
Software Development Tools

COMP220/COMP285
Sebastian Coope

Eclipse and JUnit:
Creating and running

a JUnit test case

These slides are mainly based on “Java Development with Eclipse” – D.Gallardo et al., Manning Publications., 2003

2

Eclipse and JUnit

Eclipse’s JDT provides a powerful, flexible
environment for

 writing, running, and debugging Java code.

But developing quality software requires more
than that.

Here we examine JUnit as Eclipse’s integral
testing framework (plug-in).

Later, we will consider Ant plug-in in Eclipse.

3

Persistence project

Here we begin (but not finish!) developing a
sample application :

 a lightweight persistence component that
allows one to save data in files.

Persisting data means saving it, using some
form of storage, so one can retrieve it later.

Our goal is to illustrate by a simple example
how JUnit testing framework may be used in
Eclipse during developing this application.

Junit concepts

Fixture

 Loading a database with a specific, known
set of data

 Copying a specific known set of files

 Preparation of input data and
setup/creation of fake or mock objects

Test case

 Test with given set of test data (e.g.
fixture)

4

5

Persistence project
The first step is to create a new Java project, called

Persistence

 with choosing the option:

“Create separate folders for sources and class files”.

 (You already know how to do this.)

Create under src directory in this project:

 the stub class FilePersistenceServices.java

 with some stub methods (see below),

 but without the main() method

 under the new package

 org.eclipseguide.persistence

 or, in the labs, it should be your personalised package:

surname.name.ID123456.persistence

 check Generate Comments

 click Finish

6

package org.eclipseguide.persistence;

public class FilePersistenceServices

{

 public static boolean write(String fileName, int key, Vector v)

 {

 return false; // false – because the method is not yet implemented

 }

 public static Vector read(String fileName, int key)

 {

 return null; // null – just to return anything

 }

}

FilePersistenceServices.java

write() and read() (stub) methods are intended to

1. insert a key -numbered vector record v into a file with
returning true , if successful,

2. retrieve a vector record from a file by its key number.

Extend the resulting Java class in the editor as follows:

7

Note Red syntax error marks on the right and left
hand side of the editor

FilePersistenceServices.java

8

FilePersistenceServices.java

Red marks on the right and left hand side of the
editor "say":

"Vector cannot be resolved to a type".

In fact, this is because

 there is no import statement for the Vector class.

The easiest way to add it consists in using
Eclipse’s Quick Fix feature:

 Click on one of the light bulbs (on left margin of
the Editor)

 Double click on suggested fix:

Import 'Vector' (java.util)

9

Click on a light bulb (left to the Editor)

FilePersistenceServices.java

double-click

10

FilePersistenceServices.java

This class should now be error-free because the above
actions automatically generated new import
declaration:

import java.util.Vector;

Tidy up and save the file:

1. Right-click on the editor area and select

Source->Format

 or do the same from the menu

 or use Ctrl+Shift+F

2. Save the file.

Formatting and saving aren’t necessary, but they
make some of Eclipse’s automated features work
better.

Some yellow coloured warnings (not errors)
remain which mean that in corresponding places Vector
should be replaced with Vector<String> (Generic)

11

The JUnit testing framework in Eclipse
We are ready to create a test case :

 a special Java class called JUnit Test Case class.

It is normal to have

one test class for each class in the program

 and to name them by adding the suffix Test to the class
name:

 FilePersistenceServices.java – given source (stub)
class;

 FilePersistenceServicesTest.java – corresponding test
case;

The easiest way to create JUnit test case classes is using

 JUnit wizard in Eclipse.

12

Create test case stub by using the
JUnit wizard in Eclipse

Right-click on the file

FilePersistenceServices.java

 in the Package Explorer and

Select

New ->JUnit Test Case

See next slide

13

Accept the default values for

•Source folder,

•Package,

•Name of test case, and

•Class under test.

Check options for Junit 4

and for creating stubs for

setUp(), tearDown(),

(and optionally Generate

Comments).

Click Next.

Create test case stub by using the JUnit wizard in Eclipse

14

In the next dialog box
check boxes for the
FilePersistenceServices read() and
write() methods to create stub test
methods for each of them.

Click Finish.

Confirm adding Junit 4 library to the
build path.
IF Junit 4 will not appear in Package
Explorer under Persistence as here,

Create test case stub by using the JUnit wizard in Eclipse

THEN see the second half of

Slide 47 from EclipseJava.ppt.

