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Abstract
The paper addresses how the information state of
an agent relates to the arguments that the agent en-
dorses. Information states are modeled in doxas-
tic logic and arguments by recasting abstract argu-
mentation theory in a modal logic format. The two
perspectives are combined by an application of the
theory of product logics, delivering sound and com-
plete systems in which the interaction of arguments
and beliefs is investigated.

1 Introduction
With epistemic logic we mean logics for knowledge and be-
lief, i.e., logics that describe the information state of an agent
by the alternatives it considers possible. Abstract argumen-
tation [Dung, 1995], on the other hand, describes the infor-
mation state of an agent by the set of arguments the agent
‘endorses’ or holds as justified.

The paper combines these two dimensions in a unified
framework where questions concerning the interaction of ar-
guments and beliefs can be systematically addressed, such as:
Is the set of arguments supporting an agent’s doxastic state
‘justifiable’ from the point of view of abstract argumentation
(e.g., conflict-free, admissible, stable, etc.)?

Technically, the combination of the two perspectives—
epistemic and argumentation-theoretic—is achieved by de-
ploying techniques and results from the theory of product
modal logics [Gabbay et al., 2003]. The key idea consists
in taking states in a doxastic (Kripke) model and arguments
in a (Dung) attack graph as two orthogonal dimensions for the
description of the information state of an agent. This intuition
suggests the use of bi-dimensional structures for the study of
argument-based beliefs. The logics obtained are studied with
respect to their axiomatization and finite model property.

More generally, the paper lays a bridge between epistemic
logic and argumentation theory. We hope that the results pre-
sented can foster further interaction between the two fields.

Related work To the best of our knowledge, the only works
to date attempting to interface argumentation with epistemic
logic are [Grossi, 2012] and [Schwarzentruber et al., 2012].
The first is concerned with the analysis, in dynamic epistemic
logic [van Ditmarsch et al., 2007], of the fixpoint behavior

of some argumentation theoretic notions, and the second en-
riches the standard framework of abstract argumentation by
enabling arguers to hold beliefs about other arguers’ available
arguments.

In its broad purposes, the present paper can probably be
better related to recent work (in particular, [Artemov, 2008;
van Benthem and Pacuit, 2011]) aiming at explicitly model-
ing the ‘justifications’ or ‘reasons’ upon which agents happen
to base their information state. Our paper shows the viability
of using product logics for this type of analysis.

Outline of the paper Section 2 prepares the ground re-
capitulating some basic notions from both epistemic logic
and abstract argumentation. We then proceed in a modu-
lar fashion. Section 3 introduces a logic that combines the
simplest modal logic of argumentation (logic K, cf. [Grossi,
2010]) and the simplest modal doxastic logic (KD45). First
argument-belief interaction properties are formalized and dis-
cussed. Section 4 introduces and studies a more expressive
logic, able to formalize: ample fragments of Dung’s argu-
mentation theory and a rich set of doxastic attitudes based on
the set of arguments that an agent endorses. Section 5 con-
cludes pointing at some future research directions.

2 Preliminaries
We start by introducing the basic building blocks of our
analysis: simple structures for representing beliefs and for
representing arguments and their attacks. We then move
to motivate a specific way of combining the two: prod-
ucts. Although we give all necessary definitions, space
limitations demand we do this succinctly: the reader may
wish to consult [Meyer and van der Hoek, 1995] for more
background on doxastic logic, [Baroni and Giacomin, 2009;
Baroni et al., 2011] for abstract argumentation, and [Gabbay
and Shehtman, 1998] for products in modal logic.

2.1 Doxastic structures
Definition 1 (Doxastic frame). A doxastic frame is a tuple
D = ⟨S,B⟩ where: i) S is a non-empty set of states; ii)B ⊆ S,
s.t., B ≠ ∅. The class of all doxastic frames is denoted D.

A doxastic frame represents the non-empty set B of states
that an agent holds as most plausible among the set of all
states S. We will refer to elements of B as doxastic alterna-
tives or doxastically accessible states.



Given a doxastic frame, a Kripke model is obtained by
adding a valuation function V ∶ P Ð→ ℘(S) interpreting a
set of atoms P. A doxastic modality xB can then be inter-
preted as follows:

⟨D,V⟩, s ⊧xBϕ ⇐⇒ ∃s′ ∈ B ∶ ⟨D,V⟩, s′ ⊧ ϕ (1)
For any diamond ◇ in this paper, we define an associated ◻
as ◻ϕ = ¬◇ ¬ϕ. So ⊟Bϕ means that the agent believes ϕ.

