
COMP220: SOFTWARE

DEVELOPMENT TOOLS

COMP285: COMPUTER AIDED

SOFTWARE DEVELOPMENT

© University of Liverpool COMP 285/220 slide 1

Sebastian Coope

coopes@liverpool.ac.uk

www.csc.liv.ac.uk/~coopes/comp220/

www.csc.liv.ac.uk/~coopes/comp285/

mailto:coopes@liverpool.ac.uk
http://cgi.csc.liv.ac.uk/~coopes/comp220/
http://cgi.csc.liv.ac.uk/~coopes/comp220/

Delivery

• Lectures

- 3 Hours/week

• Tutorials

- 1 Hour week

© University of Liverpool COMP220/285 slide 2

Assessments

• COMP220

- 80% written examination

- 20% continuous assessment:

- Class Test (1 hour during a lecture)

- Lab Test (2 hours: one lab session + 1
additional hour),

• COMP285

- 50% Lab Test (same as for
COMP220)

- 50% Practical Assignment (only for
COMP285)

© University of Liverpool COMP220/285 slide 3

Module aims

• To explore software development tools and new
methodologies of Software Development

• To examine the techniques for implementing
some Extreme Programming practices such as

• Automated Testing,

• Continuous Integration and

• Test Driven Programming

• To provide an insight into Eclipse (Integrated
Development Environment)

© University of Liverpool COMP220/285 slide 4

Contents

• Methodology of Extreme Programming

- (brief, methodological part)

• Software testing theory and practice

• Introduction to software tools

• Source code control

• Java Development with Eclipse

• Ant (the main tool considered in this course)

• Junit (this is the main, technical part of the
course)

© University of Liverpool COMP220/285 slide 5

Recommended texts

• Java Development with Ant – E. Hatcher &
S.Loughran. Manning Publications, 2003 (ISBN:1-
930110-58-8) – THE MAIN BOOK

• Ant in Action, Second Edition of Java Development
with Ant Steve Loughran and Erik Hatcher
July, 2007 (ISBN: 1-932394-80-X)

• Eclipse in Action, A Guide for Java Developers, –
D.Gallardo, E.Burnette, & R.McGovern. Manning
Publications, 2003 (ISBN:1-930110-96-0)

• JUnit in Action, Second edition(!! For New version of
JUnit (4); Old version of JUnit 3 will not be
considered.), P. Tahchiev, F. Leme, V. Massol, G.
Gregory, Manning Publications, 2011. (ISBN:
9781935182023)

© University of Liverpool COMP220/285 slide 6

Extra reading

• Java Tools for Extreme Programming –
R.Hightower & N.Lesiecki. Wiley, 2002
(ISBN:0-471-20708-X)

• Professional Java Tools for Extreme
Programming – R.Hightower et al.
Wiley, 2004 (ISBN:0-7645-5617-7)

• Test Driven Development – K.Beck.
Addison-Wesley, 2003 (ISBN:0-321-
14653-0)

© University of Liverpool COMP220/285 slide 7

Lab sessions

• Labs will be devoted to simple exercises helping to
really understand how the software development
tools (discussed on lectures) work in practice

• Inseparable from the lectures

• The best and easiest way to prepare to the Exam and
Class Test (for COMP220) during the semester

• Without doing labs well you will be unable to do and
pass Lab Test (for both COMP220 and COMP285).

• COMP285 will have additional Practical Assignment
and no exam. Thus, labs are invaluable for you

© University of Liverpool COMP220/285 slide 8

Websites

• www.csc.liv.ac.uk/~coopes/comp220/

• www.csc.liv.ac.uk/~coopes/comp285/

• Contain:

• General course information and useful links

• Course slides

• Lab sessions description

• Practical assignment for COMP285

© University of Liverpool COMP220/285 slide 9

Schedule

• Week 1

- Introduction to Software Tools and
Agile and test driven development

• Week 2

- Introduction to Eclipse and

• Week 3

- Testing theory and practise

• Week 4

- Eclipse and JUnit

© University of Liverpool COMP220/285 slide 10

Schedule

• Week 5, 6, 7 and 8

- Ant and Junit

• Week 9

- Issues tracking

• Week 10

- Revision

© University of Liverpool COMP220/285 slide 11

Lecture 1

• Introduction to CASE tools

• Why bother?

• What types?

• How they work in practise?

© University of Liverpool COMP220/285 slide 12

Computer Aided Software Engineering

• Well what would be Software
Engineering without computers?

