Cooperative Systems
Engineering Group
Computing Department, Lancaster University

Aspect-Oriented
Programming
and

Separation of
Cconcerns

Proceedings of the International Workshop
Lancaster University, UK
24 August 2001

Awais Rashid, Lynne Blair (eds.)

Computing Department, Lancaster University
Technical Report No. CSEG/03/01

http://www.comp.lancs.ac.uk/computing/users/marash/aopws2001/

Preface

These proceedings contain the position papers and extended abstracts accepted for
presentation at the Workshop on Aspect-Oriented Programming (AOP) and
Separation of Concerns held on 24 August 2001 at Lancaster University, UK. The
goa of the workshop was to increase awareness about AOP and other separation of
concerns mechanisms in the UK computer science community by bringing together
both UK-based and international researchers working in these areas. The workshop
was aimed at providing a forum to present on-going or completed research work and
exchange ideas about outstanding research issues. A tutorial was held before the
workshop on 23 August 2001 to provide an introduction to AOP concepts and hands-
on experience with AspectJ™: an AOP language from Xerox PARC which enables
writing aspect-oriented programs in Java™. The tutorial was aimed at people
relatively new to the area. Since the tutorial was held before the workshop, tutorial
participants attending the workshop had an opportunity to expand their knowledge to
state of the art research in the area.

The accepted papers for the workshop covered a wide but coherent set of topics
including adaptive systems, persistence, mapping and automation, middleware and
future directions for AOP. We wish to extend our thanks to the authors of the papers
for their contribution to the workshop. We aso wish to express our gratitude to
Cooperative Systems Engineering Group at Computing Department, Lancaster
University for providing funding for the workshop and the British Computer Society
Advanced Programming Group for their help in advertising the workshop. In addition,
we wish to thank Aimee Doggett, Chris Needham and Michelle Spence for local
arrangements. Last but not least we thank all the participants without whom the
workshop would not have been possible.

Awais Rashid
Lynne Blair

August 2001

Table of Contents

Adaptive Systems

Grouping Objects using Aspect-Oriented Adapters
Sefan Hanenberg, Rainer Unland

From Software Parameterization to Software Profiling
Philippe Bouaziz, Lionel Seinturier

Aspect-Based Workflow Evolution
Boris Bachmendo, Rainer Unland

Mapping and Automation

Some Insights on the Use of AspectJ and Hyper/J
Christina von Flach G. Chavez, Alessandro Farbricio Garcia,
Carlos J. P. de Lucena

Trandation of Javato Real-Time Java using Aspects
Morgan Deters, Nick Leidenfrost, Ron K. Cytron

Middleware

Middleware Architecture Design based on Aspects,
the Open Implementation Metaphor and Modularity
H.-Arno Jacobsen

Aspects of Exceptions at the Meta-Level
lan S. Welch, Robert J. Stroud, Alexander Romanovsky

JReplica: An AOP Approach for a Transparent, Manageable
and ORB Independent Object Replication
Jose Luis Herrero, Fernando Sanchez, Miguel Toro

13

20

25

31

38

Miscellaneous

Transferring Persistence Concepts in Java ODBM Ss to AspectJ
Based on ODMG Standards
Arno Schmidmeier

Alternatives to Aspect-Oriented Programming?
David Bruce, Nick Exon

53

58

Grouping Objects using Aspect-Oriented Adapters

Stefan Hanenberg, Rainer Unland

Ingtitute for Computer Science
University of Essen, D - 45117 Essen
{shanenbe, unl andR} @s. uni - essen. de

Abstract. Aspect-Oriented Programming (AOP) is an approach for realizing
separation of concerns and alows different concerns to be weaved into existing
applications. Concerns usually cross-cut the object-oriented structure. When-
ever a concern needs to invoke some operations on objects of the given structure
the problem arises, that those objects have different types, but the concern ex-
pects them to be handled in the same way. Therefore a mechanism for grouping
objects of different types is needed.This paper discusses different mechanisms
and proposes aspect-oriented adapters for grouping types and shows how this
approach permits a higher level of flexibility and reduces the limitations of
known approaches. Aspect-oriented adapters are not limited to a specific gen-
eral purpose aspect language (GPAL). Nevertheless the examples in this paper
are realized in AspectJ, which is by far the most popular and well-established

general purpose aspect language.

1 Motivation and Problem Description

Let us assume we want to make objects persistent, which are created by an existing
simulation-application. As pointed out in [3] persistency is aconcern and so thisisa
typical application of Aspect-Oriented Programming [4]. Every newly created object
should be added to a persistent storage and whenever the state of a certain object
changes, its representation on the store must be updated. There is no need to offer an
interface for retrieving objects, because the simulation itself does not use former ob-
jects. Instead the information is used by another application which directly accesses
the storage for retrieving information about the simulation. The objects to be stored
are all instances of classPoi nt .

A suitable (straight-forward) solution for this problem in AspectJ [5] would be an
aspect, which writes the state to the store every time an object is created and when-
ever its state changes (fig. 1). An instance of the aspect Per si st ent Poi nt is
created for every Poi nt instance. The aspect generates an object id (realized as an
instance counter) and stores it in its dtribute i d. After creating a new Poi nt the
object is written to the persistent storage realized in the constructor of Per si s-
t ent Poi nt .

CSEG
1

The state of a point changes, whenever the methods set X() or set Y() arein-
voked. Therefore apointcut set PC() isdefined for any instance of Poi nt receiving
a set-message. Whenever this happens the corresponding pointcut method (or advice
in the AspectJ terminology) is executed which reads a point's state get X() ,
get Y()) and updates the persistent storage.

class Point { aspect Persi stent Point
private float x=0; of eachobj ect (i nstanceof (Point)){
private float y=0; private static int idnum= 0;
public float getX() { private int id = ++i dnum
return x;} public PersistentPoint() {
public float getY() { .. write new (unitialized) object to storage}
returny;} poi ntcut set PC(Point p): instanceof(p) &&
public void setX(float x) { (receptions(void setX(float)) ||
this.x = x;} receptions(void setY(float)));
public void setY(float y) { after (Point p): setPC(p) {
this.y =y} float x = p.getX());
} float y = p.getY());
..update x,y of object id}
}

Figure 1: a) ClassPoi nt , b) Aspect Per si st ent Poi nt

Let us assume there is another (similar) application having its own implementation
of a point Anot her Poi nt identical to Poi nt . The proposed solution directly de-
pends on the class Poi nt and cannot be used for other classes. Therefore it would
be more desirable to define a persistency aspect without being limited to classPoi nt .

AspectJ supports inheritance relationships between aspects and allows to declare
abstract aspects, so it seems to be a good choice to define an abstract aspect Per -
si st ent Obj ect, which is responsible for creating the object id and reading the
object's state (fig. 2, see [2] for adetailed discussion on inheritance and AOP). Its sub-
aspects only have to define the class this aspect should be weaved to. Therefore
Per si st ent Obj ect contains an abstract pointcut weavedCl assPC() , which
has to be defined by the subaspects. We want the aspects to be instantiated for every
instance of Point and Anot her Point, so the definitions of weaved-
Cl assPC() in our concrete aspects corresponds to that.

But now a new problem arises: how can the state of the object be read in the point-
cut method? The intention of the aspect is to be woven to classes, having the meth-
ods get X(), getY(),set X(fl oat) and set Y(f| oat) . The set-methods are
used for the pointcut definition, and the get-methods are needed by the aspect in-
stance to read an object’s state. But although knowing those method signatures the
concrete type of those classes is unknown and left to those aspects, which make the
abstract pointcut concrete. Because aspects crosscut the inheritance structure of
classes wusually those classes do not have any common type but
java.l ang. Obj ect. So it is not possible to send getter-messages to the related
object, because the type is unknown and therefore a typecast is not possible.! A pos-

1 We assume here general purpose aspect languages with static type checking like Aspect] or
Sally [8] which are both based on the programming language Java.

CSEG
2

sibility would be to use reflection for those method calls, but that requires an enor-
mous effort.

abstract aspect PersistentObject of aspect Persi st ent Poi nt
eachobj ect (weavedCl assPC) { ext ends Persistent Object {
private static int idnum= 0; poi nt cut
private int id = ++i dnum weavedl nst ances(Poi nt p):
public PersistentObject() { i nstanceof (p);
.. write new (unitialized) object to storage} }

abstract pointcut weavedl nstances(Object 0);
poi ntcut set PC(Object o0): weavedl nstances(0) && | aspect Persi stent Anot her Poi nt

(receptions(void setX(float)) || ext ends Persistent Obj ect {
receptions(void setY(float))); poi ntcut weavedl nstances
after (Object p): setPC(p) { _(Anot her Poi nt p):
..write state to data storage} instanceof (p);
} }

Figure 2: abstract persistency aspect (trial)

The concrete problem is, that aspect-oriented programming groups objects in an-
other way than the predefined object-oriented structures do. So a mechanism is
needed how to group objects of different types and allow to sent messages to them.

