

TESTING PRINCIPLES AND

PRACTISE

© University of Liverpool COMP220/285 slide 1

Testing Principles

• Testing shows presence of errors

- Not their absence

• Exhaustive testing is not possible/practical

- In most cases

• Test early and regularly

- Early testing reduces multiple bug/defect
relation and avoids bug masking

• Error clustering

- Errors are not evenly distributed

- Typically 20% of modules contain 80% of
defects

© University of Liverpool COMP220/185 slide 2

Testing Principles

• Pesticide paradox

- Unless tests change they often become
invalid, as functionality changes so must
tests

• Context dependency

- Medical system  Safety testing

- Website  Performance/load testing

- Banking application  Security testing

• False conclusion: no errors equals usable
system

© University of Liverpool COMP220/185 slide 3

What is testing

• Determining the software conforms to the
user’s requirements

• Can include

- Verification (against the spec.)

- Validation (using customer or internal)

- Performance

- Security

- Usability

- Regulatory testing

- Statistical testing

© University of Liverpool COMP220/185 slide 4

Case study.. game (how to test?)

© University of Liverpool COMP220/185 slide 5

UI testing

Performance

testing

Functional

testing

Regulatory

testing

Statistical

testing

Win structure

© University of Liverpool COMP220/185 slide 6

Some Details

• Each reel has 256 symbols

• 5 Reels

• How many possible combinations?

- (256)^5 = 1,099,511,627,776

- 10,000 spins/second = 636 days

• Bigger problem

- How to write 1,099,511,627,776 test
cases?

© University of Liverpool COMP220/185 slide 7

Win structures and payout rules

• TEN TEN TEN // 3 inline wins

- WILDS substitute

- So TEN WILD TEN pays a 3 x TEN win

• Four line wins

- TEN TEN TEN TEN

- TEN TEN WILD TEN

• How about

- WILD WILD J TEN

© University of Liverpool COMP220/185 slide 8

Rules

• Wilds substitute for other symbols

• 20 pay lines, following from left to right

• 2, 3, 4, 5 in line possible wins

• Stake can be changed for each spin

© University of Liverpool COMP220/185 slide 9

Special features

• Some wins give a game within a game,
this is called a feature…

© University of Liverpool COMP220/185 slide 10

Scattered symbols

• Some symbols appear anywhere in the
window, so below generates 4 symbol
feature win.

© University of Liverpool COMP220/185 slide 11

How many

Combinations

give 4 snakes?

Exercise

• How many combinations give 4 snakes?

• What combinations give 4 snakes?

• Can we test them all?

• Use software to generate test cases?

- Write a small Java program to
generate these test cases

© University of Liverpool COMP220/185 slide 12

Feature wins

• Generate a range of random prizes

• Testing issues

- Distribution of prizes

- Average prize distribution

- Maximum prize

- Minimum prize

© University of Liverpool COMP220/185 slide 13

Target code

• int getWinValue(int stake,int symbols[][])

• stake is amount of money awarded per
payline

• stake is in pence/cents

• Symbols

- 5 x 3 array displaying symbols in
window

- 1= TEN, 2 = J, 3 = Q

 © University of Liverpool COMP220/185 slide 14

Testing approach

• At least orthogonal

• So each range of data but not every
combination of each range

• Each win type including/excluding wilds

• For a given win, choose a range of
stakes

- Ensure the multiplier works

- Try on each different payline

 © University of Liverpool COMP220/185 slide 15

Orthogonal testing and modes

• Function

- countDaysTill(int day,int month,int year)

• Bug might appear in test case for particular

- day, month, year (triple mode fault)

- Year (single mode fault)

- day, month (double mode fault)

• Exhaustive testing of some single mode
faults is sometimes possible

© University of Liverpool COMP220/185 slide 16

Orthogonal array testing

• Imagine you have a method with 3 integer
arguments

• Arg1 range 1-10

• Arg2 range 2-20

• Arg3 range 5,6 or 7

• You want to catch all single mode errors

- How many tests need?

- What tests?