15

package org.eclipseguide.persistence;

import static org.junit.Assert.*;

import org.junit.After;

import org.junit.Before;

import org.junit.Test;

public class FilePersistenceServicesTest

{

 @Before //Runs before each @Test method
 public void setUp() throws Exception

 {}

 @After //Runs after each @Test method
 public void tearDown() throws Exception

 {}

 @Test
 public void testWrite()

 {

 fail("Not yet implemented");

 }

 @Test
 public void testRead()

 {

 fail("Not yet implemented");

 }

}

The resulting test case stub created by the wizard

stub test methods
for testing
write() and
read()

stub methods
for setUp() and
tearDown()

Importing the necessary
Junit4 classes

16

Further work on the test case stub
FilePersistenceServicesTest.java

Now we need to create a fixture:

 data and objects for which @Test
annotated methods testWrite() and
testRead() in a test case will be applied:

 The annotated by @Before and @After
methods setUP() and tearDown() are

provided to set up and clean fixtures,

 they are run by JUnit, respectively, before and
after each @Test method (testXXX()).

17

 Declare Vector variable at the beginning of the test
case class declaration

 public void setUp() throws Exception

 {

 v1 = new Vector();

 v1.addElement("One");

 v1.addElement("Two");

 v1.addElement("Three");

 }

fixing
some
Vector v1

consisting
of three
strings

public class FilePersistenceServicesTest

{

 Vector v1;

 You will need to use Quick Fix light bulb to add
Vector import statement.

 Set up the fixture , Vector v1, as follows:

Further work on the test case stub
FilePersistenceServicesTest.java

18

 In the most cases tearDown() method is unnecessary.

 But we can implement it to release v1 as

 In general, tearDown() is used to release system
resources (probably expensive!) that might not otherwise
be released.

Now, we are ready to run this test case in Eclipse.

 protected void tearDown() throws Exception

 {

 v1 = null; // release v1

 }

Further work on the test case stub
FilePersistenceServicesTest.java

19

Running the JUnit tests in Eclips

Running the JUnit tests in Eclipse is similar to
running a Java application:

1. First make sure that the test case you want to run

FilePersistenceServicesTest.java

 is selected – either in the editor or on the Package Explorer
view.

2. Select Run->Run As->JUnit Test

JUnit view is automatically added, covering
Package Explorer view.

(See next slide)

20

Running the JUnit tests in Eclips

Red bar turns green once your class passes
all tests successfully.

Our tests do not pass.

 nothing strange!

 the tests fail by trivial reason: being
“Not yet implemented ”

 more precisely: they are deliberately
implemented to be failed

Further work both on the source file and on
the test case is required.

Try to double-click

 on failed tests in JUnit view,

 on the second line of the Failure Trace,

 and also on various elements in Outline view.

This will lead you to corresponding
places in the editor. (Very helpful!)

After viewing the test results, you can click on
the Package Explorer tab to return this
view on the top.

The JUnit test view.
Notice the red coloured bar!

21

Further work on the Test Case stub

Let us test whether read() and write() methods return
reasonable values by using more general JUnit assert*
methods (instead of fail()).

assert* methods will be further discussed in our lectures.

 The boolean write() method should return true if it
succeeds in writing the values stored in the Vector into
a file:

public void testWrite()

{

// fail("Not yet implemented");
 assertTrue("NOT WRITTEN???",
 FilePersistenceServices.write

 ("TestTable", 1, v1));

}

Writing data

to file

should be

successful
file name key vector

Comment or

omit this line

Further work on the test case stub

 Analogously, for read() method we

expect it to pass the following test:

 public void testRead()

{

 FilePersistenceServices.write("TestTable", 1, v1);

 Vector w =

 FilePersistenceServices.read("TestTable", 1);

 assertEquals(v1,w);

}

reading from a file should produce
the same value which has been
written into the file beforehand

expected actual

fail("Not yet implemented");

replaced with the following:

22

Running the JUnit tests in Eclips again
To re-run, click Run button

Our tests again do not pass!

Again try to double-click

 on failed tests in JUnit view,

 on the second line of the Failure
Trace,

This will lead you to corresponding
places in the editor.

For example, we can see that

 testWrite failed because of
assertTrue which expects true.
Our message "NOT WRITTEN???"
helps to understand the reason.

 Now, select testRead. We see that it
failed because of
java.lang.AssertionError:
expected:<[One, Two, Three]>
but was: <null>.

All of this can help to understand the reason of test
failures.

The JUnit test view appears.
Again red coloured bar! 23

24

You can get a little instant gratification by

 changing the return value of the
write() method in the
FilePersistenceServices class
from false to true and

 commenting out the whole testRead()
method in
FilePersistenceServicesTest class.

Selected code may be commented out or
uncommented by Ctrl-/.

Running the JUnit tests in Eclips

25

To re-run a selected Junit test
case, click Run button

Now we see green bar:

 the only remaining testWrite()

method succeeded
(of course, by trivial reason).

Recover the original versions of
our files by using Undo (Ctrl-Z).

Running the JUnit tests in Eclipse

26

Further testing-coding

Thus, two minimal tests and zero functionality!

