains related work
before our conclusions are presented in Section 7.

6 http://www.ncbi.nlm.nih.gov/BLAST/
7 http://www.ebi.ac.uk/help/formats frame.html

4

DP

OP
Reference

authors
journal
title

DPDP

DP

DP

Sequence_Feature

locationDPOP

Feature_Source

lab_host
isolate
organism

DPDP

DP

DP

Feature_CDS

translation
product
protein_id

DPDP

DP

DP

Feature_Location

start
end

DPDP

DP

has_feature

location

has_reference

Key
DataType Property
Object Property
Sub-Concept

DDBJ_Sequence_Data_Record

molecular form
taxonomy
date_last_updated

DPDP

DP

DP

EMBL_Sequence_Data_Record

data_class
date_created
release_created

DPDP

DP

DP

Sequence

data
length
type

DPDP

DP

DP

Sequence_Data_Record

accession_id
description
has_reference
has_sequence
has_feature

DPDP

DP

OP

OP

OP

has_sequence

Fig. 2. An Ontology to describe sequence data records.

2 Using OWL for Scalable Syntactic Mediation

In large-scale open systems, such as the Grid and Web Services, service providers
and consumers can assume arbitrary data formats to represent any information they
consume and produce. As discussed above, this causes problems when services are
connected in a Workflow based on their conceptual interface definitions.

Many systems employ a direct mediation approach: i.e. conversion components
take the form of a translation script, bespoke program or Web Service [17,31,27].
However, as the number of compatible data formats increases, the number of Type
Adaptors required isO(n2). Thus, we propose a modular and composable approach
that uses an intermediate representation, based on a shared ontological conceptu-
alisation. Using OWL to capture the structure and semantics of XML data has been
used elsewhere [22,2] and has proven to be a useful for data integration. To illustrate
this within our bioinformatics use case, Figure 2 presents an ontology to describe
the Sequence Data Records presented earlier.

The main class, Sequence Data Record (centre of Figure 2), has the data-type prop-
erties accession id (denoting the unique id of the data-set) and description (a free-
text annotation). Each sequence data record has a Sequence that contains the string
of sequence data, the length of the record and its type 8 . A sequence data record
contains a number of References that point to publications that describe the partic-
ular gene or protein. Each reference has a list of authors, the journal name, and
the paper publication title. Sequence data records also have other features, each
having a Feature Location that contains the start and end position of the feature in
the sequence. As there are several different feature types, we show two of the more

8 Type here does not denote a syntactic type, but rather the type, or kind of sequence.

5

Fig. 3. EMBL and DDBJ formatted XML to describe the same sequence feature.

common ones in this example: Feature Source and Feature CDS; both of which are
sub-classes of the Sequence Feature concept. In the case of a sequence feature, they
all contain a location, but each has its own list of properties: lab host, isolate and or-
ganism are properties of the Feature Source class; and translation, product and pro-
tein id are properties of the Feature CDS class. The Sequence Data Record con-
cept also has two sub-classes: DDBJ Sequence Data Record and
EMBL Sequence Data record. These classes capture the fact that while both the
DDBJ-XML and XEMBL formats contain mainly the same information, they also
include certain attributes that are unique to each format, e.g. repository specific
information such as the date created or date last updated.

The XML fragments describing a sequence feature in both DDBJ-XML and EMBL
formats are presented in Figure 3. These two representations contain the same infor-
mation in different formats: the Feature is of type CDS, it has a product, protein id,
translation and location. This is illustrated at the top of Figure 3. An instance of
the Feature CDS class would be used with three data-type properties holding the
translation, produce and protein id. The feature location information would be rep-
resented using an instance of the Feature Location class and would be linked to the
Feature CDS via the object property location.

With a common domain ontology in place, syntactically incongruous data-flows
between two services can be harmonised by translating data from one representa-
tion to another via the intermediate OWL model. This idea is illustrated in Figure
4 where the output from the DDBJ-XML service is converted to its corresponding
concept instance (the DDBJ Sequence Data Record concept), which can in turn
be converted to FASTA format for input to the NCBI-Blast service. We define two
terms to distinguish between these conversion processes: Conceptual Realisation,
i.e. the conversion of an XML document to an OWL concept instance; and Con-

6

DDBJ-XML NCBI_Blast
DDBJXML
Format

FASTA
Format

DDBJ Sequence

Data Record

The output from the DDBJ-XML
service is converted to an instance

of the DDBJ Sequence Data Record concept

The Sequence Data Record concept
instance is converted to FASTA format
for input to the NCBI_Blast service

co
n

ce
p

tu
a

l r
ea

lis
a

ti
o

n

co
n

ce
p

tu
a

l s
er

ia
lis

a
ti

o
n

Fig. 4. Using an concept instance to harmonise services with incompatible interfaces.

ceptual Serialisation, i.e. the conversion of an OWL concept instance back to an
XML document. These conversions are analogous to the lifting and lowering ac-
tivities within the WSMO framework, whereby XML documents are lifted to WSML

instances, and later lowered back to XML [24]. To simplify the specification of
these conversion processes, we assume a canonical representation for OWL concept
instances. This allows us to view conceptual realisation and conceptual serialisa-
tion as XML to XML transformations. Whilst OWL concept instances are typically
specified using XML syntax, XML schemas do not usually exist to validate them.
Therefore we automatically generate schemas using the OWL-XIS generator, pre-
sented below.

Klein et al. [21] present an algorithm to generate XML schemas that validate OIL
[15] ontology representations. By extending this algorithm to cater for OWL ontolo-
gies, we can generate XML schemas to validate OWL concept instances for a given
ontology definition. Our algorithm, on which our OWL-XIS (OWL XML instance
schema) generator is based, is outlined as follows:

(1) Generate the entailed ontological model using a reasoner, such as Pellet 9 ;
(2) Create an XSD element for every OWL concept in the ontology;
(3) Create an XSD element for every OWL property in the ontology. For properties

that link concepts to other concepts (i.e. an object property), such as the
has sequence property in our bioinformatics ontology, the type of the element
is an XML complex type; whereas for properties that link concepts to literal
values (i.e. a data-type properties), a predefined XSD type is used.

(4) Once the XSD elements have been created, an XML schema complex type is
created for each concept. A list of all possible properties for the concept are
extracted by checking the domain of all properties in the ontology. The com-
plex type is then specified as a sequence over these properties with any cardi-
nality constraints from the property reflected using XML schema occurrence
indicators. In cases where one concept is a sub-concept of another, such as the
Feature Source concept, an XSD type extension is used to provide the inheri-
tance of properties from the parent type.

(5) Finally, a type definition is created for every property in the ontology. When
schema elements for object property types are created, the range of the prop-
erty is examined and a list of possible concepts that property links to is deter-
mined. If an object property links to a concept which has sub concepts, such

9 http://pellet.owldl.com/

7

as the has Feature property, the complex type is set to be a choice over any
of the sub concepts, e.g. the has Feature complex type will be a choice of
Sequence Feature, Feature Source, or Sequence CDS.

When creating elements or complex types, the namespace and local name of the
concept is mirrored in the XML schema; thus a URI pointing to a particular OWL

concept or property also refers to the XML schema element that validates it. The
OWL-XIS generator consumes an OWL ontology and produces an XML schema
to validate instances of concepts from the given ontology and is itself exposed as
a Web Service. The resulting XML schema can thus be used to support the defi-
nition of transitive mapping rules between different XML schematic descriptions.
By identifying and composing the necessary mappings between the different XML

data schema and their shared OWL concepts, dynamic mediation between services
can be achieved. Before describing this harmonisation process (Section 4), we first
present the mapping language formalism, FXML-M.

3 Mapping Language Formalism

To support the specification of mappings between different XML schemas, i.e. be-
tween those that describe concrete data formats such as the DDBJ-XML format,
and those that describe valid concept instances from an ontology, we present the
XML mapping and transformation formalism, FXML-M. In FXML-M, the mappings
(from components 10 in a source XML schema to components in a destination XML

schema) are used to define the transformation of an XML document from one repre-
sentation to another. As the individual mappings provide transformations for XML
components, libraries of such mappings can be maintained. This modular approach
facilitates mapping reuse through the composition of new mapping bindings when
XML schemas evolve, without the need for redefining complete mapping sets.

To illustrate the requirements for our mapping language, we show a subset of a full
sequence data record in DDBJ-XML format and its corresponding OWL concept
instance (serialised in XML according to the schema automatically generated by
the OWL-XIS generator) in Figure 5. We consider six different mapping typesthat
highlight our mapping requirements:

(1) Single element to element mapping
In simple cases, elements and attributes in a source schema correspond di-
rectly to elements and attributes in a destination schema. For example, the
<DDBJXML> element is mapped to the <Sequence Data Record> element.

(2) Element contents mapping
When elements and attributes contain literal values (e.g. strings and numbers),

10 The term components is used to encompass elements, attributes, and literal values.

8

Fig. 5. Mappings between elements and attributes in the DDBJXML Sequence Data for-
mat and elements within the XML serialisation of the Sequence Data Record OWL
concept.

it is necessary to copy the literal value from the source document and include it
in the destination document. For example, the text value AB000059 contained
in the <ACCESSION> element must be copied to the destination document and
inserted as the contents of the <accession id> element.

(3) Multiple element mapping
In some cases, the relationship between elements in a source and destina-
tion schema is not atomic; a combination of elements in the source document
may constitute a single element (or another combination of elements) in the
destination document. For example, the <FEATURES> element containing a
<source> element is mapped to the <has feature> element containing a
<Feature Source> element in our example.

(4) String manipulation support
In complex cases, the contents of a string literal may contain two or more
distinct pieces of information. In Figure 5, the <location> element has text
containing the start and end position, delimited by “..”. Each of these po-
sitions must be mapped to separate elements (i.e. <start> and <end>) in
the destination document because they are assigned separate properties in the
ontology.

(5) Predicate support
Sometimes, an element or attribute from a source schema may be mapped
differently depending on the value of an attribute or element, or even the pres-
ence of other elements within the document. This can be seen in Figure 5
where the <qualifiers> element is mapped differently depending on the
value of the nameattribute - in the case of mapping 5, when the string equals

9

1 <?xml version="1.0" encoding="iso-8859-1" ?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://mygrid.org/schema"
5 xmlns="http://mygrid.org/schema">
6

7 <xsd:element name="a">
8 <xsd:complexType>
9 <xsd:all>

10 <xsd:element name="b"
11 type="xsd:string" minOccurs="1"
12 maxOccurs="1"/>
13 <xsd:element ref="c" minOccurs="1"
14 maxOccurs="1"/>
15 </xsd:all>
16 <xsd:attribute name="id"
17 type="xsd:string"/>
18 </xsd:complexType>
19 </xsd:element>
20

21 <xsd:element name="c" type="c-type"/>
22

23 <xsd:complexType name="c-type">
24 <xsd:sequence>
25 <xsd:element ref="b" minOccurs="1"
26 maxOccurs="2"/>
27 </xsd:sequence>
28 </xsd:complexType>
29

30 <xsd:complexType name="c-extended">
31 <xsd:complexContent>
32 <xsd:extension base="c-type">
33 <xsd:sequence>
34 <xsd:element ref="d" minOccurs="1"
35 maxOccurs="3">
36 </xsd:sequence>
37 </xsd:extension>
38 </xsd:complexContent>
39 </xsd:complexType>
40

41 <xsd:element name="b" type="xsd:integer"/>
42 <xsd:element name="d" type="xsd:integer"/>
43

44 </xsd:schema>

Listing 1. A Simple XML Schema.