In the next section we discuss approaches related to this problem and demonstrate
that they do not solve this problem appropriately. Afterwards we introduce and dis-
cuss aspect-oriented adapters for grouping types and show how this approach allows
a higher level of flexibility and reduce the limitations of other approaches. We will also
apply the adapter to the introducing example. In the forth section we map the introduc-
ing example to aspect-oriented adapters. Finally we summarize and conclude the paper.

2 Redated Work

AspectJ offers a mechanism called introductionswhich can be applied to the given
problem. The mechanism allows aspects to change the structure of the object-oriented
classes. In this way additional methods and attributes can be inserted into existing
classes. For the purpose of grouping objects introductions allow to insert new types
to the target classes. So the interface needed by an aspect has to be defined and &-
terwards integrated into those classes.

Applied to the example from the first section that means, that an interface needed
by the aspect Per si st ent Obj ect has to be specified. This interface has to con-
tain the getter-methods the aspect needs to invoke for reading a point’s state. The
concrete aspects Per si st ent Poi nt and Per si st ent Anot her Poi nt haveto
introduce this interface to the classes Poi nt and Anot her Poi nt . The type of the
parameter in the pointcut and pointcut method must be of that introduced interface, so
the advice can invoke the getter-methods.

But thisway to handle the problem leads to additional problems:

CSEG
3

Tangled introduction statements: The introduction-statementsin every sub-aspect
logically belong to the abstract aspect. They have to be implemented redundantly
and arein that way tangled.

Confusing class structure: After weaving the classes of the original application

implement a new interface (fig. 3). If alot of aspects are woven this approach leads

to numerous interfaces spread all over the class structure. In this way the original
code becomes confusing and makes it difficult for developers to understand the
original code for reasons of reuse.

Lack of structure after unweaving: After weaving devel opers extending the appli-

cation can use the common interfaces introduced by the aspects, because they

cannot distinguish the original interface from the introduced ones. So after unweav-
ing the aspects the original classes do not implement those interfaces any longer,
and so the extended application isincorrect.

Because of this we regard introductions to be inappropriate for the given problem.
The problem of grouping objects has already been discussed widely in the context of
object-orientation. Classes are templates from which objects are created (cf. [10]) and
in that way group objects. [9] pointed out theimportance of classification asamecha-
nism for conceptual modeling in object-oriented programming. The difference to the
problem handled here is that the needed classification is not an inherent property of
the objects, but depends on an aspect’ s subjective perspective on the system.

Weaving
I S e S . b7
|

Poi nt I | Anot her Poi nt I |/| Point I | Anot her Poi nt I_____‘
|

Figure 3: Using introductionsfor Poi nt and Anot her Poi nt

In that way the mechanism of generalization introduced in [7] seems to be appropri-
ate for the problem stated. Generalization permits to define a super-type based on an
existing class. In [7] one of the main purposes of generalization is to achieve a late
classification. That is exactly what aspects are doing: while they cross-cut an existing
structure they accomplish alate classification for their special purposes.

Neglecting the fact, that generalization is not available in popular object-oriented
programming languages, the criticism of that mechanism is corresponds to the of criti-
cism introductions in AspectJ: developers extending the original application can not
distinguish between the original classes and those created for the purpose of late
classification. Also the problem of the confusing class structure stays the same.

3 Agpect-Oriented Adapters

Adapters (cf. [1]) are specia classes, which adapt the interface of a class in the way
expected from its clients. In that way the functionality of adapters match the problem

CSEG
4

stated above. The traditional use of adapters for mapping interfaces assumes, that
clients expect a certain interface of a class which differsfrom that classwhich is able to
fulfill the requests. The problem depicted here is different: advices expect their parame-
ters to have some method signatures to send messages to them. Although the signa-
tures are known, the type of those objects is unknown, respectively those objects do
not have any common type. So an adapter is needed which has the interface expected
by the aspect and which forwards messages to a certain object.

of eachobj ect

Adapt er (i nstanceof (Adapter)) <<aspect >>
+r ef Obj ect : Obj ect For war di ngAspect
+get Ref Obj ect () : Obj ect receptions(* *(*))

+cr eat eAdapt er (o: Qoj ect, c: O ass) : Adapt er

) A

Concr et eAdapt er 1 Concr et eAdapt er 2
+Qperationl..... +Qperationl.....
+Qperation2..... +Qperation2.....

Figure4: Aspect-Oriented Adapters?

An object-oriented solution for this problem is quite complex: the type of the object
to which the messages have to be forwarded is unknown, so the developer has to use
reflection to realized it. This code has to be used in every method which means an
enormous effort.

public aspect ForwardingAspect
of eachobj ect(instanceof (Adapter)) {

around() returns Object: receptions(* *()) {

return invokeMet hodFr onRecepti onsJoi nPoi nt ((Recepti onJoi nPoint) thisJoinPoint);
L0
private Obj ect i nvokeMet hodFr omRecepti onsJoi nPoi nt (ReceptionJoi nPoint jp) throws Exception {
Met hod m = get Met hodFr onRecept i onJoi nPoi nt (j p);
return Minvoke(((Adapter) jp.getExecutingObject()).refObject, jp.getParameters());}

private Met hod get Met hodFr onRecept i onJoi nPoi nt (Recepti onJoi nPoint jp) throws Exception {
Adapter wap = (Adapter) jp.getExecutingObject();
Met hodSi gnature sig = (MethodSignature) jp.getSignature();
String methodNanme = sig.getNanme();
Cl ass[] paraniTypes = sig.getParaneterTypes();
return Wap.refObject.getClass().getMethod(nethodNane, paranifypes);}

Figure5: Example-implementation for forwar d-adapter

The aspect-oriented solution for such adapters is much easier and allows a higher
degree of reusability (figure 4). The abstract classAdapt er contains the reference to
the object to which every message isto be forwarded. The aspect For war di ngAs-
pect is responsible for forwarding every message received by an instance of
Adapt er . Therefore an instance of For war di ngAspect is created for every in-
stance of Adapt er and the aspect contains pointcut methods, which forward every
message received by the adapter to the corresponding object.

2 The UML-like notation used here serves the understanding of the ingredients of the aspect-
oriented wrapper, but does not match the UML standard.

CSEG
5

The aspect-oriented adapter is used by creating a Concr et eAdapt er, subclass
of Adapt er, which contains all methods needed by the aspect. Those methods have
to contain a dummy implementation needed for compiling the class. The implementa-
tion will never be executed, because the For war di ngAspect replacesit by forward
implementations.

Whenever a client wants an object to be adapted, he has to create an adapter in-
stance by invoking the static cr eat eAdapt er (..) -method of Adapter. The
parameters of this method are an instance of the object which is about to be adapted,
and a reference to the concrete adapter class. The adapter uses reflection to create a
new instance of the concrete adapter and initializes r ef Obj ect with the adapted
object. The developer doesn’t have to write glue code for forwarding messages, be-
cause thisis already done by the For war di ngAspect .

Figure 5 shows an extract from the implementation of a forward aspect in AspectJ.
The advice overrides every method of the adapter having an arbitrary return type. This
is realized by a receptions pointcut consisting only of wildcards. The implementation
uses the Reflection API part of Aspectd for finding out, what the target method is and
the Java Reflection API for getting areference to and invoking the target method .

For applying the aspect-oriented adapter to the introducing example a concrete
adapter (Poi nt Adapt er) hasto be created containing both getter-methods used by
the advice in Per si st ent Obj ect . The advice has to create an adapter object for
the incoming object using the create method of the abstract adapters:

Poi nt Adapter a = (PointAdapter) Adapter.createAdapter(p, PointAdapter.class);

Afterwards object a can be used asif it is an instance of Poi nt Adapt er .

4 Concluson and further work

We introduced aspect-oriented adapters as a mechanism for grouping objects and
compared it to existing approaches. The main advantage of using adapters is, that
objects can be grouped without touching the existing inheritance structure. The effort
of using aspect-oriented wrappers is compareable to introductions known from the
GPAL Aspectd.