© University of Liverpool COMP220/285 slide 13

Early days

• Software Engineering Stone Age style

- All programs verified by hand

© University of Liverpool COMP220/285 slide 14

CASE definition

• “The use of tools (usually built from
software) which make it easier to build
high quality software” S Coope

• CASE tools can be

- General purpose, example
build/test tools (language neutral)

- Specialist e.g. Load testing/DoS
tool like Low Orbit Ion Cannon

- Built yourself (test harness)

© University of Liverpool COMP220/285 slide 15

Are these tools

• High Level Language
Compilers/Interpreters

• Object Relational Management software

- Example Hibernate

• Profilers

• Debuggers

• Code analysers

© University of Liverpool COMP220/285 slide 16

Why tools?

• Would you hire a building company who
used?

- No power tools (productivity cost)

- No measuring instruments (accuracy)

- No spirit levels or electrical testing tools
(quality)

- Proper scaffolding/access control (safety)

• With software, these issues also matter

- Productivity, accuracy, quality, safety

© University of Liverpool COMP220/285 slide 17

Why use CASE?

• Used properly

- You will become a better software
engineer

- You will work better with others

- Your code will be tested more

- You will do things, you wouldn’t normally
bother to do (e.g. re-factoring code)

- Your life as a software engineering will be
slightly less stressful

© University of Liverpool COMP220/285 slide 18

Think of CASE as a series of

developments

• Machine language (no real CASE)

© University of Liverpool COMP220/285 slide 19

Seb 1983 Apple II

Assembly language

• Simple case tool called an assembler translates to
machine code, 1 to 1 relation to machine code

• No type check, complex data types, all abstraction in
programmers head

© University of Liverpool COMP220/285 slide 20

High Level Language Compilers

• Translate from abstract (non machine
language) to machine language of
intermediary code

• Abstractions are constructed as part of
the language, e.g. int, long, String,
Person, BankManager

• Code is capable of

- Being structured

- Being tested as part of compilation

© University of Liverpool COMP220/285 slide 21

Interpreters

• Programs which run programs, like JVM
for Java (Forth, Basic)

• Interpreters can be

- Source code based (execute the code
directly) e.g. Java script interpreters

- Fast turnaround time, no-precompile
check, only checks running code

- Intermediary code based

- e.g. Java byte code, slower turnaround,
supports pre-compile check

© University of Liverpool COMP220/285 slide 22

Interpreter factors

• Program can be debugged by facilities
in JVM

• JVM can run time check code for

- Errors (array out of bounds)

- Type conversion issues

• Garbage collection (contentious, see
iOS debate)

• JVM can be ported to different
hardware, making object code portable

© University of Liverpool COMP220/285 slide 23

Intermediary code systems

© University of Liverpool COMP220/285 slide 24

• Allows for multiple languages to easily
integrate, parts of code can be written in
language of choice

• Good or bad thing?

CASE in

perspective

© University of Liverpool COMP220/285 slide 25

Processes with/without case

• No CASE

- Tester sends bug report to
programmer via email, programmer
looks at code, fixes code, sends new
source back to tester

• Problems

- No proper record of bug and fix

- Visibility of process limited (team
leader manager)

- Easy for bugs to get lost

- Hard to but priority on bug

 © University of Liverpool COMP220/285 slide 26

Bug fix with CASE
• Tested finds bug and records on bug management

tool (example Bugzilla) and assigns bug to
programmer

• Bug management tool sends email to programmer

• Programmer logs into bug management tool and
accepts/rejects bug and adds comment

• Programmer updates latest source code from source
code control system

• Programmer fixes/tests bug using debugger

• Programmer re-commits code back to source code
control with comment, which links back to bug id

• Programmer adds comment from source code control
log and comment about how to test bug to bug control
system

• Team leader downloads all source code and makes
new build

© University of Liverpool COMP220/285 slide 27

Bug fixing with CASE support

• Looks a lot more work, but most of the
CASE processes take v.little time

• Allows bugs to be properly assigned to
staff

• Gives a clear view of the process to the
management of the project

• One can look back and find out which
bugs were fixed on which versions of
files

• Makes sure that bug reports are filled in
correctly

 © University of Liverpool COMP220/285 slide 28

Summary

• Using CASE can make you

- Quicker

- Better team working

- More controlled

• Many tools to choose from

• Using IDE will encourage best practise

• We will be looking in more detail at
some of these tools in the next lecture

© University of Liverpool COMP220/285 slide 29