"lab host", the element is mapped to the <lab host> element.
(6) Local Scoping

In some scenarios, we may wish to map elements differently based on their
context. For example, in a DDBJ-XML record, the contents of the <qualifiers>
element (a string value) is mapped differently depending on the value of the
name attribute. In mapping 6, the string contents of the <qualifiers> ele-
ment is mapped to the contents of the <isolate> element. To facilitate this
kind of behaviour, our mapping language provides local scoping to support
the application of different rules in different contexts.

Because of these complex mapping requirements, we have specified our mapping
language and the transformation of XML documents using a formalisation. This
gives precise semantics for our language and helps us capture the more difficult

10

transformation properties such as predicate support and local scoping.

3.1 XML Formalisation

Our mapping and translation theory (presented below) is based on an existing XML

and XML schema formalisation called Model Schema Language (MSL) [9]. While
other XML formalisms have been proposed [6] [26], MSL captures the most com-
plex XML constructs such as type inheritance and cardinality constraints, as well as
lending itself to the specification of mappings between different XML schemas and
the process of document translation driven by such mappings.

We first outline the principal features of MSL: how elements, attributes and types are
referenced (Section 3.1.1), how groups of elements are specified for type declara-
tions (Section 3.1.2), how XML schema components are defined (Section 3.1.3), and
how XML documents are represented (Section 3.1.4). This should provide sufficient
knowledge to understand our mapping and translation formalisation, presented in
Section 3.2.

3.1.1 Normalised schema

MSL references the components of an XML schema (such as elements, attributes
and types) using a normalised format. This normalisation assigns a unique, univer-
sal name to each schema part and provides a flat representation of the components
found within a schema document, thus providing disambiguation between com-
ponents with the same name that have been declared within different scopes. To
illustrate this notation, we list (below) the normalised form for all the XML compo-
nents declared in the simple XML schema shown in Listing 1, with corresponding
line numbers in square brackets to show where they are defined. These references
are used to point to XML schema components: the definition of the actual elements
are presented later in Section 3.1.2.

[7] http://mygrid.org/schema/#element::a
[8] http://mygrid.org/schema/#element::a/type::*
[16] http://mygrid.org/schema

/#element::a/type::*/attribute::id
[10] http://mygrid.org/schema/#element::a/type::*/element::b
[21] http://mygrid.org/schema/#element::c
[23] http://mygrid.org/schema/#type::c-type
[30] http://mygrid.org/schema/#type::c-extended
[41] http://mygrid.org/schema/#element::b
[42] http://mygrid.org/schema/#element::d

11

The first part of the normalised schema reference, delimited by the first occur-
rence of the # symbol, is the namespace. The second part (following the # symbol)
is a path of sort / name pairs (delimited by "::"), each containing a sort (e.g.
#element, #attribute, or #type) designating the kind of component refer-
enced, and a name (e.g. a or id) corresponding to the local name assigned to the
component. For example, the element a is defined in the global scope (line 7 of
Listing 1) and is referenced with the namespace prefix

http://mygrid.org/schema

and the normalised path reference element::a. The element acontains an anony-
mous complex type definition (line 8) which is referenced using the path
element::a/type::*(where "*"represents an anonymous type and should not
be confused with a wild card character). This complex type has a locally defined
element (line 10) named bwhich can be distinguished from the globally defined
element named b(line 41) because they have different normalised schema refer-
ences (element::a/type::*/element::band element::brespectively). The
type refinement given in line 30 is used later to illustrate type inheritance within
MSL.

A short form notation is used throughout the rest of this paper to refer to schema
components where the namespace is dropped, along with the sort definition. This
allows us to reference the element a simply using a, the anonymously defined type
within the scope of ausing a/*, and the attribute id (line 16) using a/*/@id.

3.1.2 Model Groups

In XML, elements and attributes are assigned types to describe their contents. For
elements containing data values, this is one of the pre-defined XML types such as
xsd:stringor xsd:int, or a simple type that restricts the content of an existing
type (for example, numbers between 1 and 10). For elements that contain other
elements, such as the element a in our example above (Listing 1), their type is a
complex type. A complex type falls into one of three categories, specified using one
of the following indicators:

<xsd:sequence>- contains a sequence of elements in a specified order.
<xsd:all>- contains a collection of elements in any order.
<xsd:choice>- contains one element from a choice of elements.

Occurrence indicators may be set to specify the number of times each content ele-
ment should appear (e.g. an element in a sequence can only appear once).

12

In MSL, the contents of an XML type is specified by a model group using traditional
regular expression notation [1]. We let g range over model groups.

g ::= ε empty sequence

| θ empty choice

| g1, g2 a sequence of g1 followed by g2

| g1 | g2 choice of g1 or g2

| g1&g2 an interleaving of g1 & g2 in any order

| g{m,n} g repeated between min m & max n times

| a[g] attribute with name a containing g

| e[g] element with name e containing g

| p atomic data-type (such as string or integer)

| x component name (in normalised form)

These model groups are used in the definition of schema components, as we de-
scribe in the following section.

3.1.3 Components

In MSL, schema components (XML elements, attributes, etc. . .) can be one of seven
sorts 11 : element, attribute, simply type, complex type, attribute group or model
group. We let srt range over sorts, where sort srt ∈ { attribute, element,
simpleType, complexType, attributeGroup, modelGroup }

In XML, it is possible to express rudimentary type inheritance. When defining a
type, a base type must be specified (by default this is assumed to be xsd:UrType).
A type may either extend the base type or refine it. Extension is used in the case
where the subtype allows more elements and attributes to be contained within it,
such as the type c-extended in Listing 1. Refinement is used to constrict the
existing elements and attributes defined by the base type, for example, by imposing
more restrictive cardinality constraints.

We let cmp range over components where x is a reference to another normalised
component name, b is a boolean value and g is a model group. A derivation specifies
how the component is derived from its base type. We let der range over derivations,
and ders range over sets of derivations:

11 The term sort is used to avoid confusion with the XML term type.

13

[8]
component(
 sort = complexType,
 name = a/*,
 base = xsd:UrType,
 derevation = restriction,
 refinement = {restriction, extension},
 abstract = false,
 content = a/*/@id{1,1} & a/*/b{1,1} & c{1,1}
)

[16]
component(
 sort = element,
 name = a/*/@id,
 base = xsd:UrAttribute,
 derevation = restriction,
 refinement = {restriction},
 abstract = false,
 content = xsd:string
)

[10]
component(
 sort = element,
 name = a/*/b,
 base = xsd:UrElement,
 derevation = restriction,
 refinement = {},
 abstract = false,
 content = xsd:string
)

[7]
component(
 sort = element,
 name = a,
 base = xsd:UrElement,
 derevation = restriction,
 refinement = {},
 abstract = false,
 content = a/*
)

[21]
component(
 sort = element,
 name = c,
 base = xsd:UrElement,
 derevation = restriction,
 refinement = {},
 abstract = false,
 content = c-type
)

[23]
component(
 sort = complexType,
 name = c-type,
 base = xsd:UrType,
 derevation = restriction,
 refinement = {restriction, extension},
 abstract = false,
 content = b{1,2}
)

[30]
component(
 sort = complexType,
 name = c-extended,
 base = c-type,
 derevation = extension,
 refinement = {restriction, extension},
 abstract = false,
 content = d{1,3}
)

[41]
component(
 sort = element,
 name = b,
 base = xsd:UrElement,
 derevation = restriction,
 refinement = {},
 abstract = false,
 content = xsd:integer
)

[42]
component(
 sort = element,
 name = d,
 base = xsd:UrElement,
 derevation = restriction,
 refinement = {},
 abstract = false,
 content = xsd:integer
)

Fig. 6. MSL to represent the schema components defined Listing 1 with listing line numbers
for components indicated in square brackets.

cmp ::=component(

sort = srt

name = x

base = x

derivation = der

refinement = ders

abstract = b

content = g

)

der ::=extension | refinement
ders ::= {der1, . . . , derl}

The refinement field of a component definition states the permissible derivations
that can be made using this component as base. With a means to specify schema
components, the components from our example schema (Listing 1) can be defined
as in Figure 6 (preceded with corresponding line numbers in square brackets to in-
dicate where they are defined in the schema listing). The content of an element or
attributes is its type (e.g. element a has the content a/*), and the content of a com-
plex type is a list of the elements and attributes it contains (e.g. type a/* contains
an interleaving of a/*/@id, a/*/b, and c).

14

Fig. 7. XML notation, MSL notation, and a tree view of a simple XML document.

3.1.4 Typed Documents

In the previous Sections (3.1.1, 3.1.2 and 3.1.3), we described how MSL can be
used to specify XML schema components. To represent instances of the schema
components, or XML documents, MSL uses typed documents. We let td range over
typed documents:

td ::= ε empty document

| td1, td2 a sequence of typed documents

| c a constant (e.g. a string or an integer)

| a[s 3 c] an attribute a of type s with contents c

| e[t 3 td] an element e of type t with contents td

To illustrate this, Figure 7 contains XML and MSL notation to represent the same
XML document adhering to the schema presented earlier in Listing 1. A tree view
is also provided to visualise the data sample. The root element a, of type a/*, is
a sequence containing the attribute a/*/@id (with the string value "foo"), the
element a/*/b (with the string value "bar"), and the element c. The element cof
type c-typecontains a sequence with two b elements each containing the integer
values 1 and 2.

3.2 Formalisation Extensions

Before describing our XML mapping and transformation methodology, we present
two extensions to the MSL formalisation: the notion of document paths, which allow
us to specify a selection of components from within an XML document, and simple
predicates, which will be used later to specify conditional mappings.

15

3.2.1 Document Paths

To specify a selection of child elements, attribute or literal values located deep
within a given typed document, we use a document path. This is an important XML

construct and is already implemented in XPATH 12 . However, XPATH has not been
formalised within MSL, so we present our own simple document path formalism.
We let path components θ range over attribute names, element names, the keyword
value, the keyword value with a regular expression, and the empty document ε.
The empty document ε is included so empty XML elements (e.g. <x/>) can be
matched. A path expression is then specified by a sequence of path components.