Neverthel ess aspect-oriented adapters need to be used very carefully and in a dis-
ciplined maner. Because forwarding messages is realized on object-level using reflec-
tion there is no static type-checking available. So the developer has to be sure, that
the interface of the adapted object really fulfills the signatures specified in the con-
crete adapter.

This presented approach can be used for composing aspectual components [6],
which represent aspects whose interfaces have to be adapted to let them interact with
their environment. In the future we will examine, how such components can be realized
in existing general purpose aspect languages.

CSEG
6

References

1. Gamma, E., Hem R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable Ob-
ject-Oriented Software Addison-Wesley, 1995

2. Hanenberg, S., Unland, R.: Concerning AOP and Inheritance. In: Mehner, K., Mezini, M.,
Pulvermiller, E., Speck, A. (Eds.): Aspect-Orientation - Workshop. Paderborn, Mai 2001,
University of Paderborn, Technical Report, tr-ri-01-223, 2001

3. Hirsch, W., Lopes C.: Separation of Concerns. Northeastern University, technical report,
no. NU-CCS-95-03, 1995.

4. Kiczdes, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J-M., Irwing, J.:
Aspect-Oriented Programming. Proceedings of ECOOP '97, LNCS 1241, Springer-Verlag,
pp. 220-242, 1997

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An Overview of
Aspect]. Appearsin ECOOP 2001

6. Lieberherr, K., Lorenz, D., Mezini, M.: Programming with Aspectual Components, Technical
Report, NU-CCS-99-01, Northeastern University, Boston, 1999

7. Pedersen, C.: Extending Ordinary Inheritance Schemes to Include Generalization. In: Mey-
rowitz, N. (Ed.): Conference on Object-Oriented Programming: Systems, Languages, and
Applications (OOPSLA'89), October 16, 1989, New Orleans, Louisiana, Proceedings.
SIGPLAN Notices 24(10), October 1989

8. Saly: A General-Purpose Aspect Language, ht t p: / / www. cS. uni - essen. de/ dawi s/
research/ aop/sally/, January 2001

9. Taivalsaari, A.: On the Notion of Inheritance. ACM Computing Surveys, Vol. 28, No. 3, pp.
439-479, 1996

10. Wegner, P.: Dimensions of object-based language design. In: Meyrowitz, N. (Ed.), Proceed-
ings of OOPSLA '87, SIGPLAN Notices 22 (12), pp. 168-182, 1987

CSEG
7

From Software Parameterization to Software
Profiling

1 1

Philippe Bouaziz!'? and Lionel Seinturier

! Univ. Paris 6, Lab. LIP6, 4 place Jussieu, F-75252 Paris cedex 05, France
{Philippe.Bouaziz, Lionel.Seinturier}@lip6.fr
2 Prodware Group, 45 quai de la Seine, F-75019 Paris, France

Abstract. Over the last years, software engineering research applied
to separation of concerns has focused on new software paradigms such
as Aspect Oriented Programming. Aspects are abstractions which cap-
ture and localize crosscutting concerns. Many works have been conducted
with regard to non functional concerns such as performance or semantics
of component. This paper wants to demonstrate their interest for func-
tional concerns. It introduces a new software engineering process that
we call Software profiling which represents a step further in software pa-
rameterization using functional/non-functional aspects to provide highly
adaptable and evolving software.

1 Introduction

Over the last years, software engineering research applied to separation of con-
cerns has focused on new software paradigms such as Aspect Oriented Program-
ming [8][7]. It aims at optimizing software development by providing tools to
improve modularization, so that it corresponds to the natural view of concerns
such as defined by developers [10]. Aspects are abstractions which capture and
localize crosscutting concerns e.g. code which cannot be encapsulated within one
class but that is tangled over many classes. Synchronization, failure handling,
load balancing, real time constraints, memory management, optimization are
classical examples of aspects. Many works have been conducted with regard to
non functional concerns such as performance or semantics of component where-
as crosscutting concerns are widely presents in codes dealing with functional
aspect.

Research in AOP is in its early stage with programming tools available,
but its contribution to software development process is still not clearly defined,
especially in term of penetration degree in the functional part. We think that
capabilities of aspect are broader than system and environmental concerns, and
that they can be widely used in the software development process, and especially
concerning software parameterization that has been the last ten years goal in
software industry.

We present here the foundation of a software engineering process that we call
Software profiling which represent a step further in software parameterization by

CSEG
8

using functional /non-functional aspects to provide highly adaptable and evolving
software. It permits to obtain clear, modular and strongly evolving software that
can be profiled statically or dynamically depending on the problematic of the
user with no alteration of the standard source code which is only concerned
by standard evolutions, keeping this way ascendant compatibility in software
versions.

First of all, we describe quickly Aspect Oriented Programming. In a second
part we present the goals and fundamentals of Software profiling and its con-
tribution to software engineering industry. Finally we consider the benefits of a
Case tools for software profiling as a base for further works.

2 AOP

Aspect Oriented Programming aims to achieved separation of concerns by im-
proving code modularization using Aspects. Most of the time, aspects repre-
sent non-functional requirements. In AOP, components and aspects are separate
codes and the weaving process is done by a static (compile time) or dynamic
(run time) compiler that is called an aspect weaver. The aspect weaver, weaves
aspects and components at specific points named join points which can be im-
plicit such as language keywords or explicit. Specific code is then added at this
points. [6] classify join points among open, class-directional, aspect-directional,
and closed depending on the fact that the aspect or the class knows about each
other or not:

— Open: Both classes and aspects know about each over,
Class-directional: the aspect knows about the class,

— Aspect-directional: the class knows about the aspect,

Closed: neither the aspect nor the class knows about the other.

AspectJ [1] and the Composition Filter Object Model (CFOM) [2] are some
of the leader tools in AOP. AspectJ is an aspect-oriented extension to Java that
is being developed at the Xerox Palo Alto Research center. It offers a language
to define a new kind of module, called an aspect. Aspects are defined separately
from the standard code. AspectJ provides a static aspect weaver in Java, and oth-
er development tools. It is widely used in AOP research community, and version
1.0 is due next fall. A version of AspectJ for C [4] is under development. CFOM
is a project developed by the Trese group. The composition filter approach [2]
extends objects with filters that deal with inter-objects messages. Input and out-
put filters are used to localize aspect code. Other AOP approach exists, among
them Subject Oriented Programming [5], Adaptive Programming [9], and other
language extension like AOP /St for Smalltalk [3].

3 Software profiling

3.1 Software parameterization

Customer requirements and needs tend to evolve as technology, business and
company processes advance. Software developed in the last decade with initial

Awais Rashid

CSEG
9

customer needs in mind tend to be unsuitable to follow these changes as no
proper design technique is available for this. Development teams that try nev-
ertheless to achieve this goal, end up with source code more and more difficult
to maintain, upgrade, and reuse. Along a long embryo period, software is install
with many difficulties and is in permanent beta stages to meet new requirements
or requirements that emerge from the analysis.

The increasing speed of technological evolution over the last twenty years and
the fact that computer software became more and more common, created a clear
need for rationalizing software processes to deliver cheaper products, with short
integration times, quality-oriented maintainability and evolution capabilities to
guarantee a longer software life.

To achieve this goal, software industry evolved, just as the textile industry did
with ready-made clothes, and committed itself in developing standard business
software, based on common needs of a significant community of customers. Base
on this, customizations are being made possible with parameters that reflect
the various management practices of customer organizations. These software are
developed by editors that provide maintenance, that are permanently auditing
their market, and that are arbitrating the functional and technological changes
of software.

These days, the existing level of parameterization existing in major products,
such as ERPs! (e.g. SAP), provides many important features to meet needs of
various industry fields. Nevertheless, the level of adaptability of these products to
non-mutualizable features is weak due to the complexity introduced by the huge
number of available parameters. Most of the time, this adaptation is done in an
ad-hoc manner. Faced with this problem, partial solutions have been proposed
based on object technologies, n-tiers architectures and in the industry, relational
databases. They allow delocalizing treatments such as reporting, that can (re)
become specific, and to slightly amend software based on entry points, triggers
or stored procedures, to better integrate it with the information system.

Nevertheless, for simple needs such as ascending compatibility, the behavior
of the application or of the data model can never be altered. This prevents a strai-
ght and optimized answer to above mentioned issues. Furthermore, programs end
up being tangled due to the many possibilities introduced by parameterization
and cannot be reuse.