Doxastic frames are somewhat simpler than the struc-
tures typically used to study beliefs, namely relational frames
where the accessibility relation is transitive and euclidean
(cf. [Meyer and van der Hoek, 1995]). The two, however,
can be proven equivalent for the purpose of this paper, using
some standard modal logic arguments:
Theorem 1. On the basic modal language, the class of dox-
astic frames is modally equivalent to the class of transitive
and euclidean relational frames.

Proof. Let F the class of transitive and euclidian frames
and Fg the class of point-generated transitive and euclidean
frames. We know that F and Fg are modally equivalent
[Blackburn et al., 2001]. [LEFT TO RIGHT] Assume D ⊧ ϕ.
Let Fs = ⟨Ss,Rs⟩ ∈ Fg and s ∈ Ss. Define B = {x ∣ sRsx}
and notice that Ds = ⟨Ss,B⟩ ∈ D and hence Ds ⊧ ϕ. An
easy induction shows that Ds and Fs are modally equiva-
lent and thus F ⊧ ϕ [RIGHT TO LEFT] Assume F ⊧ ϕ. Let
D = ⟨S,B⟩ ∈ D. Define a relation R on S by xRy iff y ∈ B.
It is easy to see that R is transitive and euclidean and hence
F = ⟨S,R⟩ ∈ F. An easy induction proves that D and F are
modally equivalent, from which D ⊧ ϕ.

So the logic of the class of doxastic frames is completely
axiomatized by the standard axiom system for logic KD45
containing: the rules Modus Ponens (MP: form ϕ and
ϕ→ ψ, infer ψ) and Necessitation (Nec: from ϕ, infer ⊟Bϕ);
the axioms K ∶ ⊟B(ϕ → ψ) → (⊟Bϕ → ⊟Bψ) representing
the agent’s ability to reason propositionally, D ∶ ¬ ⊟B � (be-
liefs are consistent) and the axioms 4 ∶ ⊟Bϕ → ⊟B ⊟B ϕ and
5 ∶ ⊟Bϕ → ⊟B¬ ⊟B ϕ representing positive and negative in-
trospection, respectively. For later reference, recall that S5 is
the logic KD45 +T ∶ ⊟Bϕ→ ϕ.

2.2 Argumentative structures
We start by the key structure of abstract argumentation:
Definition 2 (Attack graphs [Dung, 1995]). An attack graph
is a tuple A = ⟨A,�⟩ where: i ) A is a non-empty set of
arguments; ii) �⊆ A2 is a binary relation (a � b stands for a
attacks b). The class of all attack graphs is denoted A.

These relational structures are the building blocks of ab-
stract argumentation theory. Once A is taken to represent a
set of arguments, and � an ‘attack’ relation between argu-
ments, the study of these structures provides general insights
on how competing arguments interact, and structural proper-
ties of subsets of A can be taken to formalize how collections
of arguments form ‘justifiable’ positions in an argumentation
([Baroni and Giacomin, 2009; Baroni et al., 2011]).

In this paper we will touch upon the argumentation-
theoretic notions of conflict-freeness, self-defense, admissi-
bility, complete and stable extensions. Table 1 recapitulates
these notions for the ease of the reader.

A Kripke modelM = ⟨A,←,V⟩ can be obtained from an
attack graph by inverting the attack relation (a ← b denotes
that a is attacked by b) and by adding a valuation function
V ∶ P Ð→ ℘(A) interpreting a set of propositional atoms P.
Consider now a modality yA with the following semantics:

⟨A,V⟩, a ⊧yAϕ ⇐⇒ ∃b ∈ A ∶ a � b & ⟨A,V⟩, b ⊧ ϕ (2)

An argument a satisfies yAϕ iff some attacker b of a satisfies
ϕ. The logic of yA defined by the class of attack graphs is,
obviously, K. [Grossi, 2010] shows that modal logic K can
express a number of argumentation theoretic notions from
[Dung, 1995], such as: ¬yA p, expressing that the current
argument is not attacked by p; or qAyA p expressing that
the current argument is ‘defended’ by p-arguments (i.e., its
attackers are attacked by p-arguments). The logic K is ax-
iomatized by rules MP and Nec, and axiom K.

2.3 Doxo-argumentative structures
Let us start with a simple motivating example:
Example 1 (After [Modgil, 2009]). Consider two individuals
exchanging arguments about the weather forecast. Argument
a: “Today will be dry in London since the BBC forecast sun-
shine”. And argument a′: “Today will be wet in London since
CNN forecast rain”. We have two arguments (a and a′) con-
cerned with whether the ‘real’ situation is a state s where the
sun shines in London or in a state s′ where it rains in London.