Definition 1 (Path Components) To evaluate a path expression Θ against a source
typed document tds, each path component (θn) in the expression must match com-
ponents within tds. Given a typed document tds that contains the components tdm
that match θ, we write:

θ ` tds → tdm

To define this behaviour, and others throughout the rest of this paper, we use infer-
ence rule notation [13]. In this notation, when all statements above the line hold,
then the statement below the line also holds. We present rules to define the match-
ing of path components against typed documents in Figure 8. Rule PATHC.A states
that a path component θ referencing an attribute a matches the typed document a[t 3
tdc], and therefore θ ` tds → a[t 3 tdc] holds. Rule PATHC.E uses the same prin-
ciple to define the matching of elements. PATHC.C states that a path component
θ = value will match a typed document only if it is a constant value (i.e. tds = c).
To match regular expressions against constants (rule PATHC.REG), we assume the
existence of a function eval(regexp, c) = r which evaluates the regular expression
regexp against the string c giving the result r. The matching of the empty doc-
ument is defined in rule PATHC.EMP. Rules NOT.PATHC.A, NOT.PATHC.E,
NOT.PATHC.C, NOT.PATHC.REG, and NOT.PATHC.EMP define the cases where
the path component θ is not matched against the typed document tds, so θ `
tds →⊥ holds. When matching any path component against a typed document
that is a sequence of other typed documents, there are four possible cases: only the
first element in the sequence is matched (PATHC.SA), only the second element in
the sequence is matched (PATHC.SB), both element are matched (PATHC.SAB),
or neither element is matched (NOT.PATHC.S).

Definition 2 (Child Documents) When evaluating a path expression, each path
component is matched in order against components in the source document. To
traverse the document and take direct children of an element or attribute, a notion
of typed document contents is required. The direct child of a parent typed document
tdp is a child typed document tdc and is denoted by:

child(tdp) = tdc

12 http://www.w3.org/TR/xpath

16

PATHC.A
θ = a tds = a[t 3 tdc]
θ ` tds → a[t 3 tdc]

NOT.PATHC.A
θ = a tds 6= a[t 3 tdc]

θ ` tds →⊥

PATHC.E
θ = e tds = e[t 3 tdc]
θ ` tds → e[t 3 tdc]

NOT.PATHC.E
θ = e tds 6= e[t 3 tdc]

θ ` tds →⊥

PATHC.C
θ = value tds = c

θ ` tds → c

NOT.PATHC.C
θ = value tds 6= c

θ ` tds →⊥

PATHC.REG
θ = value{regexp} tds = c eval(regexp, c) = r

θ ` tds → r

NOT.PATHC.REG
θ = value{regexp} tds 6= c

θ ` tds →⊥

PATHC.EMP
θ = ε tds = ε

θ ` tds → ε

NOT.PATHC.EMP
θ = ε tds 6= ε

θ ` tds →⊥

PATHC.SA
θ tds = tda, tdb θ ` tda → tdr θ ` tdb →⊥

θ ` tds → tdr

PATHC.SB
θ tds = tda, tdb θ ` tda →⊥ θ ` tdb → tdr

θ ` tds → tdr

PATHC.SAB
θ tds = tda, tdb θ ` tda → tdp θ ` tdb → tdq

θ ` tds → tdp, tdq

Fig. 8. Rules to define the application of path components to typed documents.

17

CHILD.A
tds = a[t 3 tdc]

child(a[t 3 tdc]) = tdc

CHILD.E
tds = e[t 3 tdc]

child(e[t 3 tdc]) = tdc

CHILD.C
tds = c

child(c) = c

CHILD.EMP
tds = ε

child(ε) = ε

CHILD.SEQ
tds = tda, tdb

child(tda, tdb) = tda, tdb

Fig. 9. Rules to define the direct children of typed documents

To evaluate a path expression (which is a sequence of path components), it is neces-
sary to take the contents of an element or attribute so it can be evaluated against the
next path component in the sequence. The inference rules used to describe this be-
haviour are given in Figure 9. Rule CHILD.A states that a typed document tds that
is the attribute definition a[t 3 tdc] contains the document tdc. A similar definition
is used to define the contents of an element in rule CHILD.E. The other three rule
define the contents of the empty document (CHILD.EMP), a constant (CHILD.C),
and a sequence of typed documents (CHILD.SEQ) to be itself.

PATH.EVAL

Θ = 〈θ1, θ2, . . . , θn〉
θ1 ` tds → tds′ child(tds′) = td1,

θ2 ` td1 → td1′ child(td1′) = td2,
. . . ,

θn ` tdn−1 → tdn−1′ child(tdn−1′) = tdn
Θ ` td1 → tdn

Fig. 10. A rule to define the application of a path expression to a typed document.

Definition 3 (Path Expressions) The application of path expression Θ to a typed
document tds yields a result typed document tdr. This action represents the extrac-
tion of elements deep within a typed document according to the path components
specified in the path expression. To denote this, we write:

Θ ` tds → tdr

Given these rules that describe the contents of typed documents and the matching of
path components, the evaluation of a path expression can be specified (as in Figure

18

10). The resulting document, tdn, is taken from the contents of the final component
matched (child(tdn−1′) = tdn).

To illustrate by means of an example, the path expression Θ = 〈a, a/ ∗ /@id, value〉
can be evaluated against the typed document given in Figure 7 to give the result
"foo", and would be equivalent to applying the XPATH statement a/@id/text().
To illustrate this evaluation, Figure 11 shows the steps involved, and an explanation
of the rules used is given below:

(1) The source document is tds and the path expression is Θ. Rather than write
the full typed document, the string “. . . ” is used to denote element and at-
tribute contents. Rule PATH.EVAL is used to derive the result document and
is comprised of three steps: α, β, and γ, each denoting the application of a
path component from Θ (e.g. [α]) and its child document (e.g. [α′]).

(2) [α] - The first path component in Θ is matched against the root document
(a ` tds → a[a/∗ 3 . . .]) using the rule PATHC.E.

(3) [α′] - The direct child of the matched document is found using the rule CHILD.E.
The direct child is a sequence of typed documents containing the attribute
a/*/@id, the element a/*/b, and the element c.

(4) [β] - The second path component in Θ is then matched against the sequence
using rule PATHC.SA, since only the first document in the sequence matches
(rule PATHC.A) and the remaining two do not (rules NOT.PATH.A and
NOT.PATH.S).

(5) [β′] - The direct child of the matched document is found using rule CHILD.A.
The direct child of the attribute is the literal value foo.

(6) [γ] - The final path component in Θ is matched against the literal value using
rule PATHC.C (value ` “foo”→ “foo”).

(7) [γ′] - The direct child of the literal value is itself (from rule CHILD.C) and is
the final result of the application of the path expression Θ to tds.

3.2.2 Simple Predicates

To cope with complex mappings where the semantics of an element or attribute
vary depending on the existence of other elements or their values, predicate support
is necessary. This notion was presented earlier in Section 3 (example mapping 5)
where the <qualifiers> element is mapped differently depending on the value
of the @name attribute. The predicate atom patom ranges over path expressions and
constants (such as a string or a number):

patom ::= Θ path expressions

| c constant

A predicate ψ is then defined (see Figure 12).

19

(P
A
T
H
.E
V
A
L
)

td
s

=
a
[a
/∗
3
..
.]

Θ
=
〈a
,a
/
∗
/@

i
d
,v
a
lu
e〉

[α
]

[α
′]

[β
]

[β
′]

[γ
]

[γ
′]

Θ
`
td
s
→

f
o
o

(P
A
T
H
C
.E

)
[α

]
θ

=
a

td
s

=
a
[a
/∗
3
..
.]

a
`
td
s

=
a
[a
/∗
3
..
.]

(C
H
I
L
D
.E

)
[α
′]

td
s

=
a
[a
/∗
3
..
.]

ch
il
d

(a
[a
/∗
3
..
.]

)
=

a
/
∗
/@

i
d
[.
..

],
a
/
∗
/b

[.
..

],
c
[.
..

]

(P
A
T
H
C
.S
A
)

[β
]

θ
=

a
/
∗
/@

i
d

td
s

=
a
/
∗
/@

i
d
[.
..

]
a
/
∗
/@

i
d
`
a
/
∗
/@

i
d
[.
..

]
→

a
/
∗
/@

i
d
[.
..

]

θ
=

a
/
∗
/@

i
d

td
s

=
a
/
∗
/b

[.
..

]
a
/
∗
/@

i
d
`
a
/
∗
/b

[.
..

]
→
⊥

θ
=

a
/
∗
/@

i
d

td
s

=
c
[.
..

]
a
/
∗
/@

i
d
`
c
[.
..

]
→
⊥

a
/
∗
/@

i
d
`⊥

,⊥
→
⊥

a
/
∗
/@

i
d
`
a
/
∗
/@

i
d
[.
..

],
⊥
→

a
/
∗
/@

i
d
[.
..

]

(C
H
I
L
D
.A

)
[β
′]

td
s

=
a
/
∗
/@

i
d
[.
..

]

ch
il
d

(a
/
∗
/@

i
d
[x
s
d

:
s
t
r
i
n
g
3
f
o
o
])

=
f
o
o

(P
A
T
H
C
.C

)
[γ

]
θ

=
v
a
lu
e

td
s

=
f
o
o

v
a
lu
e
`
f
o
o
→

f
o
o

(C
H
I
L
D
.C

)
[γ
′]

td
s

=
f
o
o

ch
il
d

(f
o
o
)

=
f
o
o

Fi
g.

11
.A

n
ex

am
pl

e
pa

th
ex

pr
es

si
on

ev
al

ua
tio

n
to

re
tr

ie
ve

th
e

co
nt

en
ts

of
an

at
tr

ib
ut

e.

20

ψ ::= ∃ patom Evaluation of patom is not the empty document ε

| ψ1 && ψ2 Evaluation of both ψ1 and ψ2 must be true

| ψ1 || ψ2 Evaluation of either ψ1 or ψ2 must be true

| patom1 < patom2 The evaluation of patom1 is less than the evaluation of patom2

| patom1 > patom2 The evaluation of patom1 is greater than the evaluation of patom2

| patom1 = patom2 The evaluation of patom1 is equal to the evaluation of patom2

| ¬ ψ′ The evaluation of ψ is false

| true Always true

Fig. 12. The definition of predicate ψ.

PEXPR.TD
Θ ` tds → tdr

apply(Θ, tds) = tdr

PEXPR.C
tds

apply(c, tds) = c

Fig. 13. Rules to define the evaluation of predicate expressions.

Definition 4 (Predicate Evaluation) Predicates can be used for determining the
existence of elements and attributes located within a typed document; the compar-
ison of literal values against each other; and the comparison of literal values to
defined constants. A predicate atom (patom) can be applied to a typed document
tds to give a result document tdr and is written:

apply(patom, tds) = tdr

The evaluation of a predicate ψ against a typed document tds is either true or false:

ψ ` tds → b

Since predicate atoms range over path expressions and constants, we specify two
rules (PEXPR.TD and PEXPR.C in Figure 13) to define their evaluation against a
typed document. Rule PEXPR.TD states that when a predicate atom patom is equal
to a path expression Θ, and Θ ` tds → tdr (rule PATH.EVAL), then the evaluation
of patom against tds is equal to tdr. When a predicate atom patom is equal to a
constant c, the evaluation of patom to c is the constant itself (rule PEXPR.C). This
rule is used when a comparison is made to a defined constant, e.g. the value of an
element must be greater than 10.