© University of Liverpool COMP220/285 slide 17

Orthogonal array testing

• Total test count (single mode)

- 10 for arg1 + 19 for arg2 + 3 for arg3

- = 10+19+3 = 32 tests (actually only
30, some are redundant)

• Single mode errors

- Number of tests is order of N (where N
is argument levels)

• Triple mode errors

- Number of tests is order of N^3

- In the case above 570 tests (10x19x3)

© University of Liverpool COMP220/285 slide 18

Orthogonal array testing
• Tests for single mode

© University of Liverpool COMP220/285 slide 19

Test Arg1 Arg2 Arg3

1 1 2 5

2 2 2 5

3 3 2 5

4 4 2 5

5 5 2 5

6 6 2 5

7 7 2 5

8 8 2 5

9 9 2 5

10 10 2 5

11 1 3 5

12 1 4 5

13 1 5 5

14 1 6 5

15 1 7 5

16 1 8 5

17 1 9 5

18 1 10 5

19 1 11 5

20 1 12 5

21 1 13 5

22 1 14 5

23 1 15 5

24 1 16 5

25 1 17 5

26 1 18 5

27 1 19 5

28 1 20 5

29 1 20 6

30 1 20 7

Defect density, clustered or isolated

© University of Liverpool COMP220/285 slide 20

In practise
• Most recommendations is for at least all pair-wise combinations

(this is what most people will call orthogonal array test)

• Use a tool to generate test array, then complete by hand

• My generating the “other” values randomly for each test, you
distribute your tests around the state space

© University of Liverpool COMP220/285 slide 21

Orthogonal testing for our game

• So if stake can be

- 10p,50p,100p,200p,500p

• Single mode test for stake could use the
following test cases

© University of Liverpool COMP220/185 slide 22

STAKE REEL1 REEL 2 REEL 3 REEL 4 REEL 5 Output

10 TEN TEN TEN JACK JACK 30

50 TEN TEN TEN JACK JACK 150

100 TEN TEN TEN JACK JACK 300

200 TEN TEN TEN JACK JACK 600

500 TEN TEN TEN JACK JACK 1500

Orthogonal testing

• Now test 3 in line TEN wins (keep stake
constant)

© University of Liverpool COMP220/185 slide 23

STAKE REEL1 REEL 2 REEL 3 REEL 4 REEL 5 Output

10 TEN TEN TEN JACK JACK 30

10 WILD TEN TEN JACK JACK 30

10 TEN WILD TEN JACK JACK 30

10 TEN TEN WILD JACK JACK 30

10 WILD WILD TEN JACK JACK 30

10 WILD TEN WILD JACK JACK 30

10 TEN WILD WILD JACK JACK 30

More testing of the machine

• Do we/Can we testing all losing lines?

- Alternatives?

- Statistics

• Random test generation
- Rand = random (but no Wild, no Ten)

© University of Liverpool COMP220/185 slide 24

STAKE REEL1 REEL 2 REEL 3 REEL 4 REEL 5 Output

10 TEN TEN TEN Rand Rand 30

10 WILD TEN TEN Rand Rand 30

10 TEN WILD TEN Rand Rand 30

10 TEN TEN WILD Rand Rand 30

10 WILD WILD TEN Rand Rand 30

10 WILD TEN WILD Rand Rand 30

10 TEN WILD WILD Rand Rand 30

Adding in random numbers

• Teases out rarer bugs

• Can do different tests across Q&A
phases

• Increases assurance

• Can be used to make statistical
inference

© University of Liverpool COMP220/185 slide 25

Testing calculations

• If bug effects 0.01% of positions, evenly
distributed and we test 10,000 positions
randomly, what is the chance of a false
positive

- Chance of test giving false positive

- Chance of passing bug for each test is
- 1 – (0.0001) = 0.9999

- Chance of not finding bug is

- (0.9999)^10,000 = 0.36 or 36%

© University of Liverpool COMP220/185 slide 26

Testing calculations

• Assuming confidence of 1% (i.e. assuming we
might be wrong 1% of time)

• If we do 1,000,000 random tests what is
maximum error density

• (1-chance_of_bug)^10,000,000<0.01

• So

• 10,000,000log(1-chance_of_bug)<log(0.01)

• Log(1-chance_bug)<log(0.01)/10,000,000

• 1-chance_bug<10^(log(0.01)/10,000,000)

• chance_bug=1-10^(log(0.01)/10,000,000)