In general, starting from a set of doxastic alternatives S and
a set of ‘arguments’A, we are after structures that can support
the analysis of how elements of S interact with elements of
A. We want to be able to express properties of state-argument
pairs (s, a) such as “a supports s” or “all doxastic states sup-
ported by this argument have property p”.
Example 2 (After [Modgil, 2009], continued). Let then S =

{s, s′} andA = {a, a′}. We can represent the simple scenario
of Example 1 by the model on the left of Figure 1, where the
dark circles indicate that the pairs at issue have a property of
interest (in this case the property of ‘support’): a supports s
and a′ supports s′.
So our domain becomes the Cartesian product S×A. Now, if
S andA also come equipped with accessibility relations—the
doxastic one in case of S and the attack one in case of A—
then studying how the logics of these relations interact in S ×
A would allow one to talk about properties of state-argument
pairs that are of a doxastic and argumentation-theoretic type
in the same language. The paper takes this perspective and
sets out to develop a formal theory of how arguments and
their attacks relate to the doxastic state of an agent. The key
tool in accomplishing this, is that of product logics.

Conflict-free X ⊆ {x ∣ ∄y ∈X ∶ x � y}
Self-defended X ⊆ {x ∣ ∀y ∶ x � y⇒ ∃z ∈X,y � z}
Admissible X is conflict-free and self-defended
Complete extension X is conflict-free &

X = {x ∣ ∀y ∶ x � y⇒ ∃z ∈X,y � z}
Stable extension X = {x ∣ ∄y ∈X ∶ x � y}

Table 1: Properties of a set X in A = ⟨A,�⟩.
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Figure 1: Two doxo-argumentative structures.

Remark 1 (Properties of states, arguments and their pairs).
The above set up allows one to represent any property of
state-argument pairs. For instance, with respect to the sup-
port relation, one can represent cases where the same argu-
ment supports several states or where a same state is sup-
ported by several arguments.

Importantly, the set up allows one to represent properties
of states-only, or arguments-only. For instance, to express
that a state s has a property X (e.g., ‘sunshine in London’) it
suffices forX to be true of all the state-argument pairs whose
state is s, i.e., to be a set of columns in the Cartesian plane.
Similarly, properties Y of arguments alone (e.g., ‘being up-
held by BBC’) can be represented in the same fashion, i.e., by
sets of rows of the Cartesian plane.

Figure 1 (right) illustrates all these different properties.
Dark circles indicate a relation (e.g., of support) between ar-
guments and states: a2 supports both s1 and s3; s1 is sup-
ported by both a1 and a2. Rectangle X represents a state-
only property, of states s1 and s2, and rectangle Y (dashed
line) represents an argument-only property, of argument a1.

2.4 Product logics
The product of two (uni-)modal logics1 is defined as follows
[Gabbay and Shehtman, 1998]. The product F ×F ′ between
two frames F = ⟨S,R⟩ and F ′ = ⟨S′,R′⟩ is the frame ⟨S ×
S′,H,V ⟩ where:

(s, s′)H(t, t′) ⇐⇒ sRt AND s′ = t′

(s, s′)V (t, t′) ⇐⇒ s′R′t′ AND s = t

Intuitively, the product of two frames can be depicted as a
Cartesian plane where H is the relation on the ’horizontal’
dimension consisting of the set S and V is the relation on
the the ’vertical’ one consisting of set S′. Following [Marx,
1999], we will use x to denote the modality interpreted over
H—’horizontal’ modality—and y the modality interpreted
over V—’vertical’ modality.

The product of two classes of frames F and F′ is
{F ×F ′ ∣ F ∈ F AND F ′ ∈ F′}. Now, given two logics L and
L′ the product L × L′ is the logic of the class of frames de-
fined by the product of the two largest classes F and F′ for
which the two logics are complete. For instance, K ×K is the
logic of the class of all frames consisting of the product of
two frames. Here we study products between logics L and

1The multi-modal case is a straightforward generalization. Cf.
[Gabbay and Shehtman, 1998].
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Figure 2: Rendering of Example 1 as a KD45×K model (left)
and a DA model (right). Universal relations are not depicted.

L′ where L—the ‘horizontal’ logic—is a doxastic logic and
L′—the ‘vertical’ logic—is a modal logic for argumentation.

3 A simple product logic: KD45 ×K
As a first framework in which to investigate interaction prin-
ciples between arguments and doxastic states we consider the
product of the simplest doxastic logic, namely KD45, with
the simplest modal logic of attack graphs, i.e., K.