Rules for defining the evaluation of predicates are given in Figure 14. Rule PEVAL.E
states that the evaluation of the predicate atom patom against tds must not equal
the empty document. This predicate can be used to check for the existence of ele-

21

ments and attributes. Rule PEVAL.NEG states that the evaluation of the predicate
ψ′ against tds must be false. Rule PEVAL.AND states that the evaluation of both
predicates ψ1 and ψ2 must be true. Rule PEVAL.OR states that the evaluation of
either predicate ψ1 or ψ2 must be true. Rule PEVAL.LESS states that the eval-
uation of patoma to tds must be less than the evaluation of patomb to tds. Rule
PEVAL.GR states that the evaluation of patoma to tds must be more than the eval-
uation of patomb to tds. Rule PEVAL.EQ states that the evaluation of patoma to
tds must be equal to the evaluation of patomb to tds.

PEVAL.E
ψ = ∃ patom apply(patom, tds) = tdr tdr 6=⊥

ψ ` tds → true

PEVAL.NEG
ψ = ¬ ψ′ ψ′ ` tds → false

ψ ` tds → true

PEVAL.AND
ψ = ψa && ψb td ψa ` tds → ba ψb ` tds → bb

ψ ` tds → ba ∧ bb

PEVAL.OR
ψ = ψa || ψb td ψa ` tds → ba ψb ` tds → bb

ψ ` tds → ba ∨ bb

PEVAL.LESS

ψ = patoma < patomb

apply(patoma, tds) = ca

apply(patomb, tds) = cb
ψ ` tds → ca < cb

PEVAL.GR

ψ = patoma > patomb

apply(patoma, tds) = ca

apply(patomb, tds) = cb
ψ ` tds → ca > cb

PEVAL.EQ

ψ = patoma = patomb

apply(patoma, tds) = ca

apply(patomb, tds) = cb
ψ ` td→ ca = cb

Fig. 14. Rules to define the evaluation of predicates.

22

a

b b

"val1" "val2"

a/* a/*

xsd:string

x

y y

"val1" "val2"

x/* x/*

xsd:string xsd:string xsd:string

Source Document Destination Document

(a) Desired Transformation

Source element a, of type a/*, containing

 elements b corresponds to destination

 element x, of type x/*, containing elements y

"val1" "val2"

xsd:string xsd:string

x/*

b

a/*a/*

b

a/*
a

y

x/*x/*

y

x/*
x

(b) Translation Step 1

Source elements b, of type xsd:string, with string contents v

corresponds to destination elements y, of type xsd:string,

 with contents v a

"val2"

a/*a/* a/*
x

x/*x/* x/*

b

"val1"

a/*

xsd:string

b

"val2"

a/*

xsd:string

y

"val1"

x/*

xsd:string

y

"val2"

x/*

xsd:string

(c) Translation Step 2

Fig. 15. Transformation through recursion.

3.3 Transformation Process

When using the MSL formalisation of XML, we view the transformation process
as an action which consumes a source document, tds and produces a destination
document, tdd. Since typed documents are specified in a hierarchical manner, with
element and attribute documents containing other typed documents, we can view an
XML document as a tree structure with nodes corresponding to XML components, as
illustrated in Figure 7. By viewing an XML document as a tree, we can visualise the
transformation process using an recursion over the source document where groups
of elements, attributes or constant values correspond directly to groups of elements,
attributes or constant values in the destination document. This idea is illustrated
in Figure 15 using a trivial transformation. Using this method, we can describe
a translation using a number of mappings that relate components in the source
schema to components in the destination schema. At each stage of the recursion
over the source document, mappings are used to create the appropriate parts in the
destination document. We define this process formally in Section 3.4 where we also
describe more complex mapping constructs.

23

3.4 Mappings and the Transformation Process

In this sub-section, we describe the specification of mappings and how mappings
are used to direct a transformation. First, we define two kinds of mapping path:
source mapping paths and destination mapping paths. Source mapping paths are
used to specify the selection of components from the source document and destina-
tion mapping paths are used to describe the creation of components in the destina-
tion document.

3.4.1 Mapping Paths

A source mapping path ρ is defined as a sequence of source mapping pairs:

ρ = 〈[θ1 × ψ1], [θ2 × ψ2], . . . , [θn × ψn]〉

Definition 5 (Source Mapping Pairs) Each pair in a source mapping path contains
a path component (θ) that matches XML components from the source document, and
a predicate (ψ) that must evaluate to true. This pairing technique allows any part
of a source mapping path to be assigned a predicate so that complex component
selections can be made. The evaluation of a source mapping pair [θ× ψ] against a
typed document tds results in a matched document tdm and is written:

[θ × ψ] ` tds → tdm

Definition 6 (Source Mapping Paths) The evaluation of a source mapping path
ρ against a source document tds yields a result document tdr (the components
successfully selected by ρ) and is written:

ρ ` tds → tdr

Figure 16 contains the two rules that define source mapping path evaluation. Rule
SMPAIR states that when the path component θ matches tds with tdm and the
predicate ψ applied to those matched components evaluates to true, then [θ × ψ] `
tds → tdm holds. The application of source mapping path (or a sequence of source
mapping path pairs) can then be describe by the rule SMPATH.

A joining operator is used to define the creation of components in the destination
document. We let ω range over joining operators:

joining operator ω ::= join

| branch

A destination mapping path, δ, is used to specify the creation of elements, attributes
and values in the destination document, and is defined as a sequence of destination

24

SMPAIR
[θ × ψ] θ ` tds → tdm ψ ` tdm → true

[θ × ψ] ` tds → tdm

SMPATH

ρ = 〈[θ1 × ψ1], [θ2 × ψ2], . . . , [θn × ψn]〉
[θ1 × ψ1] ` tds → tds′ child(tds′) = td1,

[θ2 × ψ2] ` td1 → td1′ child(td1′) = td2,
. . . ,

[θn × ψn] ` tdn−1 → tdn−1′ child(tdn−1′) = tdn
ρ ` tds → tdn

Fig. 16. Rules to define the evaluation of source mapping paths.

mapping pairs:

δ = 〈[θ1 × ω1], [θ2 × ω2], . . . , [θn × ωn]〉

Each pair contains a path expression θn which describes the elements, attributes
and values to be created, and a joining operator ωn. The evaluation of destination
mapping paths is done during the transformation process and is described in Section
3.4.2, together with the joining operator.

3.4.2 Mappings and Bindings

A mapping describes a selection of nodes from a source document and their corre-
sponding representation in a destination document. We let m range over mappings:

mapping m ::= 〈ρ, δ, B〉

where ρ is the source mapping path, δ is the destination mapping path, and B is a
local binding containing mappings that should only be considered for application
when the parent mapping has been applied. A binding, B, is defined as a sequence
of mappings:

binding B ::= 〈m1,m2, . . . ,mn〉
A binding can be constructed from any number of mappings to describe the trans-
lation of components within a source document to components in a destination
document. As the order in which the mappings are defined corresponds to the order
in which they are applied, a binding is therefore defined as a sequence.

3.4.3 Transformation

The application of a Binding to a typed source document gives the destination typed
document which is the result of all compatible mapping applications. This transfor-
mation process is split into four stages:

25

(1) Mapping selection
Given tds and a binding B, identify the set of applicable mappings, Ma, from
B which are applicable to tds.

(2) Source Document Selection
Given Ma, and a source document tds, for each mapping mx ∈Ma the source
mapping path ρ from mx to generate a result document ρ ` tds → tdr.

(3) Recursion
The result of each source mapping path (tdr) is itself translated using B to
give tdr′ (where local mappings defined in the parent mapping are added to
the global binding B and their ordering is preserved). The recursion continues
until: a) no mappings are valid; b) the empty document is encountered; or c) a
constant value is found.

(4) Destination Document Construction
For each mapping applied, the destination mapping path δ is evaluated and
used to create new components in the destination document. The contents of
each new component created is the result of the recursive call.

COMP.ME
m = 〈ρ, δ, Bl〉 ρ = 〈[e× ψ], . . .〉 td = e[t 3 tdc]

isCompatible(m, td)

COMP.MA
m = 〈ρ, δ, Bl〉 ρ = 〈[a× ψ], . . .〉 td = a[t 3 tdc]

isCompatible(m, td)

Fig. 17. Rules to define mapping compatibility.

Definition 7 (Mapping Compatibility) When a mapping m can be applied to a
typed document td, we write:

isCompatible(m, td)

The rule COMP.ME in Figure 17 states that when the first component referenced
in a source mapping path is the element e, and the source document td also corre-
sponds to the element e, then mapping m can be applied to td. Rule COMP.MA is
similarly defined for attribute compatibility. As in the MSL formalism, we assume
the existence of a fixed de-referencing map that takes a component name x and
gives the corresponding component so that features of the component (such as its
type) can be determined:

deref(x) = cmp

e.g. deref(x).type= t

e.g. deref(x).sort= element

The most complex stage in the translation process is the construction of the destina-
tion typed document. This stage is complex due to the necessity of creating multiple

26

BPAIR.EVAL.E

P = [δ × tdc] δ = 〈[e× branch]〉
deref(e).type = t

construct(P) = e[t 3 tdc]

BPAIR.EVAL.A

P = [δ × tdc] δ = 〈[a× branch]〉
deref(a).type = t

construct(P) = a[t 3 tdc]

BPAIR.EVAL.C
P = [δ × c] δ = 〈[value× branch]〉

construct(P) = c

BPAIR.EVAL.EMP
P = [δ × ε] δ = 〈[ε× branch]〉

construct(P) = ε

Fig. 18. Rules to define the construction of destination documents (base case).

elements in order to map components from the source domain to multiple compo-
nents in the destination schema. We illustrate this problem in Figure 19, where a
simple source document is translated into two possible destination documents. The
destination documents differ only by the joining of element y. In the left translation,
the destination mapping path 〈[x× join], [y × join], [z × branch]〉 indicates that
all elements discovered by the application of 〈[a× true], [b× true]〉 (or elements
a which contain elements b) should be translated to elements z contained within
a single element y, contained within the element x. The right translation shows a
similar mapping but with unique y elements created for each match.

Definition 8 (Destination Creation Pairs) During the transformation process,
source mapping paths (ρ) are applied to the source document (tds) to select XML

components (written ρ ` tds → tdc from the rule SMPATH). The result typed doc-
ument (tdc), is paired with the destination mapping path (δ) to give a destination
creation pair P = [δ × tdc] where δ are the components to construct, and tdc is
their content. To denote the construction of the destination document, we write:

construct([δ × tdc]) = tdr

For the base case, when the destination mapping path δ in P contains only one
destination mapping pair (δ = 〈[θ×ω]〉), P can construct the destination document
by the rules shown in Figure 18. Rule BPAIR.EVAL.E states that when P =
[δ × tdc] and δ = 〈[e × branch]〉, the destination document contains the element
e, of type t, with the contents tdc. Rules BPAIR.EVAL.A, BPAIR.EVAL.C, and
BPAIR.EVAL.EMP define the construction of attributes, constants, and the empty
document in a similar way.

