
Software Development
Lecture 7

COMP220/COMP285

Sebastian Coope

Eclipse and Java

These slides are mainly based on “Java Development with Eclipse” – D.Gallardo et al., Manning Publications., 2003

2

Eclipse

Eclipse is a quite complicated

 Software Development Kit (SDK),

We will cover only
1. The general description of Eclipse

 including the Java quick tour in Eclipse

2. Using JUnit from inside of Eclipse

3. Using Ant from inside of Eclipse (at the very
end of our lectures after learning Ant)

3

General description of Eclipse

Eclipse is a Software Development Kit
(SDK)

It, may be compared to a blacksmith's
shop, where you can

 not only make products,

 but also make the tools for making the
products.

4

General description of Eclipse

At the most fundamental level, Eclipse

is actually the Eclipse platform which

 integrates software development tools

as Eclipse plug-ins.

Except of a small runtime kernel,

 everything is a plug-in or a set of related

plug-ins.

5

Most important plug-in is JDT
(Java Development Toolkit)

 for writing and debugging Java programs.

In this form Eclipse is just Java IDE
(Integrated Development Environment).

 This is what most people use Eclipse for.

 We too, because we will not create in these
lectures our own plug-ins.

 However, we will use already existing plug-ins
for JDT, Junit and Ant.

General description of Eclipse

6

Anyway, you should know that Eclipse
contains PDE:

 Plug-in Development Environment

 it makes Eclipse easily extensible by other
plug-ins.

General description of Eclipse

7

Although Eclipse is written in Java and
mostly for creating Java projects, it is
language neutral :

 additional plug-ins are available for other
languages, such as C/C++, Cobol, and C#

But it is not strongly platform neutral :

 it uses the operating system's native
graphics.

General description of Eclipse

8

The Eclipse platform consists of

 a small platform runtime kernel,

 workbench (GUI: menus, toolbars,
perspectives, views and editors),

 workspace (to contain and manage projects),

 team support components,

 help

General description of Eclipse

9

The Eclipse Architecture

Platform runtime kernel

Workbench Help

Team support Workspace
(projects, files)

JDT PDE Your tool here

Except for small runtime kernel,
everything in Eclipse is a plug-in

or a set of related plug-ins

General description of Eclipse

10

Team support (plug-in):
 Facilitates the use of a version control

or configuration management system.

 The Eclipse platform includes a client for
Concurrent Versions System (CVS):
 a source control tool

 invaluable if two or more people work together
on a single set of files – to coordinate changes.

General description of Eclipse

11

Eclipse Workbench

Workbench

 main window which shows a perspective

Perspective:

 set of panes

Pane contains

 view(s) which can be tabbed

One pane serves as an editor

12

Eclipse Workbench - Resource perspective

Pane – typiclly used
for an editor

Pane – contains tabbed view “Tasks”;
There can be many tabbed views in a pane

Pane –
tabbed view
“Project Explorer”

Pane –
tabbed view
“Outline”

13

Eclipse Workbench

Resource Perspective is sometimes
considered as home perspective:
 a general purpose perspective for

 creating, viewing, and managing all types of
resources

 contains, in particular, Project Explorer
(Navigator) view showing
 a hierarchical representation of the

workspace and all the projects in it

14

Eclipse Workbench

Other perspectives are available
 either by clicking on perspective switcher

icon (choose Other…) or

 on a perspective icons on shortcut toolbar in the
right up corner

 or via

 Window > Open Perspective > Other…

 perspective switcher can be put, e.g., along the
left side (as in the Eclipse book) by right clicking
on .

15

Eclipse Workbench

Changing how a perspective looks like:

 Temporary supersizing a view by double-clicking on the
title bar of the view

 moving views around by dragging their title bars

 adding a new view: Window > Show View

 closing a view

 restoring the perspective to its default appearance:

 Window > Reset Perspective

 saving your customized perspective:
 Window > Save Perspective As

16

Toolbar buttons (see the Help in Eclipse)
The following buttons may appear in the Workbench toolbar, toolbars for views, and the shortcut bar:

17

Eclipse Workbench

There are several standard types of
projects in Eclipse:

 Java – the choice for developing a Java
program

 Plug-in Development
 for creating your own plug-ins for Eclipse

(will not be considered)

 etc.