3.1 Syntax and semantics
The language L(xB,yA), has the following BNF:

p ∣ � ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣xBϕ ∣yAϕ

where p belongs to the set of atoms P. For any language L
that we consider, the variant Lσ adds an atom σ to it, where
σ intuitively says of (s, a) the s is supported by a. Semantics
is given as follows. Let D be a doxastic frame on S and A
an attack graph on A. A KD45 ×K model is a structureM =

⟨D × A,V⟩ where V ∶ P Ð→ ℘(S × A). The satisfaction
relation is defined by the standard Boolean clauses plus the
following clauses (cf. Formulae (1) and (2)):

M, (s, a) ⊧yAϕ ⇐⇒ ∃a′ ∈ A ∶ a � a′ &M, (s, a′) ⊧ ϕ

M, (s, a) ⊧xBϕ ⇐⇒ ∃s′ ∈ B ∶M, (s′, a) ⊧ ϕ

The claim M, (s, a) ⊧ ϕ can be interpreted as: given the
‘actual’ state is s and the ‘currently entertained’ argument is
a, ϕ holds. So ⊟Bϕ expresses the property that, by keeping
fixed the current argument, all pairs consisting of the current
argument and a doxastically accessible state, satisfy ϕ. In-
tuitively: it is believed that ϕ holds of the current argument.
Similarly, modalities yA and qA express properties of the at-
tack relation. SoyAϕ expresses the property that, by keeping
the current state fixed, there exists a pair consisting of the cur-
rent state and an argument that attacks the current argument,
and this pair satisfies ϕ.
Remark 2 (Satisfaction in products). As usual, formulae are
interpreted on pointed models “M, (s, a)”. So, when we in-
terpret a formula we fix both an argument and a state and
M, (s, a) ⊧ ϕ can be interpreted as: given the ‘actual’ state
is s and the ‘currently entertained’ argument is a, ϕ holds.

Example 3 (After [Modgil, 2009], continued). We extend Ex-
ample 1 by making explicit that the two arguments a and a′
attack one another, and that the agent believes the actual state
is s (the one supported by argument a), so that the set of dox-
astic alternatives B is {s} (left of Figure 2, where the ellipsis



encloses the set of doxastic alternatives). Dark circles de-
note the truth set of atom σ (representing ‘support’) and the
rectangle denotes the truth set of an atom s (for ‘sunshine’).
Notice that s is here a ‘column’ property (Remark 1). Arrows
on the vertical dimension denote attack.

Here are formulae true at (s, a): (i) ⊟Bσ; (ii) ⊟B(σ ∧

qA¬σ). Intuitively: (i) says that I believe the current argu-
ment is supportive, that is, all my doxastic alternatives are
supported by the current argument; (ii) says that all my dox-
astic alternatives are supported by the current argument and
all its attackers are not supportive of my doxastic alterna-
tives. Some of the formulae true at (s′, a′): (i) ¬s ∧ ⊟Bs;
(ii) ⊟B¬σ; (iii) ⊟ByA σ. Intuitively: (i) expresses a standard
false belief property ‘I believe s of the current argument but
s is false’; (ii) expresses that I believe the current argument
is not supportive, that is, no doxastic alternative is supported
by the current argument; (iii) states that for all doxastic al-
ternatives, the current argument is attacked by an argument
supporting that alternative.

3.2 Metalogical results
It is worth now giving a brief technical overview of KD45×K.
Regarding an axiomatisation, logic KD45 × K is the logic on
L of the class of frames consisting of the product of a single-
agent doxastic frame and an attack frame. It is axiomatized
by taking KD45 forxB, and K foryA, plus the two following
axioms:

Com yA xB ϕ↔xB yA ϕ
Con xB qA ϕ→ qA xB ϕ

We will come back later to the intuitive meaning of these ax-
ioms in our context. The completeness of this axiom system
is established as a corollary of known general theorems [Gab-
bay and Shehtman, 1998, Theorem 7.12] or [Gabbay et al.,
2003, Theorem 5.9]: we only need to check that the axioms
for K and KD45 are either without atoms (i.e., frame formu-
lae), or else have a specific syntactic form (called pseudo-
transitivity), which is the case.2

A logic has the product finite model property w.r.t. class
F×F′ iff every satisfiable formula on that class can be satisfied
on a model built on the product of finite frames in F and F′.

Logic KD45×K has the (strong) product finite model prop-
erty as every ϕ can be satisfied on a finite model of size ex-
ponential in the length of ϕ [Gabbay et al., 2003, Theorem
6.56]. Logic KD45 ×K is therefore decidable and its satisfia-
bility problem is NEXPTIME-complete [Gabbay et al., 2003,
Theorem 6.57].

3.3 Interaction of attacks and beliefs in KD45 ×K
We now turn to the sort of insights that we gain by modeling
the interaction of doxastic structures (Kripke frames) and ar-

2More precisely, the theorem states that the product LH × LV

of two logics LH and LV whose axioms are either formulae from
the frame language (i.e., without atoms, like ◊⊺) or have the form
▽◻ p → △p where ▽ is a sequence of possibly different diamonds
and △ a sequence of possibly different boxes (so-called pseudo-
transitive formulae), is completely axiomatized by the axioms of
LH , the axioms of LV , plus the Com and Con axioms for each
pairs of modalities in the combined language. Notice that pseudo-
transitive formulae are Sahlqvist formulae.

gument structures (attack graphs) as a product, and what logic
KD45 ×K allows us to say about such interaction.