27

Definition 9 (Destination Creation Set) During the transformation process, multi-
ple mappings may be applied to a given source document. Each mapping is applied
independently to give a destination creation pair (P); the resultant pairs form a
destination creation set R = {P1, P2, . . . , Pn}. When creating elements in the
destination document, joining operators define whether a set of the same elements
should be combined to form one element (join) or used to create a sequence of
elements (branch). Therefore, a destination creation set R can be split into two
subsets: Rjoin (where all destination creation pairs P have the joining operator
join in the first destination mapping pair), and Rbranch (where all destination cre-
ation pairs P have the joining operator branch in the first destination mapping
pair). To denote this, we write:

R = Rjoin ∪Rbranch

Figure 20 contains rules to define when a destination creation pair P in in the set
of Rjoin (rule RJOIN) or Rbranch (rule RBRANCH).

Definition 10 (Root of the joined destination creation set) To construct the des-
tination document from the set of joined destination creation pairs in Rjoin, the
first component x referenced in each destination creation pair P must be the same
(because they are to be joined). We write the following to locate the element x:

Rjoin � x

Rule ROOT.RJOIN in Figure 20 defines the path component x located in the set
of joined destination creation pairs Rjoin.

a

b b

"val1" "val2"

a/* a/*

xsd:string

x

y y

"val1" "val2"

x/* x/*

xsd:string

xsd:string xsd:string

Source Document

Destination Document

 with branching

z z

y/* y/*

x

"val1" "val2"

xsd:string xsd:string

z z

x/*

y
y/* y/*

Destination Document

 with joining

<[a x true], [b x true]> -> <[x x join], [y x join], [z x branch]>

<[b x true], [value x true]> -> <[z x branch], [value x branch]>

<[a x true], [b x true]> -> <[x x join], [y x branch], [z x branch]>

<[b x true], [value x true]> -> <[z x branch], [value x branch]>

Fig. 19. A Source Document with two possible transformations, each using a different
joining operator.

28

RBRANCH
P ∈ R P = [δ × td] δ = 〈[θ × branch], . . .〉

P ∈ Rbranch

RJOIN
P ∈ R P = [δ × td] δ = 〈[θ × join], . . .〉

P ∈ Rjoin

ROOT.RJOIN

Rjoin = {P1, P2, . . . , Pn}
P1 = [ρ1, td1] ρ1 = 〈[x× join], . . . 〉,
P2 = [ρ2, td2] ρ2 = 〈[x× join], . . . 〉,

. . . ,

Pn = [ρn, tdn] ρn = 〈[x× join], . . . 〉
Rjoin � x

Fig. 20. Rules to define the sets of joined and branched destination creation pairs.

MAKE.SEQA
tda 6= ε ∧ tdb = ε

tda u tdb = tda

MAKE.SEQB
tda = ε ∧ tdb 6= ε

tda u tdb = tdb

MAKE.SEQAB
tda 6= ε ∧ tdb 6= ε

tda u tdb = tda, tdb

Fig. 21. Rules to define the construction of sequences.

Definition 11 (Create Sequence) During the creation of the destination typed doc-
ument, it is necessary to combine typed documents to form a sequence. To combine
tda and tdb we write:

tda u tdb = tdr

Figure 21 contains three rules to define the creation of a sequence from two doc-
uments tda and tdb. Rule MAKE.SEQA is used when tdb is equal to the empty
document (ε), so tda u tdb = tda. Rule MAKE.SEQB is used when tda is equal to
the empty document (ε), so tda u tdb = tdb. Finally, when both tda and tdn are
not equal to the empty document, tda u tdb is equal to a typed document that is the
sequence tda, tdb.

Definition 12 (Destination Document Construction) When mappings have been
applied to a source document to make the set of destination creation pairs R, R
can be used to construct the destination document tdr. To denote this we write:

construct(R) = tdr

29

R.EVAL

R = Rjoin ∪Rbranch
construct(Rjoin) = tdj

construct(Rbranch) = tdb
construct(R) = tdj u tdb

RJOIN.EVAL

Rjoin = {P1, P2, . . . , Pi}
next(P1) = P ′1, . . . ,next(Pi) = P ′i

R′ = {P ′1, P ′2, . . . , P ′i}
construct(R′) = tdr

Rjoin � x deref(x).type = t

construct(Rjoin) = x[t 3 tdr]

RBRANCH.EVAL

Rbranch = {P1, P2, . . . , Pk}
construct(P1) = td1,

. . . ,

construct(Pn) = tdn

construct(Rbranch) = td1 u . . . u tdn

NEXT.C.PAIR

P = [δ, tds]
δ = 〈[θh × ωh], [θr × ωr], . . .〉

δrest = 〈[θr × θr], . . .〉
next(P) = [δrest × tds]

BPAIR.EVAL.LIST

P = [δ × tds]
δ = 〈[x× branch], [θr × ωr], . . .〉

deref(x).type = t

next(P) = P ′

R = {P ′}
construct(R) = tdr

construct(P) = x[t 3 tdr]

Fig. 22. Rules to define the construction of the destination document.

Figure 22 contains rules to define the construction of documents using the set of
destination creation pairs R. Rule R.EVAL states the the set R is divided into two
subsets called Rjoin and Rbranch that are used to construct two result documents tdj
and tdb. Therefore, the construction of a destination document using R is equal to
the combination of tdb and tdb (see previous rules in Figure 21).

Rule RJOIN.EVAL defines the construction of a destination document using the
set Rjoin. Each destination creation pair Pi has the first destination mapping pair

30

MAP.EVAL

m ∈ B
m = 〈ρ, δ, Bl〉

isCompatible(m, tds)
ρ ` tds → tdr

B′ = B ∪Bl
transform(B′, tdr) = tdr′

m,B ` tds → [δ × tdr′]

MAPSET.EVAL

tds B

Ma = 〈m1, . . . ,mn〉
isCompatible(m1, tds),

. . .

isCompatible(mn, tds)
m1 ∈ B, . . . ,mn ∈ B

m1, B ` tds → P1, . . . , mn, B ` tds → Pn
evaluate(Ma, tds) = {P1, . . . , Pn}

BINDING.EVAL

B tds

Ma = 〈m1, . . . ,mn〉
isCompatible(m1, tds),

. . .

isCompatible(mn, tds)
m1 ∈ B, . . . ,mn ∈ B
evaluate(Ma, tds) = R

construct(R) = tdr
transform(B, tds) = tdr

Fig. 23. Rules to define the evaluation of Bindings.

removed to give P ′i (next(Pi) = P ′i using rule NEXT.C.PAIR). These new desti-
nation content pairs are combined in the set R′ which is used to construct the result
document tdr. The root element x is located (Rjoin � x), and its type is determined
(deref(x).type = t) so the destination document x[t 3 tdr] can be created.

Rule RBRANCH.EVAL defines the construction of a destination document using the
setRjoin. Each destination creation pair Pn ∈ Rbranch is used to construct a destina-
tion document tdn: using rules BPAIR.EVAL.E, BPAIR.EVAL.A,
BPAIR.EVAL.C, or BPAIR.EVA.EMP (defined earlier in Figure 18) if the desti-
nation mapping path δ contains only one pair, or rule BPAIR.EVAL.LIST if there
is more than one pair in the destination mapping path. Rule BPAIR.EVAL.LIST
defines the construction of a destination document using a destination creation pair
P that contains a destination mapping path δ with more than one pair. The first com-
ponent referenced (x) and its type (t) are determined, and the destination creation

31

m1 = 〈 〈DDBJXML,ACCESSION〉 , 〈[Sequence Data Record× join], [accession id× branch]〉 , ∅〉

m2 = 〈 〈ACCESSION, value〉 , 〈[accession id× join], value〉 , ∅〉

m3 = 〈 〈DDBJXML,DEFINITION〉 , 〈[Sequence Data Record× join], [definition× branch]〉 , ∅〉

m4 = 〈 〈DEFINITION, value〉 , 〈[definition× join], value〉 , ∅〉

m7 = 〈 〈source, location〉 , 〈[Feature Source× join], [has position× branch], [Location× branch]〉 , ∅〉

m9 = 〈 〈location, value{“ˆ[ˆ.]+”}〉 , 〈[Location× join], [start× branch], value〉 , ∅〉

m10 = 〈 〈location, value{“[ˆ.]+”}〉 , 〈Location× join], [end× branch], value〉 , ∅〉

m11 = 〈 〈DDBJXML, FEATURES, source〉 ,

〈[Sequence Data Record× join], [has feature× branch], [Feature Source× branch]〉 , ∅〉

m12 = 〈 〈source, [qualifiers× {qualifiers, qualifiers/*/@namevalue = “isolate”}]〉 ,

〈[Feature Source× join], [isolate× branch]〉 , (m13)〉

m13 = 〈 〈qualifiers, value〉 , 〈[isolate× join], value〉 , ∅〉

m14 = 〈 〈source, [qualifiers× {qualifiers, qualifiers/*/@namevalue = “lab host”}]〉 ,

〈[Feature Source× join], [lab host× branch}]〉 , (m15)〉

m15 = 〈 〈qualifiers, value〉 , 〈[lab host× join], value〉 , ∅〉

Fig. 24. Example mapping to convert and instance of a DDBJ-XML formatted sequence
data record to an OWL concept instance.

pair P has its first destination mapping pair removed to give P ′ (next(P) = P ′).
A set of new destination creation pairs R is created that contains only P ′. R is then
used to construct the destination document tdr (with rule R.EVAL), and therefore
P constructs the document x[t 3 tdr].

Definition 13 (Mapping Application) The evaluation of a mapping m from the
binding B against a typed document tds gives a destination creation pair P where
P = [δ× tdr]. The typed document tdr is the result of the application of the source
mapping path ρ from m to tds, and δ is the destination mapping path:

m,B ` tds → [δ × tdr]

Because more than one mapping may be applied to a given typed document, we
define the application of a set of applicable mappings Ma to a typed document tds
as a set of result pairs R where R = {P1, P2, . . . , Pn}:

evaluate(Ma, tds) = R

Rules for the application of mappings are given in Figure 23. Rule MAP.EVAL
states that when the mapping m in B is valid for application to a source typed
document tds, the result of the application of ρ to tds is tdr. Local mappings Bl are
combined with the global binding B to give B′ (where ordering is preserved) that
is used to transform the result document tdr into tdr′ . The result of the recursion
(tdr′) is then combined with the destination mapping path δ to give the destination
creation pair [δ × tdr′].

32

Rule MAPSET.EVAL describes how a set of compatible mappings Ma are each
evaluated against a source document tds to give the set of result pairs
R = {P1, P2, . . . , Pn}.

Definition 14 (Document Transformation) The transformation of a source doc-
ument tds using mappings from the binding B creates a destination document tdr
and is denoted by:

transform(B, tds) = tdr

The rule BINDING.EVAL presented in Figure 23 defines this behaviour. The set
of compatible mappings Ma is calculated and evaluated to give a set of destina-
tion creation pairs R (evaluate(Ma, tds) = R). R is then used to construct the
destination tdr (construct(R) = tdr) - the result of the transformation process.

3.5 Example Mappings and XML Syntax

To demonstrate our mapping language, we provide a subset of mappings (Figure
24) that transform an instance of a DDBJ-XML sequence data record to a Se-
quence Data Record concept instance. In this example, assume all source mapping
path predicates are true unless otherwise specified (see mapping 12 and 14). They
are then used to define a binding B as follows:

B = 〈m1,m2,m3,m4,m7,m9,m10,m11,m12,m14〉

Mappings m13 and m15 are excluded from the sequence B because they are de-
fined locally within other mappings. A source document in DDBJ-XML format
can then be evaluated using this binding to give a destination document which is
the sequence data record in its corresponding OWL representation.