The Java quick tour in Eclipse
 Creating a Java project

Right-click in the Project Explorer view in Resource perspective
(or in the Package Explorer view in Java perspective) and select

New > Project > Java Project > Next

 to start New Java Project Wizard.

Enter the Project name, say Hello.

Choose “Create separate folders for sources and class files”.

 Otherwise your sources and (compiled) class files will be in
the same root directory Hello.

(Note that clicking Next would take you to a dialog box that lets you
change a number of Java build settings. For this example we
don’t need to change anything.)

Click Finish.

Confirm switching to Java Perspective.
18

19

The Java quick tour in Eclipse
 Creating a Java project

Hello

20

The Java quick tour in Eclipse
 Creating a Java project

Create another similar project

Proj-Joint-Source-Classes

now with choosing

“Use project folder as root for sources
and class files”

We will see the difference and use this
version in a later exercise.

See the result of your actions in the next slide

21

Java perspective

22

New Java Perspective appears

 containing Package Explorer view (instead of
the similar Project Explorer view) with two
new rojects
 Hello and

 Proj-Joint-Source-Classes;

 Package Explorer

 understands Java packages and

 displays them as a single entry rather than as a
nested set of directories (as we will see soon).

The Java quick tour in Eclipse:
 Creating a Java project

23

It is a good practice to organize Java classes into packages. (We will see
this later also in Ant.)

E.g., the package for Java classes in our project Hello may be named

org.eclipseguide.hello

In your Labs (for the future Lab Test) you should choose, instead,
your own package consisting of combinations of your

surname.first_name.ID123456.hello

(use your personal ID)

 possibly in a different order; not all your packages should coincide.

THIS IS COMPULSORY REQUIREMENT

FOR YOUR FUTURE WORK

WHICH WILL BE NEEDED FOR YOUR CLAS TEST

 Note that pure sequence of digits (123456) is not allowed as a

package component (between dots).

The Java quick tour in Eclipse:
 Creating a Java class

24

In Java perspective , follow these steps to create
new Java program (class):
 Right-click on the project name Hello and select

New > Class

 Enter the package name like
org.eclipseguide.hello (actually, use your

personal package as described above!!)

 Enter the class name HelloWorld

 Check stub method :

public static void main(String[] args)

 Check “Generate comments”
 (see next slide)

The Java quick tour in Eclipse:
 Creating a Java class

25

 Pay attention to
the automatically
chosen source
folder

 Hello/src

 Click Finish, and
look at the
automatically
generated result in
the next slide.

26

27

Examine:

 Contents of the workspace directory

- in your lab machines it should be

H:\eclipse

 Package Explorer view in Java
Perspective,

 Project Explorer view in Resource
Perspective.

The Java quick tour in Eclipse:
 Creating a Java class

28

Pay attention how the package and files
HelloWorld.java and HelloWorld.class are

posed in directories/views.

Note that neither Resource Perspective nor Java
Perspective show default bin directory for compiled

classes.

In the editor area we see the stub Java code
HelloWorld.java (with an empty main() method)

generated by the wizard.

The Java quick tour in Eclipse:
 Creating a Java class

29

Code-completion/code-generation features:

 Add a line to main() method
System.out.println("Hello, World!");

 Eclipse helpfully inserts closing parentheses and double
quotation marks;

 Code-completion feature, code assist, presents a list of
proposals – the methods and attributes for the class;

 Code assist may also be invoked by Ctrl-Space;

 For example, type sysout followed by Ctrl-Space to
get System.out.println();

 These features are easy to customize via Eclipse’s
settings and preferences as we will see later.