Example 3 has already shown interaction properties ex-
pressible in KD45 ×K. Here are a few more examples:

(a) qAyA⊺ (b) σ ∧yA⊺ ∧ qAσ
(c) xBσ (d) σ ∧ qA¬xBσ

To understand these properties, let us see what they express
once evaluated at a pointed model M, (s, a). Formula (a)
expresses that all attackers of a have an attacker, i.e., a is
defended by some argument. Formula (c) expresses that all
doxastically accessible alternatives are supported by the cur-
rent argument and (b) states that the current argument a sup-
ports the current alternative s, but a has attackers and indeed
all attackers of a also support s. Intuitively, a is therefore a
’weak’ argument for supporting s. Formula (d) states again
that the current argument supports the current alternative and
that all attackers of the current argument do not support any
alternative. This property expresses therefore a form of safety
of a state-argument pair: the argument supports the alterna-
tive but there is no other alternative which is supported by
an argument attacking the current one. Notice that this prop-
erty weakens a purely argumentative notion of safety as in-
existence of attackers (qA�), by requiring that if there are at-
tackers, then these are not effective in supporting any doxas-
tic alternative. The formula ⊟B(σ → qA¬xB σ) would then
express the agent’s belief of safety of the current argument,
across the set of doxastic alternatives.

Let us move on to the interpretation of formulae Com and
Con, using the support atom σ as a state-argument pair ex-
ample property. Intuitively, yA xB σ↔ xB yA σ states that
the property ‘there is an attacker of the argument I’m cur-
rently entertaining, and a state I consider doxastically possi-
ble, such that the first supports the latter’ can be formulated
independently of the order of the diamonds involved. As to
xBqAσ → qAxBσ, it expresses that, if I hold a state as dox-
astically possible which is supported by all the attackers of
an argument I currently entertain, then all the attackers of the
argument I currently entertain support a doxastic alternative.

We list now validities of KD45×K. It is worth reading them
as interaction properties of arguments and doxastic states.

Proposition 1. The following are validities of KD45 ×K:

⊟B(yAp→yA xB p) yA xB p→ ⊟B yA xBp

yA ⊟B p→ ⊟B ⊟B yAp xB qA p→ ⊟B qA xBp

Recall that p can be any property of a state-argument pair.

4 Believing & endorsing
We now want to express properties about the interaction of a
given set of doxastic alternatives and a given set of entertained
or ‘endorsed’ arguments. This is not possible in KD45×K. To
do this, we have to move from simple attack graphs ⟨A,�⟩ to
attack graphs isolating a designated non-empty set E of ‘en-
dorsed arguments’: E = ⟨A,�,E⟩. We call them enriched
attack graphs and we denote their class by E. We then pro-
ceed as above studying the logic of the products of doxastic
frames with enriched attack graphs.



4.1 Syntax and semantics
The language LE is defined by the following BNF:

p ∣ � ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣xBϕ ∣yEϕ ∣yAϕ ∣xUϕ ∣yUϕ

with p ∈ P. As before, LE,σ extends LE with the desig-
nated atom σ. Modalities xB and yA are as above. As to the
others: yE means ‘for some endorsed argument by keeping
fixed the current state’; xU means ‘for some state by keeping
fixed the current argument’; yU means ‘for some argument
by keeping fixed the current state’. Notice that xU and yU

are nothing but universal modalities for the horizontal and,
respectively, vertical dimensions. We refer to the fragment of
LE containing only xB, xU modalities as its horizontal frag-
ment, and to the fragment of LE containing only yE, yA and
yU modalities as its vertical fragment.

The semantics for LE is defined as follows. Let F be a
doxastic frame on S and A an enriched attack graph on A. A
model is a structureM = ⟨D × E ,V⟩ where V ∶ P Ð→ ℘(S ×
A). The satisfaction relation is defined as follows (clauses
are limited to the newly introduced operators):

M, (s, a) ⊧yEϕ ⇐⇒ ∃a′ ∈ E ∶M, (s, a′) ⊧ ϕ

M, (s, a) ⊧xUϕ ⇐⇒ ∃s′ ∈ S ∶M, (s′, a) ⊧ ϕ

M, (s, a) ⊧yUϕ ⇐⇒ ∃a′ ∈ A ∶M, (s, a′) ⊧ ϕ

We call the logic on LE defined by the class of the above
models DA doxastic argument logic.