3.2 The benefits of functional aspects

Software design aims at: (1) factorizing functionalities, and (2) allowing that
these functionalities be parameterized in order to meet customer specific needs.
From an industrial point of view, the modification of these parameters can induce
too deep modifications of the software internal structure preventing the addition
of new or customer specific features. Many technical solutions exist, but they
bring either an overload of scattered code, or a parameterization of existing
parameters, and in all cases are to difficult to maintain (each case needs to be

! Entreprise Resource Planing

10

Awais Rashid

CSEG
10

individually treated). Aspect oriented development should allow to standardize
and centralize these specificities in order to avoid overloading and tangling.

3.3 Software profiling

The notion of aspect allows to profile software depending on the needs and
notably:

— to encapsulate in a clear and centralized way, parameters leading to massive
cross-cutting all along the code,

— to perform without altering the main code, modifications or extensions in
functional part, for example altering the behavior of business objects to
obtain a different action on the information flows, and even its replacement
by another object,

— to encapsulate in a clear and centralized way system features such as syn-
chronization, load balancing, real time, ...,

— to ease code reuse,

— to bring capabilities of dynamic reactivity to the software depending on
the evolution of profiles such as dynamic design of GUI and contents (for
instance to profile Internet applications furnished by ASPs - application
service providers).

Usage of aspects in parameterized software therefore allows to profile software
depending on data and strategy defined in static or dynamic ways. The pending
difficulty is to be able to define what in a profile is relevant to aspects.

4 Further works

As mentioned before, parameterized software design, is a global process. To be
a part of it, the notion of aspect should impact all levels, analysis, design and
implementation. To do so, CASE tools should integrate this notion, furnishing
an environment taking all this considerations in account. We can imagine to find
there :

— a set of rules to help decide whether to use aspects or not,

— an extension to existing methods to take aspects into account during the
analysis phase,

— a graphic design tool to describe aspects and their relationships with other
aspects and components,

— an environment for managing and testing projects integrating aspects char-
acteristics.

Some works have been realised in this sense such as UML/UXF [11] for the
design phase or AJDE [1] as a development environment. Nevertheless, as far as
we know, no break throws have been made in terms of designing aspects and their
relationships or about methods, or decisional purpose. Our goal is to provide a
CASE tools for software profiling design taking all this needs in account. One of
the first steps will be to define, method specifics, components specifications and
rules.

11

Awais Rashid

CSEG
11

5

Conclusion

We show in this paper the interest of introducing aspects in software parameter-
ization, and by the way demonstrate the capabilities of aspects in the functional
field of software development. Aspects in the development process will bring
clear, modular, strongly evolving and adaptable parameterized software. In this
article we enlarged the scope of aspect to functional domains. We are now work-
ing, on defining rules to decide where and when aspects should apply. The next
step will be for us to define fundamentals for Software profiling, especially in
terms of method specifics, components specifications and rules.

References

AspectJ home page. http://wuw.aspectj.org.

2. Aksit, M., Wakita, K., Bosch, J., and Bergmans, L. Abstracting object interactions

10.

11.

using composition filters. vol. 791 of LNCS, pp. 152-184.

Bollert, K. On weaving aspects. In Workshop Aspect-Oriented Programming at
ECOOP’99 (June 1999). http://trese.cs.utwente.nl/aop-ecoop99/.

Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N., and Ong, J. Structuring
system aspects. In Proceedings of the workshop on Aspect-Oriented Programming
at ICSE'01 (2001).

Harrison, W., and Ossher, H. Subject-oriented programming (A critique of pure
objects). In OOPSLA 1993 Conference Proceedings, A. Paepcke, Ed., vol. 28 of
ACM SIGPLAN Notices. ACM Press, Oct. 1993, pp. 411-428.

Kersten, M., and Murphy, G. Atlas: A case study in building a web-based learn-
ing environment using AOP. In Workshop Aspect-Oriented Programming at E-
COOP’99 (June 1999). http://trese.cs.utwente.nl/aop-ecoop99/.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W.
An overview of AspectJ. In Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP’01) (2001), Lecture Notes in Computer
Science.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
and Irwin, J. Aspect-oriented programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP’97) (June 1997), vol. 1241
of Lecture Notes in Computer Science, Springer, pp. 220-242.

Lieberherr, K. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston, 1996.
http://www.ccs.neu.edu/research/demeter/biblio/dem-book.html.

Parnas, D. On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15, 12 (1972), 1053-1058.

Suzuki, J., and Yamamoto, Y. Extending UML with aspects: Aspect support the
design phase. In Workshop Aspect-Oriented Programming at ECOOP’99 (June
1999). http://trese.cs.utwente.nl/aop-ecoop99/.

12

Awais Rashid

CSEG
12

Aspect-Based Workflow Evolution

Boris Bachmendo and Rainer Unland

Department of Mathematics and Computer Science
University of Essen, D - 45117 Essen
{bachmendo, unl andR} @s. uni - essen. de

Abstract. In this position paper we propose an approach for the flexible
evolution of object oriented workflow implementations using AOP. We show
how reusable aspects can apply changes (e.g. insertion of activities or control
flow constructs) to OMG compliant implemented processes. Besides aspects
providing different workflow auditing methods can trigger necessary
alternations. In that way a cyclic workflow improvement can be realized.

1. Introduction

Aspect-Oriented Programming is a new software engineering paradigm which
supports a separation of concerns. Concern composition is realized by extending
programming language with specia constructs. joinpoints (which define relevant
points for the insertion of concern-related code in the application class structure),
pointcuts (which describe interactions between joinpoints) and pointcut-methods (also
known as advises, define action to be performed before, after or instead the invocation
acertain pointcut is activated by) [6].

Different perspectives of workflow modelling and implementation, e.g. control
flow (execution order), data flow (data interchange) or resources are described in [7].
The applicability of AOP for supporting flexible workflow execution was first
identified in [12], that propose implementing these perspective separately using AOP
and weaving them together in aworkflow application.

Although workflow management arose from automating well structured repetitive
production processes, the need for supporting dynamic altering workflows, e.g. in
office and scientific areas, is obvious nowadays. [3] distinguish between static
workflow evolution, i.e. modifying workflow models, and dynamic evolution, i.e.
adapting running process instances. Unlike [12] we propose dynamic evolution of
existing object oriented workflow implementations by weaving appropriate aspects.
This approach alows the reuse of both adaptation cases realized as aspects (e.g.
insertion of control flow constructs) and workflow implementations. At the same time
aspects implementing arbitrary auditing methods can be used to control process
execution and trigger workflow evolution when necessary.

In the next section we briefly present an object-oriented workflow implementation
approach. Possible evolution scenarios of control flow as well as resource and
auditing perspective are described in the third section. Section four summarizes the
paper and discusses some open i SSUes.

13

CSEG
13

0.1

WfProcess +performer +requester WifRequester
1Y +container | * 1
WfProcessMgr

WfExecutionObject

* | +step +instance of +master
1 * * 1
WfActivity K>——————— WfAssignment WfRessource
+activity +assignment +work_list +assignee

Fig. 1. Simplified Workflow Management Facility Model

2. Object-Oriented Workflow I mplementation

First workflow management systems (WfMS) had a highly centralized architecture
with a single workflow engine (e.g. FlowMark) or multiple replicated execution units
(e.g. MOBILE [7]). But an optimal level of flexibility and scalability can only be
provided by a truly distributed object-oriented implementation, where workflows are
realized as independent distributed objects. In order to standardize object-oriented
WEMS and to make them compliant to Object Management Architecture the OMG
proposed the Workflow Management Facility Specification. Since we will explain our
approach using this model as a reference, we will briefly outline it in the following.

A simplified version of Workflow Management Facility Model [10] is depicted in
Figure 1. W Request er interface represents a request for some job to be done.
W Pr ocess has to perform the work, inform its requester upon completion and
deliver him the execution result. The requester uses W ProcessMyr to create a
process instance, i.e. it is a factory and locator for the instances of certain process
type. W Execut i onQbj ect is abasic interface which contains common members
of W Process and W Act i vi ty. WhileaW Pr ocess implements an instance of
a particular process model, the single process steps are represented by W Acti vity.
The process creates corresponding activities and defines its context (i.e. input data).
The result that is produced by activity can be used to determine the following one.
W Activity can aso act as W Request er, thereby the process it creates
becomes a subprocess of its owner. W Resor ce represents a resource necessary for
activity execution.

