
1

Software Development Tools
Lecture 2

COMP220/COMP285

Sebastian Coope

Programming Methodologies

These slides are mainly based on “Java Tools for Extreme Programming” – R.Hightower & N.Lesiecki. Wiley, 2002

2

Topics

Two kinds of programming methodologies

• traditional

• agile

 We will concentrate on

eXtreme Programming (XP) methodology

• example of an agile methodology of
most interest to us

3

Software Development Methodologies

Software Development Methodology
is

 a collection of procedures, techniques,
principles and tools that help developers
to build computer system

4

Software development methodologies

 There are two main approaches to
development methodologies:

• Traditional monumental or waterfall
methodologies

• Agile or lightweight methodologies

5

Traditional methodologies
• Rigid:

 first a complete functional specification,

 then software development process with
several distinct waterfall-like phases

• Problems:

 difficult to adapt to changing customer
requirements

 design errors are

- hard to detect and

- expensive to correct

Waterfall issues

What is customer doesn’t like the end
product

What if requirements start to change?

What if project runs out of time/money?

How is risk managed?

How is QA managed (at the end !!)

6

7

Agile methodologies

Agility in a software development means

• adaptability

• ability to respond quickly to change in
environment

• eliminate surprises from changed requirements

• Risk reduction

• Less chance of validation errors

8

Agile methodologies

• emphasizes an iterative process:

- build some well-defined set of features

- repeat with another set of features, etc.

• value customer involvement (quick feedback)

• code-centric, i.e.

- recognize the value in documentation and
modelling

- but realize that it is not as important as the
software itself

Self documenting code
Using long meaningful names

 accountBalance

 accountBalanceInPence

Comments

 What to change to change code behaviour

 static final int RETRY_LIMIT=3; // Change this value if
you want to change the maximum number of times an
incorrect PIN can be entered

 TODO

 Any areas that can be improved or require completion

 TODO … check for stolen cards and credit risk
9

10

Testing in agile methodologies

• Software development is

- a mix of art and engineering.

• The only way to validate software is through testing

• All agile methodologies emphasize testing

• Testing can be

• Functional (specific yes or no tests based
on functional specification)

• Non-functional (stress testing, usability,
security testing etc.)

SCRUM

Agile approach

Each iteration of software development
called a sprint

Each sprint delivers working code or
partial product

Each phase requires a set of tests

Testing is integrated

11

SCRUM

Plan1 Develop1 Test1

Plan2 Develop2 Test 1&2

Plan3 Develop3 Test 1&2&3

ITERATION 1

ITERATION 2

ITERATION 3

SCRUM phases

Specification at start

Then each development phase can be

 Specification , Design, Coding

Each iteration tests

 New functions

 All old functions (regressive)

Testing is extensive, must not be
burdensome

 13

14

Testing-driven development

• Put testing first in the development process

• Before implementing a piece of code such as a Java

method, start writing down a test which this

method should pass.

• Test is like a goal which you want to achieve

• First state a goal, then do steps to that goal

• Goals may be quite small, intermediate, or final

• Test-driven style of programming!

Why write test first
Test is based on the specification and not the
code, not assumptions based on source code

If testing is done second, testing might be
skipped

Makes the developer analyse the requirements

 Requirements might be wrong or ambiguous

Produces more testable code

Keeps the code simpler/shorter (only target is
to pass the test)

 Stops the code being over-engineered

 But note simple goal .. conflicts with non-functional
code requirements, code quality 15

16

eXtreme Programming

Most general features of XP:

• one of the most unique and
controversial approaches

• agile or lightweight methodology

• human-centric development
philosophy

17

Overview of the XP methodology

• focuses on coding as the main task

• regards continuous (*) and automated
testing as central to the activity of software
development

• refactoring (*) is a core XP practice

• continuous integration (*)

• one of XP’s radical ideas is that

design should evolve and grow

through the project

Continuous

integration

means building

copy of the

system so far

several times

per day

Refactoring:

changing

existing code

for simplicity,

clarity and/or

feature addition

Continuous

testing

validates that

the software

works and

meets the

customer's

requirements

18

Some Essential of 12 Practices of XP

1. Testing

 key practice to XP

 how will you know if a feature works if you
do not test?

 how will you know if a feature still works
after you re-factor, unless you re-test?

 should be automated

- so you can have the confidence and
courage to change the code and
re-factor it without breaking the system!

19

Some Essential of 12 Practices of XP

1. Testing (cont.)

- the opposite of waterfall development

- keeps code fluid

- JUnit and its “friends” (versions or
analogues of JUnit) will help to

automate testing

- everything that can potentially break
must have a test

20

Some Essential of 12 Practices of XP

2. Continuous integration

- a crucial concept

- means building and testing a complete
copy of the system several times per
day, including all the latest changes

- why wait until the end of a project to
see if all the pieces of the system will
work together?

- the longer integration bugs survive,
the harder they are to exterminate

21

Some Essential of 12 Practices of XP

2. Continuous integration (cont.)

- benefits from using good software tools

- Ant (integrated with JUnit) can help to
automate

the build,

distribution, and

deploy processes

- see the paper by Fowler (and Foemmel)
in
www.martinfowler.com/articles/continuous
Integration.html

22

Some Essential of 12 Practices of XP

3. Refactoring
 a technique for

- restructuring the internal structure of code

- without changing its external behaviour

- or with adding new features

 enables developers to

- add features while keeping the code simple

 each refactoring transformation

- does little,

- so, it is less likely to go wrong,

- but a sequence of transformations can produce a
significant restructuring

 the design is improved through the refactoring

23

Some Essential of 12 Practices of XP

3. Refactoring (cont.)

- relies on testing which validates that
the code is still functioning

- testing makes refactoring possible

- automated unit-level tests will give you

- the courage to re-factor and

- keep the code simple and expressive

4. Planning game (to discuss scope of the current
iteration, priority of features , etc.)

5. 40-hour work week

6. Small releases (feedback, testing, cont. integration)

7. Simple design (keeping also the code simple)

8. Pair programming (improves communication and
mutual understanding among team members, learning)

9. Collective ownership (no crucial dependence on one
developer)

10. On-Site customer (quick feedback, etc.)

11. Metaphor (common language for developers and
customer)

12. Coding standards (understand one another’s code)

(See more detail in the XP Book)
24

Further Practices of XP

XP and SCRUM

Can and do work well together

XP

 More about programming/testing practise
and small scale organisation.. TDD, re-
factoring, continuous integration

SCRUM

 Project organisation and development life-
cycle

25

Some other principles

KISS (General engineering)

 Keep it Simple Stupid

YAGNI (XP)

 You ain’t going to need it

 So don’t

Add functions not in spec

Add too much future proofing

26

Problems with XP/Agile

YAGNI/KISS

 Might discourages code flexibility

 Image today we have English as locale next
year we want Mandarin, Spanish and Mexican

 Answer .. Put flexibility into requirements!

 Might discourage re-use

Hard to develop a complete schedule

 Too elastic?

 Timebox?

 27

28

Summary (XP)

XP is lightweight methodology that focused
on coding as a main task.

XP encourages full integration daily (Ant)

XP is a test-driven methodology (JUnit, etc.)

29

XP - Conclusion

• You can adopt in your practice the whole or
only a part of XP methodology (considered
here only fragmentary)… think of Group
Software Project

• Anyway, you will probably benefit from the
related software development tools and
techniques we will consider in the rest of
this course

• Time-to time we will need to return to some
of these methodological questions

30

Our aims in this course

• To explore XP methodology

- by providing an insight into the tools for
building, testing, and deploying code

- by demonstrating how to use all these
tools together