Remark 3 (‘Column’ and ‘row’ properties). Modalities xU

and yU make it possilbe to express properties of states or
arguments-only (cf. Remark 1). A state-only or ‘column’
property is expressed by qUϕ (i.e., ϕ holds of the current
pair independently of the argument) and an argument-only
or ‘row’ property is expressed by ⊟Uϕ (i.e., ϕ holds of the
current pair independently of the state). Examples are, in the
right model of Figure 2: qUs of state s, and ⊟UBBC of argu-
ment a. We can then express that the agent believes ϕ, in the
sense that all its doxastc alternatives have column property
ϕ by ⊟B qU ϕ (in the example: ⊟B qU s). Similarly, we can
express that all the arguments endorsed by the agent all have
row property ϕ by qE qU ϕ (in the example: qE ⊟U BBC).

Example 4 (After [Modgil, 2009], continued). We expand
Example 3 by casting it as a DA model and making thus ex-
plicit that the agent endorses argument a, so that E = {a}.
The new model is depicted on the right of Figure 2 where the
ellipsis on the vertical axis encloses the set of endorsed argu-
ments. The following are validities of the above model (thus
independent of the point of evaluation):

(a) ⊟B yE σ (b) qE ⊟B (σ → ¬yA xBσ)
(c) ⊟B qU s (d) qU ⊟U ((σ ∧ s)→ ¬yA xU(σ ∧ s))

Intuitively: (a) expresses that the agent’s beliefs are sup-
ported by arguments it endorses—it formalizes the motto “no
belief without reason” in the title of the paper; (b) that for all
pairs of endorsed arguments and doxastic alternatives, if the
argument supports the alternative, then there is no attacker
of that argument which supports some other alternative; (c)
that all doxastic alternatives satisfy s—i.e., the agent believes

s (cf. Remark 3); (d) that the state-argument pairs satisfy-
ing σ ∧ s do not contain any attack between their arguments
(cf. the formalization of conflict-freeness of sets of arguments
in Section 4.3). Notice that none of these properties was ex-
pressible in the simpler language L(xB,yA) of Section 3.

Remark 4 (On the ‘support’ relation). In our set up, we have
taken a liberal view on the notion of support of a state by an
argument. We have seen support as just one of the possible
relations between argument and states (others can be ‘rejec-
tion’, ‘incompatibility’, ‘weak support’, etc.) and modeled
it through a dedicated atom σ, whose interpretation has not
been constrained. However, meaningful classes of DA mod-
els can be isolated by strengthening our axiom system with
axioms enforcing desirable properties like: xUσ (every ar-
gument supports some state); ⊟B yE σ (the agent considers
possible only states supported by some argument).

4.2 Metalogical results
Horizontal logic: axiomatics
Let us first concern ourselves with axiomatizing the logic de-
termined by the class of doxastic frames on the horizontal
fragment of LE . Consider the logic—call it DAH—defined
by the rules and axioms of KD45 for modality xB, the rules
and axioms of S5 for modality xU plus:

IncBU xBϕ→xUϕ 4BU ⊟Bϕ→ ⊟U ⊟B ϕ
5BU xBϕ→ ⊟U xB ϕ

Lemma 1. DAH is sound and complete for class D.
Proof sketch. Soundness is straightforward. As to complete-
ness, the axiom system can be shown to be complete with re-
spect to the class of framesF = ⟨S,RB,RU⟩ consisting of one
equivalence relation RU (axiomatized by S5) which, within
each of its equivalence classes, contains (containment is en-
forced by IncBU) a transitive and euclidean relation RB (ax-
iomatized by KD45) with the additional property (enforced
by axioms 4BU and 5BU) that within each equivalence class all
states have access to the same set of states: ∀x, y, z (in each
equivalence class): xRBy iff zRBy (in other words, there ex-
ists a set of states B all of which elements are RB-accessible
by all states in the class, cf. Definition 1). The latter property
is a consequence of the fact that RB is a subrelation of RU

(by IncBU) and that axioms 4BU and 5BU—which, notice, are
Sahlqvist—correspond to the following properties: ∀x, y, z
if xRUy and yRBz then xRBz; ∀x, y, z if xRUy and xRBz
then yRBz. Call now this class F and consider the class Fg
of frames in F which are point-generated by the equivalence
relation RU. Any F ∈ Fg is thus such that RU is the universal
relation onF andF contains one unique setB RB-accessible
by all elements of the frame. F is therefore modally equiv-
alent (on the horizontal fragment of LE) to a D ∈ D. Vice
versa, any D ∈D is modally equivalent to a F ∈ Fg (cf. proof
of Theorem 1). So D is modally equivalent to Fg which is, by
general results [Blackburn et al., 2001], modally equivalent to
F. Therefore, the axiom system is complete for D.