3. Workflow Adaptation Using Aspect-Oriented Programming

3.1 Control Flow Per spective

First of all we consider the control perspective and describe how the control flow can
flexibly be changed using AOP. Figure 2 depicts the insertion of activities and control
flow constructs, defined by the Workflow Management Coalition [14], such as
sequence, split, join and iteration. Activity diagrams on the left side show a process
fragment, while sequence diagrams to the right represent interactions between objects.
Replaced control flows are depicted by dashed arrows in activity diagrams, while
interactions contain some specia constructs showing interceptions by the aspects.

In Figure 2a an activity (A1) which is an instance of W Act i vi t yA isreplaced
by the instance of WActivityB (A2). We assume W ActivityA and

14

CSEG
14

W Act i vi t yB to be subtypes of the OMG-interface W Act i vi ty. In this case we
use an aspect that has a pointcut activated by the invocation of an W Acti vi t yA-
constructor performed by W Process instance P. The corresponding pointcut
method is executed instead of the original invocation. In the sequence diagram the
original call is depicted as a dashed connector with a transparent dot at the beginning
and transparent arrow at the end. Although this call is not executed it should
especialy be depicted for instead-invocations to clarify what pointcut was activated.
The aspectual invocation is depicted by the connector between the caller object and
the aspect instance with the black dot on the aspect side. It is labelled with the original
method call.

In this case (Fig. 2a) the pointcut-method creates an instance of W Acti vityB
and returns it to P instead of a W Act i vi t yA-object (we assume the process is
handling its activities through the W Act i vi t y interface). The context used for the
creation of A2 can differ from the original data. A2 considers P as its owner process
and reports it the execution results. Deletion of activities can be realized analogously
by replacement by dummy activities.

In Figure 2b a new activity (A2) is inserted between two existing ones and all of
them are executed in a sequence. The activity constructor invocation is once again
intercepted by the aspect. But in contrast to the first example the pointcut method is
executed before the constructor. It creates a new instance of W Acti vi t yB. This
activity cannot report its results to the process, because P is not aware of its existence
and it would interpret the call as the result of Al. So the result is reported to the
aspect and thereafter the intercepted constructer call is executed. The context passed
over to Al can be derived from the A2 result which in that way can influence the rest
of the process.

Figure 2c shows an inserted AND-Split between the activities A0 and AL. A single
thread of control now splits into two concurrently executing threads [14]: the old
(starting with A1) and the new one (A2). In contrast to the previous case the aspect
does not wait until A2 is finished before it continues the instantiation of A1l.
Therefore the context of Al cannot be affected by A2, whose returning result is
omitted since it is not relevant. An OR-Split (i.e. branching into severa alternative
threads) can be inserted analogoudly to the activity replacement with the help of an
instead pointcut method. The method evaluates given conditions and decides on
creating either A1 or A2 (XOR-Split) or both of them.

Multiple threads converge into a single one by using the join construct [14]. The
insertion of an AND-join that merges parallel threads is depicted in the Figure 2d.
Since the coordination of AO and Al is aready handled by the process, the aspect has
to ensure that A1 can only start after A2 is finished. Therefore one pointcut observes
the final call of A2 that return the result and sets an internal flag as soon as it was
executed. Another pointcut method intercepts the instantiation of A1l and lets it
proceed only after the flag was set. If the converging branches are aternatives (OR-
Join) the aspect has to detect the termination of the both, AO and A2. It has to trigger
the creation of Al at the moment the first of these events occurs and has to prevent
the instantiation when the second one takes place.

An iteration (i.e. repetitive execution of a process segment) is added in Figure 2e.
Activity Al is performed repeatedly as long as a certain condition is fulfilled. A
before pointcut detecting the result delivery of A1 and starting it again and again, is

15

CSEG
15

[condition]

[not condition]

P:WfProcess

Asp:WfAspect

A2:WfActivityB

| WiActivityB
WfActivityA(context) ol (context

L
) Activity 1]
A T
WrActivityA— — — — — — - |
*(conte . | |
i ALWIActivityA | |
! I

I

Ll set_result(result) |
LI i

P:WfProcess

WiActivityA(context)

Asp:WfAspect

} WfActivityB
| (context). |
»

WfActivity4
_(conte:

A1:WfActivityA

|
t‘] lsel_resul((result)

WHActivityA|
| CONtExt)
-%

A2:WfActivityB

‘ lselﬁresu\l(result)

P:WfProcess Asp:WfAspect
]
WfActivityA(context) l
¢ WrfActivityB
“WiActivityAl WfActivityA (contexgi
(ontedl | AT:WIACtiVityA |2 o A2:WfActivityB
|
|
! set_result(result) }
| | |
Asp:WfAspect A2:WfActivityB

WfActivityA(context)

set_result(result)

AL:WfActivityA

WfActivityA
|_dcontext)
-

set_result(result)

o

P:WfProcess

AL:WfActivityA

Asp:WfAspect

T

set_resul

set_result(result)

iresul) |

| [not condition]

| set_resul

[condition]

E] " start(context)

t(result)

V\)fAct\vityB(cuntext)

Fig. 2. Control flow adaptation using aspects.

A2:WfActivityB
»

]

16

CSEG
16

not appropriate in this case, since it would mean that results are reported repeatedly to
the process abject, that cannot handle them, since it is not aware of the repetition. So
the instead pointcut method is used. It checks the condition (which can be based on
the returned result or an independent of A1) and either starts the activity once more or
forwards the result of the last execution to the process. After the process object gets
thisresult it instantiates the next activity A2.

3.2 Resour ces Per spective

Another workflow execution concern where flexibility is an essential requirement is
the dynamic assignment of resources to activities. The WFMC differentiates four
kinds of resources: human (person), organizational unit, role (e.g. the function of a
person within an organization) and system (i.e. automated machine resource) [13]. As
proposed in [15] the workflow resource model can be separated into the static meta
model, the dynamic assignment rules and access synchronisation mechanisms.
Although the frequent changes in the resource meta model are extremely seldom and,
therefore, can be realized by redesigning the application, they can also be
implemented by using aspectual introductions. It is a mechanism provided by the
general purpose aspect language Aspect] [8] that allows extending given types or
certain objects with additional member fields and methods.

Much more undecided and, therefore, changeable units are the dynamic assignment
rules also referred to as policy resolution. They handle the resource assignment to
process activities at runtime. In the Workflow Management Facility Specification of
the OMG an object implementing the W Assi gnnent interface is responsible for
linking W Acti vi ty with W Ressour ce objects. It selects appropriate resources
according to the given activity context and other process independent information.
Although €ligible resources are selected dynamically, the used resolution policy
depends on the W Assi gnnent object the activity is related to. But often the
assignment strategy itself has to be changed or extended dynamically. In this case
reusable aspects can be used to either replace the assignment objects or extend the
activity selection procedure by inserting additional code before or after it. Possible
extensions can consider the actual workload (e.g. appropriate aspects can be
dynamically added in overload situations) or history dependent assignment either in
order to take advantage of persona experience or to ensure equal work partitioning
[2]. On the other hand it can be necessary to replace a resource either for all
assignments resp. activities (e.g. if an employee is absent and his work has to be
delegated) or only for selected ones (e.g. for security reasons). This changes can also
easily be realized by adding an aspect intercepting the resource invocations.

The third component of the workflow resource model mentioned above is the
synchronisation of the concurrent access of multiple activities to a single resource.
Since synchronisation of concurrent threads was the first application of AOP and the
main purpose for the specification of the domain specific aspect language COOL [9],
the suitability of aspects in this area doesn’t needs no further elucidation.

3.3 Auditing Per spective

Monitoring and logging of workflow executions as well as a comprehensive
evaluation of recorded audit trails is an essential part of workflow management, since
it closes the workflow development cycle comprising workflow identification,

17

CSEG
17

modelling, implementation, execution and controlling [11]. The main tasks of
workflow auditing are acquisition of execution data, its analysis and the utilization of
the results. Both acquisition and utilization can be differentiated in short and long
term, as well as active and passive approaches.

In the OMG Workflow Management Facility the acquisition of execution data is
realized by the W Event Audi t and its subtypes which record certain types of
workflow events (e.g. process or activity start and termination, context and result
changes etc.). But this scheme means a passive way of acquisition, even if using the
OMG Notification Service as proposed in [10], because only events published by
workflow execution objects can be received. An active acquiring component can
obtain arbitrary information it is interested in. It can be achieved by implementing the
acquisition with the help of aspects. In the case of object-oriented (and especially
OMG compliant) implementations all the relevant execution events can be detected
by appropriate pointcuts. An arbitrary replacement or combination of multiple aspects
without any modification of execution objects provides the necessary flexibility. For
example the short term acquisition aspect providing an order processing status for a
customer can be combined with an aspect implementing along term history logging.