The Java quick tour in Eclipse:
 Creating a Java class

30

 Repeat the same in the project

Proj-Joint-Source-Classes

 This project directory (unlike Hello project) serves

as joint directory for source code and for compiled
classes.

 USE the same package name as above and similar class
name Hello to HelloWorld.

 We will use this project and new Hello class later.

The Java quick tour in Eclipse:
 Creating a Java class

31

Select HelloWorld source in the editor – click.

To run this program,

 select Run > Run As > Java Application.

Eclipse can prompt you to save changes before it
runs the program.

 Click OK.

Console view appears and displays the program
output:

Hello, World!

The Java quick tour in Eclipse:
Running a Java program

32

To re-run the chosen file, click Run button

or select

Run >

or hit

Ctrl+F11,

No separate step is required to compile!

Compiling goes while editing!

The Java quick tour in Eclipse:
Running the Java program

33

Eclipse JDT includes a special incremental compiler
and evaluates your code as you type it,

 by creating .class file automatically.

It can highlight things such as syntax errors and
unresolved references as you type.

TRY it:

 by deliberately creating some syntactical errors,

 and experimenting with red signs in the left and right
border of the editor.

The Java quick tour in Eclipse:
Syntax Errors

34

Eclipse interprets the code in a more comprehensive way
than a simple editor can.

Eclipse’s ability to run the code interactively is one of
major benefits.

By using the JDT debugger, you can

 execute your Java program line by line and

 examine the value of variables at different points in the program.

This process can be invaluable in locating problems in
your code.

We will not go into further details. Just look at Debug
perspective in the next slide

(Window > Open Perspective > Other… > Debug).

The Java quick tour in Eclipse:
Debugging the Java program

35
Debug perspective

36

Eclipse’s default settings can be changed or
restored by selecting

Window > Preferences…

These are, for example,

 Code Style: Java>Code Style

 formatter,

 code templates for generating code or comments,

 Adding classpath entries and User Libraries via

Java>Build Path

We will consider only some of these settings.

The Java quick tour in Eclipse:
Preferences and other settings

37

Exporting and importing preferences can be done via
File > Import > General > Preferences
File > Export > General > Preferences

Javadoc comments may be changed as follows:
 Select

Window > Preferences > Java > Code Style > Code Templates

 Select Code > New Java Files, and click Edit

 Change the text to the following (by using Insert Variable buttons):

 /* ${file_name}

 * Created on ${date}

 */

 ${filecomment}

 ${package_declaration}

 ${typecomment}

 ${type_declaration}

 Click OK in the Edit Template dialog box

(continued on the next slide)

The Java quick tour in Eclipse:
Preferences and other settings

 Added

 Original

38

Javadoc comments changes (continued):

 Select Comments > Types (in the same box), and click Edit

 Change the text to the following:

/**

 * Add one sentence class summary here.

 * Add class description here.

 *

 * @author ${user}

 * @version 1.0, ${date}

 *

 * ${tags}

 */

 Click OK in the Edit Template dialog box

 Note, that you can always use Restore Defaults button.

 Click OK again.

To see all your changes, create a new class Test in org.eclipseguide.hello

package with checking Generate Comments.

TRY it. (See the next slide for illustration of the above steps.)

The Java quick tour in Eclipse:
Preferences and other settings

39

Changing
Javadoc comments
and code style

40

Format style
 Select Window > Preferences >

Java > Code Style > Formatter

 Click Edit button,

 then choose, for example, Braces tab

 Choose one of the options:

Same line, Next line, Next line indented,
Next line on wrap

 and see how format style changes.

(see the next slide)

The Java quick tour in Eclipse:
Preferences and other settings

41

Changing Format style (brace positions)

You will be prompted to change profile to, e.g., MyProfile

Try

42

Code generation templates
(to be invoked by Ctrl-Space).