Vertical logic: axiomatics
As to the logic determined by the class of enriched attack
graphs on the vertical fragment of LE we can proceed in a



similar fashion. Notice that an enriched attack graph E =

⟨A,�,E⟩ can be viewed as a doxastic frame to which a bi-
nary relation � is added. So, consider the logic—call it
DAV —defined by: the rules and axioms of KD45 for modal-
ity yE, the rules and axioms of K for modality yA and the
rules and axioms of S5 for modality xU, plus:

IncAU yAϕ→yUϕ IncEU yEϕ→yUϕ
4EU qEϕ→ qU qE ϕ 5EU yEϕ→ qU yE ϕ

Lemma 2. DAV is sound and complete for class E.

Proof sketch. The proof proceeds as for Lemma 1.

An axiom system for DA
Everything is now in place to prove the following result:
Theorem 2 (Completeness of DA). The logic defined by the
axioms and rules of DAH and of DAV plus the following in-
stances of Com and Con:

xy ϕ↔yx ϕ xq ϕ→ qx ϕ

where x ∈ {xB,xU}, and y ∈ {yE,yA,yU}, is sound and
complete for the class D×E consisting of products of doxastic
frames and enriched attack graphs.

Proof sketch. The result follows from Lemmata 1 and 2 by
[Gabbay and Shehtman, 1998, Theorem 7.12] (cf. our com-
ment regarding completeness of KD45 ×K).

(Product) Finite model property & decidability
Theorem 3. Logic DA does not have the product finite model
property.

Proof sketch. We exhibit a satisfiable formula from LE

which cannot be satisfied on a finite product model. Consider
the following formula ψ from LE :

qU xB p ∧ qU ⊟B (p→yA¬p) ∧ qU ⊟B (¬p→ qA¬p)

Let E = ⟨A,E,�⟩ be such that ⟨A,�⟩ consists of an infinite
�-ascending chain of elements ⟨xn ∣ 0 ≤ n < ω⟩ such that
ai /� aj for i < j. For any choice of E, this is clearly a frame
in E. Let thenD consist of a point s0 accessing all other states
(except itself) in the frame. Take an enumeration s0, s1, . . .
of these states. This is clearly a frame in D. Set V(p) =
{(sn+1, an) ∣ 0 ≤ n < ω}. We have ⟨D × E ,V⟩, (s0, a0) ⊧ ψ.
Clearly, no model on a finite frame in D×E satisfies ψ.3

Theorem 4. Logic DA is decidable.

Proof sketch. We provide a reduction of DAH to S5 and of
DAV to KU, proving that the satisfiability of DA is reducible
to the satisfiability of S5 × KU, which is decidable [Gabbay
et al., 2003, Theorem 6.58]. [DAH to S5]. Take a fresh
atom p and define a translation (Boolean clauses omitted):
t(xUϕ) = ◇t(ϕ); t(xBϕ) = ◇(p ∧ t(ϕ)). We prove:
ϕ is satisfiable in D iff t(ϕ) is satisfiable in the class of
universal frames. [LEFT TO RIGHT] Assume M, x ⊧ ϕ.
Build M′ = ⟨S′,V ′⟩ with an extra atom p where: S′ = S
and V ′ = V ∪ {⟨p,S⟩}. A simple induction shows that:

3The proof goes through also for the weaker logic KD45 ×KU.

M, x ⊧ ϕ iff M′, x ⊧ t(ϕ). [RIGHT TO LEFT] Assume
M, x ⊧ t(ϕ). Build M′ = ⟨S′,B,V ′⟩ where: S′ = S,
B = V(p) and V ′ = V − {⟨p,S⟩}. A simple induction shows
that:M, x ⊧ t(ϕ) iffM′ ⊧ ϕ. [DAV to KU] Similar.

4.3 Argument-based beliefs in DA

This section concludes by showcasing DA as a rich frame-
work for the study of argument-based beliefs.

From beliefs to argument-based beliefs In standard dox-
astic logic beliefs are properties that are true of all (doxasti-
cally) accessible states. In DA, beliefs are properties that are
true of all (doxastically) accessible state-argument pairs, in-
dependently of the argument. So, “I believe that ϕ” is formal-
ized by ⊟B qU ϕ (cf. Remark 3). But now, the argumentative
structure available in DA, allows us to differentiate between
beliefs based on how they relate to underlying arguments, for
instance by being supported by some such arguments. Con-
sider the following formulae (with an attached intuitive read-
ing on the left), ordered from logically weaker to logically
stronger (take “Bϕ” to stand for “I believe that ϕ”):

Bϕ with (supporting) arguments ⊟B(qUϕ ∧yUσ)
Bϕ with arguments I endorse ⊟B(qUϕ ∧yEσ)
Bϕ with arguments which are
endorsed and have property ψ ⊟B(qUϕ ∧yE(σ ∧ ⊟Uψ))

So, the first formula expresses that the agent believes ϕ and
there are arguments for this belief in the sense that each of
the doxastic alternatives determining the belief in ϕ is sup-
ported by some argument. The second one refines the first by
stressing that arguments for the doxastic alternatives can be
found among the arguments the agent endorses. Finally, the
third one expresses not only that the beliefs are supported by
some endorsed argument, but also that those endorsed argu-
ments all have a given property ψ (notice again the use of ⊟U

to express that such ψ is a ‘row’ property, independent of the
doxastic state). In particular, such ψ can be chosen to express
properties such as: “the argument belongs to a given conflict-
free set”, “the argument belongs to a given stable extension”
and the like, to which we now turn.