The specification of these mappings and the binding B is represented using XML

in Listing 2. This XML document represents an M -Binding and can be used to
drive the translation of XML documents, as we show below in Section 4. Our XML

binding format is designed to look similar to conventional XPATH notation so users
familiar with XML tools will find it intuitive. Local mappings can be defined easily
by including their definition within the parent mapping element (see mappings 12
and 14). To extract literal values from the content of an element or attribute, the
“$” symbol is used, and can be suffixed with a string to denote a regular expression
(mappings 9 and 10).

4 Implementation - The Configurable Mediator

The Configurable Mediator (C-MEDIATOR) is a software component that con-
sumes M -Binding documents (such as that given in Listing 2), and uses them to

33

1 <binding name="DDBJ-to-sequencedata"
2 xmlns="http://mygrid.org/schema/binding"
3 xmlns:sns="http://mygrid.org/schema/DDBJ"
4 xmlns:dns="http://mygrid.org/ont/sequencedata"
5 targetNamespace="http://mygrid.org/binding/
6 DDBJ-to-sequencedata">
7 <mapping id=’m1’>
8 <source match="sns:DDBJXML/sns:ACCESSION"/>
9 <destination create="dns:DDBJ_Sequence_Data_Record

10 [join]/dns:accession_id[branch]/"/>
11 </mapping>
12
13 <mapping id=’m2’>
14 <source match="sns:ACCESSION/$"/>
15 <destination create="dns:accession_id[join]/$"/>
16 </mapping>
17
18 <mapping id=’m3’>
19 <source match="sns:DDBJXML/sns:DEFINITION"/>
20 <destination create="dns:DDBJ_Sequence_Data_Record
21 [join]/dns:definition[branch]/"/>
22 </mapping>
23
24 <mapping id=’m4’>
25 <source match="sns:DEFINITION/$"/>
26 <destination create="dns:definition[join]/$"/>
27 </mapping>
28
29 <mapping id=’m7’>
30 <source match="sns:source/sns:location"/>
31 <destination create="dns:Feature_Source[join]/
32 dns:has_position[branch]/dns:Location[branch]"/>
33 </mapping>
34
35 <mapping id=’m9’>
36 <source match="sns:location/$ˆ[ˆ.]+"/>
37 <destination create="dns:Location
38 [join]/dns:start[branch]/$"/>
39 </mapping>
40
41 <mapping id=’m10’>
42 <source match="sns:location/$[ˆ.]+$"/>
43 <destination create="dns:Location
44 [join]/dns:end[branch]/$"/>
45 </mapping>
46
47 <mapping id=’m11’>
48 <source match="sns:DDBJXML/sns:FEATURES/sns:source"/>
49 <destination create="dns:DDBJ_Sequence_Data_Record[join]/
50 dns:has_feature[branch]/dns:Feature_Source[branch]"/>
51 </mapping>
52
53 <mapping id=’m12’>
54 <source match=’sns:source/sns:qualifiers
55 [sns:qualifiers/sns:name/$ = "isolate"]’/>
56 <destination create="dns:Feature_Source
57 [join]/dns:isolate[branch]"/>
58 <mapping id=’m13’>
59 <source match="sns:qualifiers/$"/>
60 <destination create="dns:isolate[join]/$"/>
61 </mapping>
62 </mapping>
63
64 <mapping id=’m14’>
65 <source match=’sns:source/sns:qualifiers
66 [sns:qualifiers/sns:name/$ = "lab_host"]’/>
67 <destination create="dns:Feature_Source
68 [join]/dns:lab-host[branch]"/>
69 <mapping id=’m15’>
70 <source match="sns:qualifiers/$"/>
71 <destination create="dns:lab-host[join]/$"/>
72 </mapping>
73 </mapping>
74 </binding>

Listing 2. An XML representation of the Binding.

direct the transformation of XML data from one format to another via the corre-
sponding intermediate OWL representation [32]. The FXML-M formalism presented
above was implemented as a SCHEME [19] library called FXML-T (Formalised XML

Translation) to construct a Translation Engine which is combined with the JENA

ontology processing API to create the Configurable Mediator. As discussed above,
the transformation process consists of three stages: (i) conversion from the source

34

Out: GetEntryOut

• record [DDBJXML]

In: runAndWaitForIn

• sequence_data[FASTA]

Mediation

KB

(Jena)

Translation

Engine

DDBJ XML Schema

Sequence Data OWL

Instance Schema

DDBJ XML->Seq-Data-Ont

M-Binding

Translation

Engine

NCBI XML Schema

Sequence Data OWL

Instance Schema

Seq-Data-Ont -> FASTA

M-Binding

Sequence_Data_Record

Sequence_Data_Record

Sequence Data Ontology

Concept URI

DDBJ WSDL

OWL-XIS

Generator
Manually

Specified

NCBI Blast WSDL

Manually

Specified

From Semantic Annotation

DDBJ
Service: GetEntry

PortType: GetEntry

Dynamic

WSDL

Invoker

wsdl:GetEntryIn

• accession_id [xsd:string]

NCBI-Blast
Service: runAndWaitFor

PortType: runAndWaitFor

Dynamic

WSDL

Invoker

wsdl:runAndWaitForOut

• result[resultType]

Configurable Mediator

Web Services with WSDL

Descriptions

SOAP / HTTP SOAP / HTTP

Workflow Input Workflow Output

1

2

3

4

Fig. 25. A detailed view of the Configurable Mediator in the context of our use case.

XML format to OWL (conceptual realisation); (ii) modelling of the OWL concept
instance; (iii) conversion from OWL to a destination XML format (conceptual se-
rialisation). Stages (i) and (ii) are performed by the Translation Engine 13 , which
provides an implementation of the transformation rules presented in Section 3.

After the initial conversion from the source XML format to an OWL concept instance
(serialised in XML), the concept instance must be validated against its ontology
definition. The C-MEDIATOR uses JENA to perform this stage of the mediation,
creating an inference model from the ontology definition and importing the con-
cept instance into it. During this stage, concept hierarchies are calculated and any
instances imported are classified. From the perspective of our use case, this means
that the output from the DDBJ-XML service (an instance of the
DDBJ Sequence Data Record concept) is also classified as an instance of the Se-
quence Data Record concept. Therefore, input to a service consuming
Sequence Data Record, such as the NCBI-Blast service, is valid. The C-MEDIATOR

and its interaction with our Dynamic Web Service Invoker - DWSI 14 and the two
target Web Services from our use-case is illustrated in Figure 25, which demon-
strates how the C-MEDIATOR converts data from DDBJ-XML format to FASTA
format via an instance of the Sequence Data Record concept. The figure also illus-
trates all the necessary documents for each conversion process (e.g. XML schemas
and M -Binding documents) and where they originate (e.g. WSDL definitions, man-
ually specified or automatically generated). To illustrate the mechanics of the C-
MEDIATOR, we follow the conversion process in four stages, as they are labelled

13 Full details of the transformation engine and an evaluation of its performance can be
found in [35].
14 Full details of the DWSI and its evaluation can be found in [34].

35

in Figure 25:

(1) The Dynamic WSDL Invoker (DWSI) consumes the accession idand in-
vokes the DDBJ service to retrieve a complete sequence data record. The
document returned is of type DDBJ-XML.

(2) The DDBJ-XML sequence data record is converted to an instance of the
sequence data recordconcept using the Translation Engine. The Trans-
lation Engine consumes the sequence data record, the XML schema describing
it (taken from the DDBJ WSDL definition), a schema describing a valid in-
stance of the sequence data recordconcept (generated automatically by
the OWL-XIS generator), and the realisationM -Binding document. The Trans-
lation Engine produces an instance of the sequence data recordconcept
which is imported into the Mediation Knowledge Base (a JENA store).

(3) To transform the sequence data recordconcept instance into the FASTA
format, the Translation Engine is used again, this time consuming the OWL

concept instance (in XML format), the schema describing it (generated by
the OWL-XIS generator), the schema describing the output format (from the
NCBI-Blast WSDL) and the serialisation M -Binding. The output produced is
the sequence data in FASTA format.

(4) The DWSI consumes the FASTA formatted sequence data record and uses it
as input to the NCBI-Blast service.

5 Evaluation

To evaluate our SCHEME based FXML-T implementation of the FXML-M formalism,
as well as the scalability of the language design itself, we devised several experi-
ments to examine the performance of our Translation Engine against increasing
document sizes, increasing schema sizes, and M -Binding compositions of increas-
ing complexity. All the experiments were carried out using a 2.6 Ghz Pentium 4 PC
with 1GB RAM running Linux (kernel 2.6.15-20-386) using unix utility timeto
record program user times. FXML-T was executed using the Guile Scheme Inter-
preter v1.6 15 . Results are averaged over 30 runs so plotted values are statistically
significant at a 95% confidence interval.

The scalability of FXML-T was investigated by increasing input document size
(while maintaining uniform input XML schema size), and by increasing both input
schema size and input document size. Our hypothesis stated that expanding docu-
ment and schema size would increase the translation cost linearly. For comparison,
FXML-T is tested against the following XML translation tools:

15 http://www.gnu.org/software/guile/guile.html

36

 0

 10

 20

 30

 40

 50

 60

 70

0 200 400 600 800 1000 1200

Us
er

 C
PU

 T
im

e
(S

ec
on

ds
)

Document Size (KBytes)

FXML

Perl

Java

Python

SXML

PERL
PERL Fit

FXML
FXML Fit

JAVA
JAVA Fit

SXML
SXML Fit
PYTHON

PYTHON Fit

Fig. 26. Transformation Performance
against increasing XML document size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Us
er

 C
PU

 T
im

e
(S

ec
on

ds
)

Number of Schema Elements

FXML

Perl

Java
Python

SXML

PERL
PERL Fit

SXML
SXML Fit

FXML
FXML Fit

JAVA
JAVA Fit
PYTHON

PYTHON Fit

Fig. 27. Transformation Performance
against increasing XML schema size

• XSLT: Using Perl and the XML::XSLT module 16 .
• XSLT: Using JAVA (1.5.0) and Xalan (v2.7.0) 17 .
• XSLT: Using Python (v2.4) and the 4Suite Module (v0.4) 18 .
• SXML: A SCHEME implementation for XML parsing and conversion (v3.0) 19 .

Since FXML-T is implemented using an interpreted language, and Perl is also inter-
preted, one would expect them to perform slowly in comparison to JAVA and Python
XSLT which are compiled 20 . Figure 26 shows the time taken to transform a source
document to a structurally identical destination document for increasing document
sizes. The maximum document size tested is 1.2 MB, twice that of the Blast re-
sults obtained in our use case. From Figure 26 we see that FXML-T has a linear
expansion in transformation time against increasing document size: the correlation
coefficient (r2 = σxy/σxσy) is 0.916 (3 decimal places) where 1 is a straight line
and 0 is evenly scattered data. Both Python and JAVA implementations also scale
linearly with better performance than FXML-T due to JAVA and Python using com-
piled code. Perl exhibits the worst performance in terms of time taken, but a linear
expansion is still observed.

