NUMERIC TESTING

COMP220/285 © University of Liverpool



Numeric functions

e Used for
- Financial calculations

- Real time control
- Breaking distance
- Flight control parameters

« Often depend on
- Estimated and sampled data
- Statistics

COMP220/185 © University of Liverpool slide 2



Testing numeric functions

* Two basic categories

- Integer functions

- Real number functions
 Discrete integer functions

- Large but finite space

- In theory possible to test every case
 Floating point inputs

- Infinite domain mapped to finite
address space

COMP220/185 © University of Liverpool slide 3



Testing and errors

 Limits to precision of inputs/outputs
- 0.2 = binary 0.0011 recurring
- Pl is irrational

- Floating point distribution is discrete input with
spacing relative to log(x), x,-X,.4 = unit of least
precision

- Voltage sampled at particular bit accuracy
 Significance for testing

- Inputs are rounded leading to inherent error in input

- Outputs are rounded leading to inherent error in

COMP220/185 © University of Liverpool slide 4



Floating point distribution

 Floating point
- Mantissa x 2”* exponent
- For single precision
_ULP = 2 24X 92 EXPONENT

- For double precision
_ULP = 2 53X 2 EXPONENT

» Largest ULP is
- 2724 x 2127 = 2103 (single)
- 2793 x 21023 = 2970 (double)

COMP220/185 © University of Liverpool slide 5



Conditioning number

» Relative change/error in output = Conditioning
number X relative change in error/input

f(xterror)—f(x) _ C error

f(x) CoX
- f(x + error) — f(x) = C.

- This means
_f(x+error)—f(x) X
- C= (=)

f(x) error
- Example f(x)=x/(1-x)
- X =0.998 error = 0.0001, C=526
- X =0.999 error = 0.0001, C=1111

error.f(x)

(tolerance)

COMP220/185 © University of Liverpool slide 6



Conditioning number for differentiable
functions and small error

. - F'(x0)
Cn(x0) = x0. F(x0)

« So for F(x)=x/1-x

1 FF(x) 1

COMP220/185 © University of Liverpool slide 7



Condition number examples

« Whatis Cn for sin(x)
« F(x)=sin(x) F’(x) = cos(x)

_ cos(x) 1
Cn=x. sin(x) " tan(x)

« Whatrange is x ill-conditioned for

- x3  2x°
- tan(x) = x + sttt >
- None
« cos(x) F(x) = cos(x) F’(x) = -sin(x)

Cn = x. _Cf)l:(%) = —x.tan(x)

[ - 3
. Soill-conditioned when x= % 07"7”

COMP220/185 © University of Liverpool slide 8



Conditioning implications

« Example

- When solving linear equations, the system
IS called ill-conditioned if a small change In
the input causes a large change in solution

» So ill-conditioned designs/algorithms can
cause

- Instability of output

- Problems with the behaviour of physical
systems, imagine electronic circuit, each
component can have a range of values due
to component tolerances

COMP220/185 © University of Liverpool slide 9



Conditioning number and testing

o |f 1 of your calculation steps has high
condition number, this can lead to large
errors on result

» Possible to have well conditioned
function but with poorly conditioned step
In algorithm

COMP220/185 © University of Liverpool slide 10



Testing numeric functions

» | Fcalc(x)- Ftrue(x) | < tolerance

» Fcalc(x) Is the value produce by our
program

* To calculate Ftrue we can use a arbitary
precision maths package such as GMP

- gmplib.org
 But what about the tolerance

COMP220/185 © University of Liverpool slide 11



Tolerance

 Function of Unit of Least Precision
- This i1s dependent on X
 Function of the condition number

- The greater the condition factor, the
greater the effect of loss of precision

* In general

- Tolerance <= Cn x ULP X f(x)/x

- This i1s from slide 11

COMP220/185 © University of Liverpool slide 12



Types of function tests

« Golden value

- | Fcalc(x)- Ftrue(x) | < tolerance
« Special value tests

- sin(mr) = 0 cos(0) =1
* |dentity tests

- sin(x)? + cos(x)? =1

- Good but could hide relative errors, example
identity above can hold if sin too large and cos
too small

- Useful because can automatically generate

COMP220/185 © University of Liverpool slide 13



Inverse function tests

2
« Asserts functions are consistent

 Note that

- Some functions have ill-conditioned
iInversions (same problem applies with
identity tests)

COMP220/185 © University of Liverpool slide 14



Limitations of identities

e sin(x)? + cos(x)? =1
- Doesn't test for accuracy at all so..
- What if sin(x)==1 for every x and cos(x)==0
for every x

2
+ X = (VX)
- Better since only 1 function under test

(assuming you already have a working
multiply)

COMP220/185 © University of Liverpool slide 15



Intermediary results

Many functions produce large
iIntermediary results

Example binomials for large N
Chance of throwing 450 heads out of 1000

. 1000! 1\ 1000
throws of a coin = ( ) (—)
450!550! 2

Depending on the design of the algorithm
this can lead to smaller or greater errors in
the output, try computing 1000! With your
calculator

COMP220/185 © University of Liverpool slide 16



Summary

* Numeric function testing relies on

- The properties of the function being
tested (condition number, argument

type)

- Having proper values for
- Correct function output
- Tolerance for the test

COMP220/185 © University of Liverpool

slide 17



Summary

Functions can
Special values golden values
Linked together to give identities

Be tested using a previously tested
Inverse function

COMP220/185 © University of Liverpool slide 18