Dung’s argumentation theory in DA We show now how
DA can capture some fundamental argumentation-theoretic
properties (Table 1). These properties are properties of sets
of arguments, that is, properties of row properties (cf. Remark
3). For instance, we want to formalize the property that says
that a given row property ⊟Uϕ identifies a set of admissible
arguments. The strategy for obtaining these formalizations is
inspired by [Grossi, 2010]. Let ∎ ∶= ⊟UqU:

(i) ϕ is a conflict free set ∎(⊟Uϕ→ ¬yA ⊟Uϕ)
(ii) ϕ is a self-defended set ∎(⊟Uϕ→ qA yA ⊟Uϕ)
(iii) ϕ is a fixpoint of qAyA ∎(⊟Uϕ↔ qA yA ⊟Uϕ)
(iv) ϕ is an admissible set (i) ∧ (ii)
(v) ϕ is a complete extension (i) ∧ (iii)
(vi) ϕ is a stable extension ∎(⊟Uϕ↔ ¬yA ⊟Uϕ)

We comment on (i) and (ii). Formula (i) says that if an argu-
ment satisfies row property ⊟Uϕ, then no attacker of that ar-
gument exists which also satisfies the same property. Formula
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Figure 3: Two frames F and F ′ for the proof of Theorem 5.

(ii) states that all arguments satisfying row property ⊟Uϕ are
such that all their attackers are defended by some argument
satisfying the same property.
Example 5 (After [Modgil, 2009], continued). Let us go back
to the model on the right of Figure 2. It is a validity of the
model that: the agent believes that s is the case; that it has
arguments for that belief, which it endorses; and that those
arguments also have the property of belonging to the conflict-
free set of arguments specified by property BBC:

⊟B(qUs∧yE(σ∧⊟U(BBC∧(∎(⊟UBBC→ ¬yA⊟UBBC)))))

It is also a validity of the model that set of arguments sup-
porting the agent’s doxastic alternatives is an admissible set:

∎(xBσ → ¬yA xBσ) ∧ ∎(xBσ → qA yA xBσ)

Notice that xBσ is a row property (xBσ↔ ⊟U xB σ).

Argumentative properties of endorsed arguments We
conclude with a few technical considerations about the ex-
pressivity of DA. The previous subsection has shown how
basic notions from argumentation theory can be character-
ized at the level of models in DA. We now look at the fea-
sibility of characterizations at frame level: are there formulae
which characterize whether the set of endorsed arguments E
is conflict-free and self-defended? This is a novel applica-
tion of frame correspondence theory [van Benthem, 1983] to
abstract argumentation. We start by the following:
Proposition 2. Let F = D×E . If F ⊧ qE(⊟Up→ ¬yA ⊟Up)
then E in E is conflict free.

We next show that Proposition 2 cannot be strengthened to
a characterization of conflict-freeness:
Theorem 5. There exists no formula ϕ of DA s.t.: F ⊧ ϕ iff
E is conflict-free, for F ∈D ×E.

Proof sketch. Consider the frames F and F ′ of Figure 3. We
claim that ∀ψ ∈ LE F ′ ⊧ ψ ⇒ F ⊧ ψ, while at the same
time, E′ in F ′ is conflict free.

However, a characterization does exists for self-defense:
Proposition 3 (Characterization of self-defense of E). Let
F = D × E . If F ⊧ (qE p ∧yE yA q)→yU(q ∧yAp) if and
only if E in E is self-defended.

5 Conclusions
We proposed an approach based on product logics to study the
interaction between the information state of an agent and the
arguments the agent endorses. The approach has been illus-
trated by two product logics, which have been studied from
a logical point of view, and have been used to model simple
scenarios and formalize a number of interaction properties
between beliefs and arguments.

The paper has started from the simplest possible doxas-
tic logic, KD45. We see several natural directions to extend
the work: by covering the multi-agent case; by incorporat-
ing richer order-theoretic models for doxastic logic [Baltag
and Smets, 2008]; by studying the dyanmics supported by
both the horizontal and vertical dimensions with tools from
dynamic epistemic logic [van Ditmarsch et al., 2007].
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