Our second performance test examines the translation cost with respect to increas-
ing XML schema size. To perform this test, we generate structurally equivalent
source and destination XML schemas and input XML documents which satisfy them.
The XML input document size is directly proportional to schema size; with 2047
schema elements, the input document is 176 Kbytes, while using 4095 elements a
source document is 378 Kbytes. Figure 27 shows translation time against the num-
ber of schema elements used.

16 http://xmlxslt.sourceforge.net/
17 http://xml.apache.org/xalan-j/
18 http://4suite.org/
19 http://okmij.org/ftp/Scheme/SXML.html
20 Although Python is interpreted, the 4Suite library is statically linked to natively compiled
code

37

 0

 1

 2

 3

 4

 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Us
er

 C
PU

 T
im

e
(S

ec
on

ds
)

Number of Schema Elements

Source Document Read
Source Document Read Fit

Source Schema Read
Source Schema Read Fit

Destination Schema Read
Destination Schema Read Fit

Binding Read
Binding Read Fit

Translation
Translation Fit

Destination Document Write
Destination Write Fit

Fig. 28. FXML-T transformation perfor-
mance breakdown against increasing XML

schema size

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 1 2 3 4 5 6

Us
er

 C
PU

 T
im

e
(S

ec
on

ds
)

Number of bindings

File Size = 152Bytes [± 1.95%]
Fit, File Size = 152 Bytes

File Size = 411Bytes [± 2.08%]
Fit, File Size = 411Bytes

File Size = 1085Bytes [± 1.87%]
Fit, File Size = 1085Bytes

File Size = 2703Bytes [± 1.85%]
Fit, File Size = 2703Bytes

Fig. 29. Transformation Performance
against number of bindings

Python and JAVA perform the best - a linear expansion with respect to schema size
that remains very low in comparison to FXML-T and Perl. FXML-T itself has a
quadratic expansion; however, upon further examination (see Figure 28), we find
the quadratic expansion emanates from the XML parsing sub-routines used to read
schemas and M -Bindings, whereas the translation itself has a cost linear to the size
of its input (solid line in Figure 28). The SCHEMEXML library used for XML parsing
is common to FXML-T and SXML, hence the quadratic expansion for SXML also.
Therefore, our translation cost would be linear if implemented with a suitable XML

parser.

One important feature of our translation language (FXML-M) is the ability to com-
pose M -Bindings at runtime. This can be achieved by creating an M -Binding that
includes individual mappings from an external M -Binding, or imports all map-
pings from an external M -Binding. For Service interfaces operating over multiple
schemas,M -Bindings can be composed easily from existing specifications. Ideally,
this composability should come with minimal cost.

To examine the M -Binding cost, we increased the number of M -Bindings im-
ported and observed the time required to transform the document. To perform the
translation, 10 mappings are required m1,m2, . . . ,m10. M -Binding 1 contains all
the required mapping statements: B1 = {m1,m2, . . . ,m10}. M -Binding 2 is a
composition of two M -Bindings where B2 = {m1, . . . ,m5} ∪ B2a and B2a =
{m6, . . . ,m10}. To fully test the cost of composition, we increased the number of
M -Bindings used and run each test using 4 source documents with sizes 152 Bytes,
411 Bytes, 1085 Bytes, and 2703 Bytes. While we aim for zero composability cost,
we would expect a small increase in translation time as more M -Bindings are in-
cluded. By increasing source document size, a larger proportion of the translation
time will be spent on reading in the document and translating it. Consequently, the
relative cost of composing M -Bindings will be greater for smaller documents and
therefore the increase in cost should be greater. Figure 29 shows the time taken to

38

transform the same four source documents against the same mappings distributed
across an increasing number of M -Bindings. On the whole, a very subtle increase
in performance cost is seen, and as expected, the increase is slightly larger for big-
ger documents.

6 Related Work

The idea of assigning semantics (or meaning) to elements and attributes inside XML

schemas has been explored in a variety of ways. In some cases, it is used for data
integration purposes; many different XML instances that assume different logical
structures are viewed through a common conceptual model so queries across dif-
ferent representations and their results are expressed in terms of the meaning of the
data that is captured in a high-level model. Kim and Park [20] developed the XML

Meta Model (XMM) to support this kind of functionality. The XMM captures the
semantics of XML schemas using a simple Is-A relationships: each element and at-
tribute within an XML schema is an instance of a particular concept within the XML

meta model.

Schuetzelhofer and Goeschka [30] employed a set theory approach to assign do-
main semantics to information represented in XML. A three-layer meta-model graph
decomposed XML into three levels: (i) the instance-level graph models elements,
attributes, and literals as nodes of a graph, and types as their edges; (ii) the type-
level graph models an XML schema with element and attribute definitions repre-
sented as nodes, and type definitions represented as edges. (iii) the meta-type-level
is comprised of meta-type nodes that model the domain concepts, and meta-type
links that represent the relationship between domain concepts. As instances of el-
ements in different schemas that share the same meta-type-level nodes are con-
ceptually equivalent within this model, a homogeneous view for querying XML

data across different logical representations (i.e. different XML schemas) can be
achieved through the meta-type level.

Mrissa et al [25] utilised a local context ontology for augmenting ontological con-
cepts to support ontological heterogeneities between Semantic Web Services. Ser-
vice providers could attach additional metadata to an OWL concept definition to de-
fine extensional information (for example, a price concept may include additional
details regarding currency, tax, scalar quantities, and data format). This metadata
is then used to construct (on the fly) mediator services that perform the translation
of data between services. In addition, a mechanism for inserting the description of
these mediators into a BPEL4WS composition was also developed.

Liu et al [22] presented the XML Semantics Definition Language (XSDL) to support
the modelling of XML semantics. Using OWL ontologies to capture the semantics
and structure of XML documents, and mappings that declare the relationship be-

39

tween XML schemas and OWL ontologies, different representations of conceptually
equivalent information can be viewed through a common ontological model. This
approach is also used by An et al [2] who define a mapping language to express
the relationship between XML DTDs and OWL ontologies. Other efforts [5,12] also
propose similar approaches to map XML schemas to RDF or OWL. However, in our
approach we assume that both OWL ontologies, and the XML schemas already exist.

While these data integration techniques facilitate the viewing and querying of data
across different XML representations through a common conceptual model, they do
not enable the conversion of data between different formats. For workflow harmon-
isation, when the output format from one service does not match the input format
to another service, data needs to be converted from one representation to another.
To apply data integration techniques that utilise a shared conceptual model of data
to the workflow harmonisation problem requires a two-way conversion process: in-
formation from one format that is viewed through the conceptual model must be
serialised to a different format. This idea was explored by Balzer and Liebig [4] in
the context of Semantic Web Service integration. Again, OWL ontologies are used
as a common conceptual model to capture the semantics of XML data structures.
Unlike the research presented above, their mapping approach enables the conver-
sion of data from XML to OWL and from OWL to XML providing the mechanism
necessary to support workflow harmonisation. However, their mapping language is
quite limited: a one-to-one correspondence between XML elements and OWL con-
cepts is assumed.

Hull et al [17,16] investigated the workow harmonisation problem within the MY-
GRID project. They argue that conversion services, or shims, can be placed in be-
tween services whenever some form of translation is required. Such shim services
are experimentally neutral; i.e. they have no effect on the result of the experiment
other than to change the representation of the data in some way. By enumerating
the types of shims required in bioinformatics Grids and classifying all instances of
shim services, they propose that the necessary translation components could be au-
tomatically inserted into a workow at run-time, or suggested to the user through an
editor or composition tool at workflow design time. The shims proposed encapsu-
late a variety of conversion services, not just those that perform syntactic mediation.
Whilst their syntax translator shim addresses a similar problem to that addressed
in the paper, such shims were bespoke services that provided a 1-to-1 mapping be-
tween different XML schemas, and thus could not be dynamically composed and
adapted for new scenarios at run-time.

The Piazza query-answering system [18] modelled variations at the data-level be-
tween the ontologies or schemas assumed by different systems. As values at this
level may have a variety of different representations, as illustrated earlier in Fig 5,
concordance tables are often used to map the associations between the values in the
corresponding representations. Whilst a number of methods for mapping between
ontologies have been proposed [10], mapping at the data-level can often require

40

some form of structural transformation, which may consist of decomposing, or
aggregating a number of different data elements. The Piazza system proposed a
structural transformation approach that exploited elements from XQUERY to con-
struct directional mapping definitions which could be composed together to form
a complete mapping between two schemas. Each mapping consisted of an XML

template that maps some path or sub-tree of a legal instance of a target schema
fragment, with embedded XQUERY statements that bind variables to XML nodes.
These variables could then be referenced anywhere within the scope of the tagged
fragment. Whilst Piazza mappings were primarily intended to map between XML

schemas, they could also be used to convert arbitrary XML into RDF.

The SEEK project [8] specifically addressed the problem of heterogeneous data rep-
resentation in service oriented architectures. Within their framework, each service
has a number of ports which expose a given functionality. Each port advertises a
structural type that represents the format of the data the service is capable of pro-
cessing. These structural types are specified by references to XML schema types. If
the output of one service port is used as input to another service port, it is defined
as structurally valid when the two types are the same. Each service port can also
be allocated a semantic type which is defined by a reference to a concept within
an ontology. The plugging together of two service ports is semantically valid if
the output from the first port is subsumed by the input to the second port. Struc-
tural types are linked to semantic types by a registration mapping using a custom
mapping language based on XPATH. If the plugging together of two ports is seman-
tically valid, but not structurally valid, an XQUERY transformation can be generated
to harmonise the two ports, making the link structurally feasible. While the SEEK

project does present a solution to the problem of harmonising syntactically incom-
patible services, their work is only applicable to the services within the bespoke
SEEK framework.

The Web Services Modelling Ontology (WSMO) [29] built upon, and extending the
earlier UPML [11] framework. Conceptually, WSMO is based on an event driven
architecture so services do not directly invoke each other, instead goals are created
by clients and submitted to the WSMO infrastructure which automatically man-
ages the discovery and execution of services. Components within the WSMO ar-
chitecture communicate using a standardised message format: an XML serialisation
of the WSML language; thus, all participants within a WSMO framework are ex-
pected to communicate at a conceptual level using XML serialisations of WSML

concepts through a process of lifting and lowering. To accommodate differences in
conceptual representation, the WSMO infrastructure also contains explicit mediator
components that support the translation of information between different WSML

representations. Message adaptors are placed in-front of services to deal with the
translations to and from traditional syntactic interfaces (such as a SOAP interface to
a Web Service or an ODBC interface to a database) and the WSML message layer.
These Adaptors are a super set of what we defined earlier as Type Adaptors be-
cause they are responsible for more than the translation of data between different

41

syntactic representations: conversions between different access models (e.g. rela-
tional databases and XML data), different transport types (e.g. HTTP, and FTP), and
different interaction protocols (e.g. request / response Web Services, and remote
method invocation).