Using aspects modules implementing different analysis methods for audit data can
be dynamically added or replaced. While passive utilization implies simple recording
and/or visualisation of the results an active approach intends an intervention in the
workflow execution. Long term utilization means changes to the process models that
influence all future executions. Short term intervention concerns the current running
process instances and can be realized by aspects adding or replacing activities and
modifying control flow as described in the section 3.1, or changing the context data.

4 Summary

In this position paper we proposed an approach for the dynamic evolution of
workflow instances by using aspects. It allows flexible process adaption and reuse of
both the object-oriented process implementation and the adopting aspects. The
changes can either be caused externally or triggered by the auditing component that
can be realized by aspects too. In that way a cyclic workflow improvement can be
realized.

Unfortunately the most implementations of aspect languages only support static
aspect weaving at the pre-compile time (a good overview is e.g. offered by [4]).
Though if using this languages a workflow has to be restarted, in order to be changed,
the aspect-based adaption dtill alows the reuse of both primary workflow
implementation and adapting aspects. Dynamic run-time aspect assignment is
desirable, in order to realize automatic improvement cycle. The approaches allowing
dynamic weaving are e.g. AOP/ST [1], that makes use of reflective capabilities of
Smalltalk, or Aspect Moderator Framework [4], which is implemented in Java and
introduces a special design pattern for objects aspects are assigned to. General
purpose aspect language Sally [5] is an extension of Java redlized by a pre-compiler.
It also supports dynamic aspect assignment at the run-time.

Other potential application areas like process error handling are to be examined in
the future. An open implementation issue is the aspect realization in distributed
environments, which is especially important for workflow management systems.

18

CSEG
18

References

10.

11.

12.

13.

14.

15.

Bodllert, K.: On Weaving Aspects. In: Proceedings of the Aspect-Oriented Programming
Workshop at ECOOP’99.

Bussler, Ch.: Policy Resolution in Workflow Management Systems. In: Digital Technical
Journal, Vol. 6, No. 4, Maynard, MA: Digital Equipment Corporation, 1995.

Casati F.; Ceri S.; Pernici B.; Pozzi G.: Workflow Evolution. In: Proceedings of the 15 the
International Conference on Conceptual Modeling, ER'96, Cottbus, Germany. Springer
Verlag, Lecture Notes in Computer Science, 1996.

Constantinides, C.; Bader, A.; Elrad, T.: A framework to address a two-dimensional
composition of concerns. In: Proceedings of the First Workshop on Multi-Dimensional
Separation of Concerns in Object-Oriented Systems at OOSPLA'99.

Hanenberg, S.; Bachmendo, B.; Unland, R.: An Object Model for General-Purpose Aspect
Languages. To appear in the Proceedings of the Third International Conference on
Generative and Component-Based Software Engineering (GCSE) 2001.

Hanenberg, S.; Unland, R.: Concerning AOP and Inheritance. In: Mehner, K., Mezini, M.,
Pulvermiller, E., Speck, A.(Eds.): Aspect-Orientation - Workshop. Paderborn, Mai 2001,
University of Paderborn, Technical Report, tr-ri-01-223,2001

Jablonski, S.; Bussler, Ch.: Workflow Management. Modeling Concepts, Architecture and
Implementation. International Thomson Computer Press. London et. al. 1996.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An Overview
of AspectJ. To appear in ECOOP 2001.

Lopes, C.: D: A Language Framework for Distributed Programming. A Ph.D. Thesis.
College of Computer Science. November 1997.

Object Management Group: Workflow Management Facility Specification, Version 1.2.
April 2000.

Rosemann, M.: Workflow Monitoring and Controlling. In.: Jablonski, S.; Boehm, M.;
Schulze, W. (Eds.): Workflow Management. Development of Applications and Systems.
Heidelberg 1997, pp. 201-210. (in German).

Schmidt, R.; Assmann, U.: Extending Aspect-Oriented-Programming In Order To Flexibly
Support Workflows. In: Lopes, C.; Murphy, G.; Kiczales, G.: Proceedings of the Aspect-
Oriented Programming Workshop at ICSE’'98.

Workflow Management Coalition: Interface 1: Process Definition Interchange Process
Model. Document Number WfMC TC-1016-P. Version 1.1. October 29, 1999

Workflow Management Coalition: Terminology & Glossary. Document Number WFMC-
TC- 1011. February 1999.

zur Muehlen, M.: Resource Modeling in Workflow Applications. In.: Becker, J.; R zur
Muehlen, M.; Rosemann, M.(Eds.): Proceedings of the 1999 Workflow Management
Conference “Workflow-based Applications” in Muenster. November 1999.

19

CSEG
19

Some Insights on the Use of AspectJ and Hyper/J

Christina Chavez!:2, Alessandro Garcial, and Carlos Lucena!
{flach, afgarcia, lucena}@inf.puc-rio.br

! Computer Science Department, Pontifical Catholic University of Rio de Janeiro,
Rio de Janeiro, Brazil.
2 Computer Science Department, Federal University of Bahia, Bahia, Brazil.

Abstract. In this paper, we report some insights collected during the im-
plementation of the Portalware system, using both AspectJ and Hyper/J,
having as a starting point an aspect-oriented design model. One of the mo-
tivations behind this development exercise is a practical assessment of each
approach’s similarities and differences, strengths and weaknesses to help in
the validation of a generic aspect-based design model that can be mapped
to the implementation models supported by AspectJ and Hyper/J.

1 Introduction

The identification and structuring of software components, crosscutting aspects,
and their relationships are essential tasks in order to produce effectively reusable
components and aspects. However, these tasks are not trivial and consequently re-
quire a disciplined design approach as well as suitable implementation tools. In
this context, two research activities concerned to multi-dimensional separation of
concerns (MDSoC) are currently being held within the Software Engineering Lab-
oratory (LES) at PUC-Rio: (i) the assessment and evaluation of applying aspect-
oriented design and programming techniques to the design and implementation of
multi-agent object-oriented software, and (ii) the assessment and evaluation of the
strengths and weaknesses of approaches and tools that support MDSoC to help in
the validation of a generic aspect-based design model under development.

An unifying subject of study for these activities is the development of the
Portalware system [4], a web-based environment that applies groupware concepts
in order to support a disciplined approach for the construction and management
of e-commerce portals. Software agents were introduced in Portalware to assist
its users with time-consuming activities and to automate repetitive user tasks. An
innovative aspect-based agent model proposed in [5] was applied in the early design
of the Portalware system, to allow the separation and flexible integration of mul-
tiple aspects of agenthood, such as interaction, autonomy, adaptation and others.
Moreover, an exploratory implementation for Portalware using Aspect] [8] was
developed. Some interesting results have been found and discussed elsewhere [6].

The resulting aspect-based design model (highly influenced by the Aspectd pro-
gramming model) and the AspectJ/standard Java code were reused in the imple-
mentation of Portalware with Hyper/J [11], a tool that supports multi-dimensional
separation and integration of concerns in standard Java software. The adoption of
an aspect-based design model supports our belief that the base-aspect dichotomy
simplifies concern-based modularity [10].

20

CSEG
20

Aspect] Hyper/J
Crosscutting concern aspect hyperslice
Composition
where join point corresponding unit
how merge before, after, around| merge, override
Composition Specification inside aspect outside hyperslice
Composition Precedence “dominates” “order”

implicit rules hyperslice declaration

Composition Time compile-time compile-time

Table 1. Comparing AspectJ and Hyper/J

The primary purpose of this work is to report some insights we have got in
implementing the same application, the Portalware system, using both Aspect]
and Hyper/J, having as a starting point an aspect-oriented design model. In the
following Section, we describe the mapping from the aspect-based design model
to Hyper/J and discuss the insights we have gathered during the transformation
process.

2 From Aspects to Hyperslices

The AspectJ programming model supports the base-aspect dichotomy. Crosscutting
concerns are modularized by aspects. Composition between base and aspects is
defined in terms of base-related join points [8]. Crosscutting behavior can be added
before, after or around join points. Composition is defined inside aspects. Precedence
among aspects is resolved implicitly (before, after, around rules) or explicitly (the
dominates clause).