 Templates for flow control constructs
(like do while statement)

are found in

Window > Preferences >

Java > Editor > Templates

(see the next slide)

The Java quick tour in Eclipse:
Preferences and other settings

43

The Java quick tour in Eclipse: Preferences and other settings

44

Create template to produce

simple for loop:
 Select (as above)
Window > Preferences > Java > Editor > Templates

 Click the New button.

 Choose Context Java statements.

 Enter
 for as the name of new template,

 Simple for loop as the description, and

 the pattern on the next slide
(by using Insert Variable):

The Java quick tour in Eclipse:
Preferences and other settings

45

Finally,

Click OK in this New Template dialog box,

Click OK in the Preference dialog to return to the
Workbench.

TRY new version of for of Simple for loop

just created with using Ctrl-Space.

The Java quick tour in Eclipse: Preferences and other settings

46

Setting Classpaths and classpath variables:

 Select Window > Preferences >

Java > Build Path > Classpath Variables

 Click the New button.

 Enter the classpath variable name, (just for example),
MYSQL_JDBC.

 Either browse or enter manually, (just for example,
even if it does not exist in your computer) the path
C:\mysql\jdbc\lib\mm.mysql-2.0.14-bin.jar

 Click OK twice to save and return to Workbench.

The Java quick tour in Eclipse:
Preferences and other settings

47

Adding JAR classpath or classpath variable (such as
MYSQL_JDBC) to a project:

 right-click on the project name (Hello),

 select Properties, then Java Build Path, and Libraries tab, then

 either add the JAR explicitly by selecting Add External JARs… from
your file system,

 or select Add Variable, click MYSQL_JDBC, and OK

In our case, MYSQL_JDBC points to non-existing location, so

Eclipse does not allow to add this variable.

Similarly, we could add classpath variable JUNIT4_EXTERNAL

(- external to Eclipse, which has its own JUnit3 and JUnit4) for
our independent of Eclipse JUnit4

C:/JAVA/junit4.8.2/junit-4.8.2.jar

Alternatively, if we want to use Eclipse’s internal plugin for JUnit,
we could click Add Library... and chose JUnit3 or JUnit4.

The Java quick tour in Eclipse:
Preferences and other settings

Some Eclipse project (s) can be

 created by another developer or

 deleted from the workspace by yourself (without complete
deleting the project contents on disk; e.g. you can temporary
delete your Hello project and then import it back).

To import such a pre-existing Eclipse projects from
some other workspace into your current workspace,
select

File > Import > General >

> Existing Projects into Workspace > Next

 Choose Select Root Directory (i.e., a pre-existing - another
or the current - workspace) containing existing projects and
click Browse to find it.

 Choose project/subdirectory to import.

48

The Java quick tour in Eclipse:
Importing pre-existing Eclipse projects into workspace

You can additionally decide whether to Copy
Projects into Workspace by ticking the
appropriate box (if it is not in the current
workspace) or not copy

That is, a content of a directory on disk can be
dealt with as a part of our abstract
Workspace but non necessarily
physically contained in the Workspace
directory on disk.

Click Finish.
49

The Java quick tour in Eclipse:
Importing pre-existing Eclipse projects into workspace

50

Thus, we know how to
 start a project in Eclipse,

 create a stub Java class by using a wizard,

 use the simplest Code-completion/code-generation features of
the editor (Ctrl-Space),

 run and re-run a Java program in Eclipse,

 that Eclipse editor highlights and helps to correct syntax errors
and unresolved references (discussed later),

 that Eclipse has a special Debug perspective to facilitate
debugging a Java program (details omitted),

 use Preferences for
 code formatting style (positions of braces was considered)),

 templates for generating code (or comments – details omitted for self-
study),

 adding classpath entries (details omitted for self-study),

 etc.

 import some pre-existing Eclipse projects into workspace

The Java quick tour in Eclipse:
Conclusion notes

51

Eclipse is available from

http://www.eclipse.org

The Java quick tour in Eclipse:
Conclusion notes

http://www.eclipse.org/