But we should not expect anything else
because the source code is just a stub.

Anyway, we have already seen how JUnit
works in Eclipse.

To develop functionality of our source code,
let us

 test and code at a finer level of detail.

27

Further testing-coding
To implement our methods

 boolean write(String fileName, int key, Vector v)

 Vector read(String fileName, int key)

 we will need intermediate – helper methods

 vector2String()

 string2Vector()

This is an intermediate step to write/read
vectors via their string representation into/from a
file.

28

Further testing-coding
We intend to store data in a text file line-by-line for each
record:

 using comma-separated values (CSV)

Here "1","2",… serve as keys to locate a specific record.

E.g. [Antbook,Hatcher,Manning,2003] is vector or
record saved into the file as a string under the key 2.

Each line in the file is a string to be created first by the
method vector2String(Vector v, int key) which is
not yet implemented.

"1","One","Two","Three"

"2","Antbook","Hatcher","Manning","2003"

"3","Eclipse","Gallardo","Manning","2003"

Our string s1 considered below

29

Further testing-coding
According to test-first philosophy, let’s start with
extending FilePersistenceServicesTest class:

1. Add the following String s1 attribute under the Vector v1

attribute

String s1 = "\"1\",\"One\",\"Two\",\"Three\"";

@Test

public void testVector2String()

{

 assertEquals(s1,

FilePersistenceServices.vector2String(v1,1));

}

expected

actual

Recall that actually v1 = [One, Two, Three]

2. Add new @Test method in
FilePersistenceServicesTest class which we expect to

pass:

30

Further testing-coding

But now red sign and light bulb appear on the right and left
boarders of the Editor view witnessing on a syntax error in the test class
which uses non-existing yet method vector2String.

 Click on the light bulb which suggests to

 create automatically(!) the stub method
vector2String(Vector v, int key) in the source file
FilePersistenceServices.

 Agree with this suggesstion by double clicking, and

 Continue editing the resulting method as it is shown in the next
slide with the goal for it

 to pass the above test.

31

 public static String vector2String(Vector v, int key)

 {

 String s = null;

 StringBuffer buffer = new StringBuffer();

 // start with key in quotation marks and comma

 buffer.append("\"" + Integer.toString(key) + "\",");

 // add quote delimited entry

 // for each element in Vector v:

 for (int i = 0; i < v.size(); i++)

 {

 buffer.append("\"");

 buffer.append(v.elementAt(i));

 buffer.append("\"");

 if (i != (v.size() - 1)) // if i is not last

 {

 buffer.append(","); // Add comma in case

 } // of not last element

 }

 s = buffer.toString();

 return s;

 }

vector2String() added to FilePersistenceServices

Do not forget to regularly format, Ctrl+Shift+F, and save your files.

32

Run
FilePersistenceServicesTest
again using :

 the first two tests still fail,

 but the new third test
passes!!!

 Indeed, we see the green
tick and the empty
Failure Trace

Not a complete success, but the new test
testVector2String() successfully passes!

Further testing-coding

Further testing-coding
 To implement string2Vector(String s), let’s first

 add the following new @Test method to
FilePersistenceServicesTest

 suggests again to implement string2Vector() in
the source file (as we are testing a non-existing
method).

 We also need to use Java’s StringTokenizer class to

 parse any String s into tokens, and

 add each token to a Vector v as shown in the next slide:

 @Test

 public void testString2Vector()

 {

 assertEquals(v1,

 FilePersistenceServices.string2Vector(s1));

 }

expected

actual

33

34

Further testing-coding

public static Vector string2Vector(String s)

{

 Vector v = new Vector();

 // use comma and double quotation mark as delimiters

 StringTokenizer st = new StringTokenizer(s, "\",");

 while (st.hasMoreTokens())

 {

 v.addElement(st.nextToken());

 }

 return v;

}

string2vector() added to FilePersistenceServices

parsing string s

into tokens and
adding them to
vector v

E.g. string ""One","Two","Three"" transforms to vector [One,Two,Three].

 suggests to import java.util.StringTokenizer;

35

However, the test for
string2Vector fails:

 Failure Trace in the JUnit view
indicates that the comparison of

 the expected value v1 and

 the returned string2Vector(s1)
are different:

 java.lang.AssertionError:

 expected:<[One, Two, Three]>

 but was:<[1, One, Two, Three]>

CORRECT implementation of the
method string2Vector() to
make testString2Vector
passing.
 Just ignore the initial token 1

(How? Think, it is easy!)
 Run the test again; it should

succeed!

Further testing-coding

36

Further testing-coding
 Iimplement yourself another method

in FilePersistenceServices class, but ...