7 Conclusions and Future Work

In this paper, we illustrate the problem that arises when syntactically incompatible
service interfaces are joined within a Semantic Web Services Workflow, through the
use of a bioinformatics Grid scenario. By using OWL as an intermediate represen-
tation to capture the structure and semantics of differently formatted data-sets and
interfaces that represent conceptually equivalent information, we have proposed a
scalable mediation approach that facilitates the introduction of new formats, and
minimises the number of Type Adaptors required to achieve maximum interoper-
ability. This approach has been evaluated through an implementation, and com-
pared with similar, hand-crafted mappings to verify the validity and feasibility of
our approach.

The main contribution of this paper is the mapping language FXML-M, designed
specifically to cater for the specification of mappings between XML and OWL in
a modular and composable fashion. By using bioinformatics data sets from our
use-case, we have been able to derive a complex set of mapping and transforma-
tion requirements. To this end, FXML has been created with the following novel
language constructs:

• Document paths: Simple transformations can be expressed using 1 to 1 map-
pings. To accommodate scenarios where a single component maps to a set of
components (1 to n), or a set of components map to a single component (n to 1),
mapping statements can be expressed using document paths.
• Predicate support: When the mapping of a component is dependent on the

value of another attribute or element, such as the <qualifiers> element in
the DDBJ-XML sequence data record, predicate evaluation is used. In this ex-
ample, the value of the name attribute must be “isolate” for the <qualifiers>
element to be mapped to the <isolate> element.
• Scoping: Sometimes the mapping of a particular element or attribute depends

on context. For example, the value of the <qualifiers> element is mapped
differently in mappings m13 (local to mapping m12), and m15 (local to m14) in
Section 3.5.
• String Manipulation: When the value of an element contains two distinct enti-

ties, such as the <location>element in the DDBJ-XML record, regular expres-
sions can be used to extract different characters from an elements content. An
example of this construct can be found in mappings m9 and m10.

42

The FXML-M mapping language has been realised through an implementation of
the Configurable Mediator (C-MEDIATOR), which was briefly introduced in Sec-
tion 4. When coupled with the Dynamic Web Service Invoker - DWSI [34], the
FXML-M language provides a declarative mechanism for describing mappings that,
once specified, can be automatically composed and executed at runtime to provide
data harmonisation. An evaluation of the FXML-M language, as well as details of
the implementation of our C-MEDIATOR and a comparison with other approaches
is presented in [35].

One mapping construct not supported is list processing. Within XML schema, el-
ements can contain sequences of other elements. Although it is not necessary to
meet the requirements from our bioinformatics data set, it would be desirable to
add mapping constructs that enable elements within a sequence to be mapped dif-
ferently depending on their position; for example, map the first instance to one el-
ement and the rest to another. This is supported in XPATH where array indexes can
be used: for example, a/b[0] will return the first element contained within
<a>. Since FXML-M covers a large number of constructs from XPATH, future work
could also use FXML-M as a basis to formalise XSLT and XQUERY.

References

[1] A. V. Aho, Algorithms for finding patterns in strings, in: Handbook of Theoretical
Computer Science, MIT Press / Elsevier, Cambridge, Massachusetts, 1990.

[2] Y. An, A. Borgida, J. Mylopoulos, Inferring complex semantic mappings between
relational tables and ontologies from simple correspondences., in: Int. Conf. on
Ontologies, Databases and Applications of Semantics (ODBASE), Springer Verlag,
Berlin Heidelberg, Germany, 2005, pp. 1152–1169.

[3] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. McDermott, S. A.
McIlraith, S. Narayanan, M. Paolucci, T. R. Payne, K. Sycara, DAML-S: Web service
description for the semantic web, in: Proceedings of the 1st International Semantic
Web Conf. (ISWC 02).

[4] S. Balzer, T. Liebig, Bridging the Gap Between Abstract and Concrete Services –
A Semantic Approach for Grounding OWL-S –, in: Proceedings of the Workshop
on Semantic Web Services: Preparing to Meet the World of Business Applications,
Hiroshima, Japan, 2004, pp. 16–30.

[5] S. Battle, Gloze: Xml to rdf and back again, in: In Proceedings of the First Jena User
Conference, 2006.

[6] D. Beech, A. Malhotra, M. Rys, A formal data model and algebra for xml, w3C XML
Query Working Group Note (1999).

[7] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American 284 (5)
(2001) 34 – 43.

43

[8] S. Bowers, B. Ludascher, An ontology-driven framework for data transformation in
scientific workflows, in: Intl. Workshop on Data Integration in the Life Sciences
(DILS’04).

[9] A. Brown, M. Fuchs, J. Robie, P. Wadler, MSL - a model for W3C XML Schema., in:
WWW, ACM, New York, NY, USA, 2001, pp. 191–200.

[10] J. Euzenat, P. Shvaiko, Ontology Matching, Springer-Verlag, 2007.

[11] D. Fensel, R. Benjamins, E. Motta, B. Wielinga, UPML: A framework for knowledge
system reuse, in: Proceedings of the International Joint Conference on AI (IJCAI-99),
Stockholm, Sweden, 1999.

[12] M. Ferdinand, C. Zirpins, D. Trastour, Lifting xml-schema to owl, in: Fourth
International Conference on Web Engineering (ICWE), Springer-Verlag Berlin
Heidelberg, 2004, pp. 354–358.

[13] G. Frege, Begriffsschrift, a formula language, modeled upon that of arithmetic, for
pure thought., in: From Frege to Godel: A Source Book in Mathematical Logic, 1879
- 1931, Harvard University Press, Cambridge, Massachusetts, 1967.

[14] C. Goble, S. Pettifer, R. Stevens, C. Greenhalgh, Knowledge Integration: In silico
Experiments in Bioinformatics, in: I. Foster, C. Kesselman (eds.), The Grid: Blueprint
for a New Computing Infrastructure Second Edition, Morgan Kaufmann, 2003.

[15] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van
Harmelen, M. Klein, S. Staab, R. Studer, E. Motta, OIL: The Ontology Inference
Layer, Tech. Rep. IR-479, Vrije Universiteit Amsterdam, Faculty of Sciences, see
http://www.ontoknowledge.org/oil/ (Sep.).

[16] D. Hull, R. Stevens, P. Lord, Describing web services for user-oriented retrieval, in:
W3C Workshop on Frameworks for Semantics in Web Services, Digital Enterprise
Research Institute, (DERI), Innsbruck, Austria, 2005.

[17] D. Hull, R. Stevens, P. Lord, C. Wroe, C. Goble, Treating shimantic web syndrome
with ontologies, in: First AKT workshop on Semantic Web Services (AKT-SWS04)
KMi, The Open University, Milton Keynes, UK. December 8, 2004, 2004, workshop
proceedings CEUR-WS.org ISSN:1613-0073.

[18] Z. G. Ives, A. Y. Halevy, P. Mork, I. Tatarinov, Piazza: mediation and integration
infrastructure for semantic web data, J. Web Sem. 1 (2) (2004) 155–175.

[19] R. Kesley, W. Clinger, J. Rees, Revised (5) report on the alogrithmic language scheme,
Higher-Order and Symbolic Computation (1998) 7 – 105.

[20] H. H. Kim, S.-S. Park, Semantic integration of heterogeneous xml data sources,
in: OOIS ’02: Proceedings of the 8th International Conference on Object-Oriented.
Information Systems, Springer-Verlag, London, UK, 2002, pp. 95–107.

[21] M. Klein, D. Fensel, F. van Harmelen, I. Horrocks, The relation between ontologies
and schema-languages: Translating oil-specifications in xml-schema, in: Proceedings
of the ECAI’00 workshop on applications of ontologies and problem-solving methods,
Berlin, 2000.

44

[22] S. Liu, J. Mei, A. Yue, Z. Lin, XSDL: Making xml semantics explicit, in: Proceedings
of the 2nd Workshop on Semantic Web and Databases (SWDB2004), Springer Verlag,
Berlin Heidelberg, Germany, 2005, pp. 64–83.

[23] P. Lord, P. Alper, C. Wroe, C. Goble, Feta: A light-weight architecture for user oriented
semantic service discovery, in: Proc. of the 2nd European Semantic Web Conference,
ESWC 2005, Springer Verlag, Berlin Heidelberg, Germany, 2005, pp. 17 – 31.

[24] M. Moran, A. Mocan, Towards translating between xml and wsml based on
mappings between xml schema and an equivalent wsmo ontology, in: 2nd WSMO
Implementation Workshop (WIW 2005), 2005.

[25] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F. Rosenberg, S. Dustdar, A
context-based mediation approach to compose semantic web services, ACM Trans.
Internet Technol. 8 (1) (2007) 4.

[26] M. Murata, D. Lee, M. Mani, K. Kawaguchi, Taxonomy of xml schema languages
using formal language theory, ACM Trans. Inter. Tech. 5 (4) (2005) 660–704.

[27] M. Paolucci, N. Srinivasan, K. Sycara, Expressing WSMO mediators in OWL-S,
in: Proceedings of the ISWC 2004 Workshop on Semantic Web Services: Preparing
to Meet the World of Business Applications, Springer Verlag, Berlin Heidelberg,
Germany.

[28] D. Roman, U. Keller, H. Lausen, R. L. Jos de Bruijn, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, D. Fensel, Web service modeling ontology, Applied Ontology
1 (1) (2005) 77–106.

[29] D. Roman, H. Lausen, U. Keller, D2v1.0. web service modeling ontology (WSMO),
WSMO Working Draft (September 2004).

[30] W. Schuetzelhofer, K. Goeschka, A set theory based approach on applying domain
semantics to xml structures, in: HICSS ’02: Proceedings of the 35th Annual Hawaii
International Conference on System Sciences (HICSS’02)-Volume 4, IEEE Computer
Society, Washington, DC, USA, 2002, p. 120.

[31] M. Stollberg, E. Cimpian, A. Mocan, D. Fensel, A semantic web mediation
architecture, in: M. T. Kone, D. Lemire (eds.), The Canadian Semantic Web Working
Symposium (CSWWS), vol. 2 of Semantic Web And Beyond Computing for Human
Experience, Springer, 2006, pp. 3–22.

[32] M. Szomszor, Dynamic discovery, creation and invocation of type adaptors for web
service workflow harmonisation, Ph.D. thesis, University of Southampton (April
2007).

[33] M. Szomszor, T. R. Payne, L. Moreau, Using semantic web technology to automate
data integration in grid and web service architectures, in: Proceedings of Semantic
Infrastructure for Grid Computing Applications Workshop in Cluster Computing and
Grid (CCGrid), Cardiff, UK, 2005.

[34] M. Szomszor, T. R. Payne, L. Moreau, Automated syntactic medation for web service
integration, in: Proceedings of IEEE International Conference on Web Services (ICWS
2006), Chicago, USA, 2006.

45

[35] M. Szomszor, T. R. Payne, L. Moreau, Dynamic discovery of composable type
adapters for practical web services workflow, in: Proceedings of UK e-Science All
Hands Meeting, Nottingham, UK, 2006.

[36] C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne,
L. Moreau, Automating experiments using semantic data on a bioinformatics grid,
IEEE Intelligent Systems 19 (1) (2004) 48–55.

46

