NUMERIC TESTING

Numeric functions

- Used for
 - Financial calculations
 - Real time control
 - Breaking distance
 - Flight control parameters
- Often depend on
 - Estimated and sampled data
 - Statistics

Testing numeric functions

- Two basic categories
 - Integer functions
 - Real number functions
- Discrete integer functions
 - Large but finite space
 - In theory possible to test every case
- Floating point inputs
 - Infinite domain mapped to finite address space

Testing and errors

- Limits to precision of inputs/outputs
 - 0.2 = binary 0.0011 recurring
 - PI is irrational
 - Floating point distribution is discrete input with spacing relative to log(x), $x_n-x_{n-1}=unit$ of least precision
 - Voltage sampled at particular bit accuracy
- Significance for testing
 - Inputs are rounded leading to inherent error in input
 - Outputs are rounded leading to inherent error in

Floating point distribution

- Floating point
 - Mantissa x 2[^] exponent
 - For single precision

- For double precision

- ULP =
$$2^{-53}$$
 X 2 EXPONENT

Largest ULP is

$$-2^{-24} \times 2^{127} = 2^{103} (single)$$

$$-2^{-53} \times 2^{1023} = 2^{970} (double)$$

Conditioning number

 Relative change/error in output = Conditioning number x relative change in error/input

$$-\frac{f(x+error)-f(x)}{f(x)} = C \cdot \frac{error}{x}$$
$$-f(x+error) - f(x) = C \cdot \frac{error \cdot f(x)}{x} \quad \text{(tolerance)}$$

- This means

-
$$C = \frac{f(x + error) - f(x)}{f(x)} \cdot \left(\frac{x}{error}\right)$$

- Example f(x)=x/(1-x)

$$- x = 0.998 \text{ error} = 0.0001, C=526$$

$$- x = 0.999 \text{ error} = 0.0001, C=1111$$

Conditioning number for differentiable functions and small error

•
$$Cn(x0) = x0 \cdot \frac{F'(x0)}{F(x0)}$$

• So for F(x)=x/1-x

•
$$F'(x) = \frac{1}{(1-x)^2} \quad \frac{F'(x)}{F(x)} = \frac{1}{x-1}$$

So

• Cn(x) =
$$\frac{x}{1-x}$$

Condition number examples

- What is Cn for sin(x)
- $F(x) = \sin(x) F'(x) = \cos(x)$
- Cn = $x \cdot \frac{\cos(x)}{\sin(x)} = x \cdot \frac{1}{\tan(x)}$
- What range is x ill-conditioned for

-
$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots > x$$

- None
- cos(x) F(x) = cos(x) F'(x) = -sin(x)
- Cn = $x \cdot \frac{-\sin(x)}{\cos(x)} = -x \cdot \tan(x)$
- So ill-conditioned when $x = \frac{\pi}{2} or \frac{3\pi}{2}$

Conditioning implications

- Example
 - When solving linear equations, the system is called ill-conditioned if a small change in the input causes a large change in solution
- So ill-conditioned designs/algorithms can cause
 - Instability of output
 - Problems with the behaviour of physical systems, imagine electronic circuit, each component can have a range of values due to component tolerances

Conditioning number and testing

- If 1 of your calculation steps has high condition number, this can lead to large errors on result
- Possible to have well conditioned function but with poorly conditioned step in algorithm

Testing numeric functions

| Fcalc(x)- Ftrue(x) | < tolerance

- Fcalc(x) is the value produce by our program
- To calculate Ftrue we can use a arbitary precision maths package such as GMP
 - gmplib.org
- But what about the tolerance

Tolerance

- Function of Unit of Least Precision
 - This is dependent on X
- Function of the condition number
 - The greater the condition factor, the greater the effect of loss of precision
- In general
 - Tolerance <= Cn x ULP X f(x)/x
 - This is from slide 11

Types of function tests

- Golden value
 - | Fcalc(x)- Ftrue(x) | < tolerance
- Special value tests
 - $-\sin(\pi) = 0 \cos(0) = 1$
- Identity tests
 - $-\sin(x)^2 + \cos(x)^2 = 1$
 - Good but could hide relative errors, example identity above can hold if sin too large and cos too small
 - Useful because can automatically generate

Inverse function tests

- $X = (\sqrt{X})^2$
- Asserts functions are consistent
- Note that
 - Some functions have ill-conditioned inversions (same problem applies with identity tests)

Limitations of identities

- $\sin(x)^2 + \cos(x)^2 = 1$
 - Doesn't test for accuracy at all so..
 - What if sin(x)==1 for every x and cos(x)==0 for every x
- $X = \left(\sqrt{X}\right)^2$
 - Better since only 1 function under test (assuming you already have a working multiply)

Intermediary results

Many functions produce large intermediary results

Example binomials for large N

Chance of throwing 450 heads out of 1000

throws of a coin =
$$\left(\frac{1000!}{450!550!}\right) \left(\frac{1}{2}\right)^{1000}$$

Depending on the design of the algorithm this can lead to smaller or greater errors in the output, try computing 1000! With your calculator

Summary

- Numeric function testing relies on
 - The properties of the function being tested (condition number, argument type)
 - Having proper values for
 - Correct function output
 - Tolerance for the test

Summary

Functions can

Special values golden values
Linked together to give identities
Be tested using a previously tested
inverse function