 Preliminary write testGetKey() in

FilePersistenceServicesTest classs:

public static int getKey(String s){???}

@Test

public void testGetKey()

{

 assertEquals(1,

 FilePersistenceServices.getKey(s1));

}

expected

actual

 suggests further actions:

to create and implement!!! getKey ...

Run the test for GetKey()again to assure that it passes.

37

Further testing-coding
Our work on Persistence project is not finished yet.

See yourselves further steps and details in Eclipse Book.

Our goal was to give you a flavour of Test Driven approach
to programming, and how Eclipse helps in this approach.

This only could help you to start using this approach.

Try to use this approach in your programming practice.

Read more on JUnit testing to study it deeper and to learn
best practices of its using.

Then you will get a better understanding and some
benefits of this approach.

Recall that testing many times a day will rather

 save your time , and

 make your work much more comfortable and confident.

The button makes running JUnit test classes In
Eclipse very easy.

 However, JUnit in itself is a Java application and
can be run just from the command line.

E.g., from the directory Persistence

corresponding to our project we can

 compile both source code and the test class and then

 run the test class as follows:
38

Running tests from the command line

39

Compiling and Running tests from the command line
C:\workspace\Persistence>javac -d bin

src\org\eclipseguide\persistence*.java

C:\workspace\Persistence>java -cp bin;C:\JAVA\junit4.9\junit-4.9.jar

org.junit.runner.JUnitCore

org.eclipseguide.persistence.FilePersistenceServicesTest

JUnit version 4.9

.E.E...

Time: 0.015

There were 2 failures:

1) testWrite(org.eclipseguide.persistence.FilePersistenceServicesTest)

java.lang.AssertionError: NOT WRITTEN???

<many lines skipped>

2) testRead(org.eclipseguide.persistence.FilePersistenceServicesTest)

java.lang.AssertionError: expected:<[One, Two, Three]> but was:<null>

<many lines skipped>

FAILURES!!!

Tests run: 5, Failures: 2

Do not forget to recompile each time!!!

Your message
to yourself

E (error) means that the previous testXXX

methods – shown as one dot (.) – failed

Complicated commands and a lot of unimportant lines (skipped) makes this way of
running tests not very comfortable. Compare how it was done in Eclipse!

Last lines show that we should
look upwards for the failures

Test

runner

Test case to run

Class

path

Where (direction) to compile

What to compile

Description of
a test failure

40

Detailed Summary: Essential steps,
advantages, and peculiarities of creating and

running a JUnit test case in Eclipse.

JUnit is included in Eclipse as a well-
integrated plug-in.

Eclipse has a wizard creating test
cases from existing Java Classes to be
tested.

 Therefore it makes sense to create first a
Java Class to be tested, but initially only
with method stubs.

41

Detailed Summary: Essential steps,
advantages, and peculiarities of creating and

running a JUnit test case in Eclipse.

The wizard automatically suggests the default
names for

 source folder (src),

 folder where to compile (bin),

 test case name ClassTest

 corresponding to the name of the tested Class

 package for test case ClassTest, the same as
that of the tested Class

The wizard also suggests the options for
creating stub methods

 setUp() and tearDown()

 annotated as @Before and @After,
respectively.

In the Next step the wizard presents the options to
create @Test method stubs, testXXX(), to test
each of the methods xXX() in the Class under

testing.

All of these considerably alleviates and even
automates the preliminary routine editing work to
create a test case.

Next step is to finish creating test case:
 to setUp() (and, optionally, tearDown()) a fixture, and

 to finish writing testXXX() methods.

The latter is, of course, not an automated part of
work.

Nevertheless, Eclipse can help, as in the case of
editing of any Java code.

Detailed Summary: Essential steps,
advantages, and peculiarities of creating and

running a JUnit test case in Eclipse.

42

43

Running JUnit test cases in Eclipse is similar
to running a Java application (just by mouse
click) and has the same convenience in
comparison with command line running.

It automatically adds JUnit view which
instantly shows by the red/green bar

 whether our Class passes all the unit tests
successfully,

 the information about each failed @Test annotated
method testXXX(),

 whether it failed because of some of its assertion
method,

 or due to a compilation or runtime error.

Detailed Summary: Essential steps,
advantages, and peculiarities of creating and

running a JUnit test case in Eclipse.

44

For each failed @Test method testXXX() there is a

Failure Trace in JUnit view which can help to find
out the reason of the failure.

To investigate further, the powerful debugger tool
of Eclipse can be used as well.

 (We have not considered this in detail, but you should
know about existence of debugger in Eclipse)

After correcting all errors and passing all tests

 the cycle on further writing tests and adapting the
source code to pass tests is repeated ...

 until a satisfactory source code will be obtained.

Detailed Summary: Essential steps,
advantages, and peculiarities of creating and

running a JUnit test case in Eclipse.