• 0.0000046 defect density

 © University of Liverpool COMP220/185 slide 27

Testing levels

• At unit level

- Confirming the following all function
correctly

- All methods provide primary function

- All constructors and methods validate input

- Exceptions are caught or thrown as required

- Coding by contract

- Each method has a required range of
appropriate values

- Use of methods should conform with contract

 © University of Liverpool COMP220/185 slide 28

Test Example

• class Person.java

• Constructor takes name and Date of birth

• Has methods

- int getAgeInYears() // whole number of years
old

- boolean isAdult() // true if Person is adult

• Is meant to provide validation checking of its
attributes

© University of Liverpool COMP220/185 slide 29

Testing example code (boundary cases)

private void testYears() {

 Calendar dobCal = Calendar.getInstance(); // set up current
time

 dobCal.setTimeInMillis(System.currentTimeMillis()); // set
up time

 int testAge=18;

 dobCal.add(Calendar.YEAR,-testAge);

 setDateOfBirth(dobCal.getTime());

 if (getAgeInYears()!=testAge) {

 throw new TestFailException("Failed Age test
Birthday today");

 }

© University of Liverpool COMP220/185 slide 30

Fundamental problem with test code

• Code is being written to test code

• So if a bug happens

• Is the bug in

- The target code

- The test code

• Answers

- Have 2 teams (test code team, testing team)

- Use simple identities sqr(x) x sqr(x) = x

© University of Liverpool COMP220/185 slide 31

Testing Example

dobCal.add(Calendar.DAY_OF_MONTH, 1); //
move to tommorow

 setDateOfBirth(dobCal.getTime());

 if (getAgeInYears()!=testAge-1) {

 throw new TestFailException("Failed
Age test Birthday tommorow");

 }

© University of Liverpool COMP220/185 slide 32

Test Example

dobCal.add(Calendar.DAY_OF_MONTH, -2); // move to yesterday

setDateOfBirth(dobCal.getTime());

if (getAgeInYears()!=testAge) {

 throw new TestFailException("Failed Age test Birthday
yesterday");

© University of Liverpool COMP220/185 slide 33

Testing and debugging

• Bug report

- Date, product name, platform
(Windows, Linux, Chrome IE?)

- Description

- Logs (? Java console dump?), server
trace log

- Version of software (see svn version)

- How to re-create the bug

 © University of Liverpool COMP220/185 slide 34

Server logs (web debugging)

[10:07:23 AM] Cometa.Core.Server.CommandsNew.CommandGameInit.Execute. Begin...

,Arcadia 0.013215312 0.000165

[10:07:23 AM] Cometa.Core.Server.CommandsNew.CommandBase.AuthenticatePlayer. Begin...

,Arcadia 0.013653376 0.000438

[10:07:23 AM] Cometa.Core.Server.CommandsNew.AuthenticatePlayer. Loading user with login
of sebby2

,Arcadia 0.01406112 0.000408

[10:07:23 AM] ExecuteDataset: Select * from $(user) Where LCASE(Login)='sebby2'

,Arcadia 0.014521312 0.000460

[10:07:23 AM] Cometa.Core.Server.CommandsNew.AuthenticatePlayer. User loaded okay, is
valid, is in user role, is not blocked.

,Arcadia 0.019047712 0.004526

[10:07:23 AM] Cometa.Core.Server.CommandsNew.AuthenticatePlayer. Password matched.

,Arcadia 0.019882992 0.000835

[10:07:23 AM] ResponseMessageManager::GetMessageByShortCode: Begin...

,Arcadia

© University of Liverpool COMP220/185 slide 35

Validation testing (error case checking)

Calendar dobCal = Calendar.getInstance(); // set up current time

 dobCal.setTimeInMillis(System.currentTimeMillis()); // set
up time

 dobCal.add(Calendar.DAY,1); // move to tomorrow

Person person=new Person();

Boolean testFailed=true;

try {

 person.setDateOfBirth(badDate);

} catch (Exception) {

 testFailed=false;

}

This could equally be done and should be done with constructor

Person p=new Person(“test”,”test”,”test”,”test”,”test”,badDate);

© University of Liverpool COMP220/185 slide 36

Need for automation

• Many tests

• Requirement for continuous regression
testing

• Rapid implementation of new functions

• Less human error

• Cost

- High up front cost in time/money

© University of Liverpool COMP220/185 slide 37

Summary

• Hard to test all cases

• Automation is essential to make testing
effective

• Orthogonal approach can be worth while
to get coverage of modal bugs

© University of Liverpool COMP220/185 slide 38