Hyper/J supports Hyperspaces [11], an evolution on the early work on subject-
oriented programming (SOP) [7] that does not necessarily distinguish between base
and crosscutting concerns. Concerns are modularized using hyperslices. Composi-
tion rules are defined in terms of corresponding units [11]. These units are related
by merge or override relationships. Composition is defined independently from the
hyperslices. Precedence among hyperslices is resolved explicitly (declaration of hy-
perslices in the hypermodule, the order clause). Table 1 summarizes these charac-
teristics.

We have adopted a simple set of transformation rules, based on (i) rewriting each
aspect to one or more classes encapsulated by a separate hyperslice, (ii) transforming
advice code into ordinary method code and (iii) adopting the mergeByName general
composition strategy. This decision was highly influenced by the fact that some
constructs from Hyper/J are very limited (for example, the bracket directive') or
not available yet (the merge composition relationship to be used with the equate
relationship) [11].

2.1 An AspectJ Solution

The AspectJ solution comprised 3 overlapping aspects (Interaction, Autonomy and
Adaptation) and almost 50 classes. The following initial condition held, simplifying
the transformation process:

! The bracket directive resembles the before/after advice constructs from AspectJ.

21

CSEG
21

The Java source files were available and compilable.

Each aspect/class was defined in a separate file.

Every pointcut used only the “executions” primitive pointcut.

For each aspect definition, no before/after advices were defined over the same
pointcut and there were no around advices.

2.2 The Transformation

A set of transformation rules were applied following the steps described below:

1.
2.

3.

Separate files with standard Java code from files with AspectJ code?.

Create a new file .hs (hyperspace file), declaring the class names that will live
in the hyperspace.

Create a new file .hm (hypermodule file).

. For each aspect A;,i = 1,n and j # i with header

aspect A; [dominates A;] of eachobject(instanceof (CName))
(a) Create a package named A;
(b) Create afilenamed A;/concerns.cm containing: package A; : A;.Kernel

. Declare in the file .hm

(a) The “base” hyperslice
(b) The hyperslices A;.Kernel, for each aspect 4;,% = 1,n and j # 4, containing
aspect A; [dominates Aj] of eachobject(instanceof (CName))
where, if Ai dominates Aj, then A; Kernel is declared after A4;.Kernel.
(c) The general composition strategy: mergeByName

. For each aspect A;,i = 1,n and j # i such that

aspect A; [dominates A;] of eachobject(instanceof (CName))
(a) Create a file named A;/Cname.java and declare class Cname in it
(b) Copy introductions from aspect A; to class Cname
(¢) For each pointcut that contains executions(T methodName),
i. Define new method methodName with body B defined in the advice
ii. If advice defined on pointcut is before
Declare in the file .hm
order action Ai.Kernel.CName.methodName
before action Agent.Kernel.CName.methodName;

iii. If T # void, create a summary function and declare set summary function

in the file .hm.

2.3 An Hyper/J Solution

The resulting solution in Hyper/J was structured in an hyperspace with four dimen-

sions (Agent, Interaction, Autonomy, Adaptation), four main hyperslices (Agent.Kernel,

Interaction.Kernel, Autonomy.Kernel, Adaptation.Kernel), an hyperspace file, one
concern map file for each dimension, an hypermodule file and a set of standard Java
classes. Fach source aspect file with an AspectJ aspect declaration has generated
one or more Java files, depending on the requirements of declarative completeness
imposed by Hyper/J.

% The original files with standard Java were not rewritten.
3 For overlapping through after advices.

22

CSEG
22

2.4 Discussion

Skipper [10] compares subject-oriented programming and aspect-oriented program-
ming and drops interesting conclusions shared by this development experiment.
For example, the base-aspect dichotomy, with explicit dependency on some “base”
whose vocabulary is shared among the “aspects”, may be regarded as a discipline
that may simplify the development of MDSoC solutions, especially the rules of
composition.

Lai, Murphy and Walker [9] describe an experiment with Hyper/J and discuss
some code restructuring used to enable the capturing and composition of concerns.
In this experiment, we have shared both the reported benefits and limitations pre-
sented ([9], section 4.2), although we did not restructure classes; instead, we have
rewritten aspects into one or more classes. During the transformation process, we
have noticed that AspectJ’s aspects and named pointcuts are good mechanisms for
improving the readability of the crosscutting code. By restructuring each aspect
definition into multiple classes, rewriting advice code into ordinary methods, and
fully using the mergeByName composition strategy in Hyper/J, we have simplified
the transformation process, but we may have lost some of the reported benefits
provided by aspects and named pointcuts [1].

Nevertheless, when the initial conditions reported in section 2.1 do not hold,
the transformation may require a lot of additional work, and possibly, some kind of
refactoring in some methods inside the aspect definition. One source of problem for
the translation to Hyper/J is something that usually happens in AspectJ programs:
the addition of something to the base via an introduction and a subsequent advice
defined on it, all inside the same aspect. Since we can not have two methods with
the same signature in a class, this would require a more complex rewrite rule, with
different naming convention for the advice and the inclusion of an additonal equate
clause in the hypermodule file. For a complete report on the problems found during
this experiment, see [2].

The experiment also allowed us to evaluate how the composition mechanisms
of each tool work in practice. In AspectJ, even with the expressive power of wild-
cards in pointcuts, it may be eventually necessary to invasively modify an aspect
definition, because the composition between aspects and classes is hardwired in
the aspect header. Moreover, the use of dominates establishes a strict relationship
among aspects, and consequently, among all their pointcuts. It would be interesting
if the designer could specify exceptions to the composition order for some of the
pointcuts. Hyper/J provides a more elegant and flexible solution, by requiring the
definition of the composition strategy explicitly outside the hyperslice definition
and by allowing the specification of exceptions to the composition strategy and to
the composition order among units (also at the level of operations). This approach
increases the potential for non-invasive modification and reconfiguration. Finally, it
is worth mentioning that an important requirement stated for Portalware — the
attachment of different aspects to distinct instances of agents [5] — has not been
fulfilled due to current limitations of the composition mechanisms of both tools.

23

CSEG
23

3 Conclusions

We have reported some insights collected during the implementation of the same
application, the Portalware system, using both AspectJ and Hyper/J, having as
a starting point an aspect-oriented design model. These insights refer not to the
maturity or performance of each tool, but to their ability to separate and compose
concerns, and the correspondence among their programming elements.

We believe that, had we started this experiment with hyperslices instead of
aspects, the transformation process would pose more difficulties, partially because
the composition mechanisms provided by Hyper/J are more powerful and flexible
than those provided by AspectJ, partially because we would have some additional
work to consider the hyperslices under the base-aspect dichotomy perspective. In
[3], Clarke argues that there is a potential for a relatively clean mapping from
Composition Patterns — a design model inspired in the MDSoC model prescribed
by SOP — to Hyper/J code, while the mapping to AspectJ code may be subject to
scattering and tangling in aspects.

We expect that the generic aspect-based design model we have been working on
allows the characterization and comparison of existing and new approaches, as well
as an easy mapping from the design model to different programming models that
support separation of concerns.

References

1. B. Alwis et al. Coding Issues in AspectJ. In Int’l Work. on Advanced Separation of
Concerns at OOPSLA, 2000.

2. C. Chavez, A. Garcia, and C. Lucena. An Experience Report on the Use of AspectJ
and Hyper/J, 2001. Tech. Report, PUC-Rio (to appear).

3. S. Clarke and R. Walker. Mapping Composition Patterns to AspectJ and Hyper/J.
In Int’l Conference on Software Engineering (ICSE 2001), May 2001.

4. A. Garcia, M. Cortes, and C. Lucena. A Web Environment for the Development
and Maintenance of E-Commerce Portals based on a Groupware Approach, 2001.
Information Resources Management Association Int’l Conference (IRMA 2001).

5. A. Garcia and C. Lucena. An Aspect-Based Object-Oriented Model for Multi-Agent
Systems. In Advanced Separation of Concerns in Software Engineering at ICSE’2001,
Toronto, May 2001.

6. A. Garcia, C. Lucena, and D. Cowan. Engineering Multi-Agent Object-Oriented Soft-
ware with Aspect-Oriented Programming, 2001. Submitted to Software: Practice &
Experience, Elsevier, April 2001.

7. W. Harrison and H. Ossher. Subject-Oriented Programming (A Critique of Pure
Objects). In Proceedings of OOPSLA’93, pages 411-428, 1993.

8. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
Overview of AspectJ, 2001. (http://aspectj.org/documentation/overview/aspect;j-
overview.pdf).

9. A. Lai, G. C. Murphy, and R. J. Walker. Separating Concerns with Hyper/J: An
Experience Report. In Int’l Workshop on Multi-Dimensional Separation of Concerns
in Software Engineering at ICSE, 2000.

10. M. Skipper. The Watson Subject Compiler & AspectJ (A Critique of Practical Ob-
jects). In Workshop on Multi-Dimensional Separation of Concerns at OOPSLA, 1999.

11. P. Tarr and H. Ossher. Hyper/J User and Installation Manual, 2000.

24

CSEG
24

Translation of Java* to Real-Time Java Using Aspects™

Extended Abstract

Morgan Deters, Nicholas Leidenfrost, and Ron K. Cytroh

Washington University Box 1045
Department of Computer Science
St. Louis, MO 63130 USA

Abstract. The Real-Time Specification for Java [1] (RTSJ) introduces the con-
cept of nested-scope memory areas to Java. This design allows a programmer to
allocate objects in areas that are ignored by the garbage collector. Unfortunately,
the specification of scoped memory areas currently involves the introduction of
unwieldy, application-specific constructs that can ruin the reusability of the af-
fected software.

We propose the use of aspects [2], in particular the AspectJ [3] system, to trans-
form a Java program into a scope-aware RTSJ program automatically. Moreover,
we have developed analysis that automatically determines storage scopes, in re-
sponse to information provided by an instrumented form of the application at
hand. That instrumentation is also accomplished using aspects. Here we present
our ongoing work in using aspects to detect and specify memory scopes automat-
ically in Java programs.

1 Motivation

One major roadblock to the widespread acceptance of Java as a language for
real-time and embedded systems is its reliance at runtime on an asynchronous
garbage collector. Such a collector may preempt threads running in a real-time
environment or take control of the system during memory allocation requests.
The collector can then take an unbounded amount of time to complete its task,
introducing unacceptable unpredictability into the system. To address these con-
cerns and provide greater programmatic control over memory allocation and us-
age, the Real-Time Specification for Java [1] (RTSJ) introduces to Java the use
of structuralmemory areashrough theMemoryArea type, the subtyping of
which can admit multiple strategies for allocating and deallocating storage.

One of the key memory strategies of RTSJ is provided withShepe-
Memory type, which allows for memory areas to be associated with a particular

* A registered trademark of Sun Microsystems
** Funded by the National Science Foundation under grant 0081214 and by DARPA under con-
tract F33615-00-C-1697
*** Contact author: mdeters@cs.WUSTL.edu

25

CSEG
25

scope of thread execution. When an execution scope is exited, objects in the
memory area are released without the need for a garbage collector. However,
the unit of a thread is not necessarily the most natural or useful level at which
to create and manipulate memory areas. Consider the introductioGatize
type into a system (Figure 1(a)). A singlet@ache object is constructed when
the cache is first accessed. In a corresponding RTSJ design, we want this ob-
ject to be allocated inmmortalMemory , because the singletoBiache is
around for the length of the program. Placing itmmortalMemory keeps
the garbage collector from scanning or marking it. This would be a waste of time
since we know that it will never become collectible: the scope oxhehe ob-
ject is global. To realize this RTSJ design, the programmer replaces occurrences
of new Cache with invocations ofnewinstance on the desired memory
area, as shown in Figure 1(b).

If classCache had a more complicated design that supported multiple in-
stances, this recoding oeéw instructions tmewlnstance invocations would
need to be pushed into the user’s codevarysite that &Cache object was con-
structed. This breaks the encapsulation ofGlaehe type. Memory instructions
are sprinkled throughout user code rather than being factored out into a separate,
decoupled memory strategy. The resulting code will not be easily reusable.

Figure 1(c) shows a better approach. With @@cheMemory aspect, we
can write theCache class just as we did in the Java implementation; the aspect
assumes the responsibility of placing it into the correct type of memory area.
Further, if we extende@ache to support multiple instantiations, th€ache-
Memory could weave into user code, allowing the user to construCaehe
instance naturally, without being responsible for its memory requirements.

We propose an automatic system for translating Java codeviatoory-
Area -aware RTSJ code by determining the necessary RTSJ memory scopes re-
quired to describe it. By employingrobing aspectsve determine where scopes
can be used and develop a graph from which we can compute provably legal
scope hierarchies. A scope hierarchy is selected, runtime execution points are
chosen for opening and closing scopes, and an aspect is generated to enforce the
structure on the original program’s execution. Objects in the modified program
are located in scoped memory areas rather than in the garbage-collected heap.

2 Scope Determination

As specified by RTSJ, a thread becomes associated with a scope when that
thread callenter on the scope. The scope then resumes the thread by call-
ing itsrun method. Any number of threads can enter a scope, and that scope
can be deleted only when all threads that have entered it have exiteduheir

26

CSEG
26

class Cache {
protected static Cache singleton;
public static Cache instance() {
if(singleton == null)
try {
singleton = new Cache();
} catch(Exception €) { ... }
return singleton;

}
Il etc.

}

class Cache {
protected static Cache singleton;
public static Cache instance() {
if(singleton == null)
try {
singleton = (Cache)
ImmortalMemory.instance().
newlnstance(Cache.class);
} catch(Exception e) { ... }
return singleton;

}

Il etc.
}
(a) (b)

aspect CacheMemory {

around() returns Cache : calls(Cache.new(..)) {
ConstructorCallJoinPoint ccjp =
(ConstructorCallJoinPoint) thisJoinPoint;
ConstructorSignature cs =
(ConstructorSignature) ccjp.getSignature();

return (Cache)(ImmortalMemory.instance().
newlnstance(Cache.class)

(©

Fig. 1. (a)A partial Java implementation of@ache type.(b) A partial RTSJ implementation of a
Cache type inimmortalMemory . (c) An AspectJ aspect used to rewr@ache instantiations
to be inlImmortalMemory . RTSJCache objects can now be constructed viaw, just like
objects in Java.

method; detection of this condition is accomplished by reference-counting the
scope. Any memory allocated via a simplew instruction is allocated in the
memory area currently associated with the allocating thread. Exjglerory-

Area allocation instructions are also permitted via tlesvinstance method,

as in theCache example of Figure 1.

ScopeMemory scopes can be nested, and it makes sense to design nest-
ing relationships when small and perhaps iterative pieces of code produce a lot
of garbage during their computation—this garbage can then be cleaned up all
at once, on exit of the inner scope, without the need for a garbage collector.
Programmers and program analysis tools tend to associate notions of storage
scope with method scope. Thus, it may be desirable fBc@peMemory to
be associated with a particular scope of execution—a method, for example. The
scope could then be deleted when the method exits. RTSJ avoids the improper
collection of objects that are still reachable by mandating that object references
may only point to objects within the same scope or outward from inner scopes

27

CSEG
27

a

A<—C A B
\ / : =
(a) (b) (c)
Fig. 2. A doesReference graghr a programP (a) before andb) after grouping strongly con-
nected objects. An arrow from to B indicates that objectl stores a reference to objeBt (c)
shows one possible scoping structure, wigiis in the outermost scop& is in a sub-scope, and

A, B, andC are in a sub-scope dP’s scope. Object references in RTSJ may only point outward
to enclosing scopes.

to enclosing scopes; scopes are at least as long-lived as those that nest within
them, so these outward-pointing references are considered safe.

If a Java program were simply moved to an RTSJ platform, then by default
all objects would be allocated in the garbage-collected heap, which offers no
guarantees for real-time activities. To generate an RTSJ scope hierarchy out of
Java’s flat memory model, we work backwards, tracking which objects reference
which others, to build a set of scope nesting structures that do not violate the
object referencing regulations of RTSJ.

We have developed eeference-probing aspedb determine these legal
RTSJScopeMemory assignments. The probe defines as join points [2] the ob-
ject instantiations and assignments of interest to us and buddssReference
graphto track which objects refer to which other objects. TuesReference
graph may contain strongly connected objects; these objects are grouped to-
gether as they must share a scope. This collapses the more general graph into a
directed acyclic graph (DAG).

For example, if objectd references objecB, the DAG contains an edge
from A to B. ThenB’s scope must be at least as long-livedAs. There are
two legal scoping hierarchies in this instance: that wtgiie in an outer scope
andA is in an inner scope, and that whetendB are both in the same scope. A
simple (but nonoptimal) algorithm for determining suitable scopes is to perform
a topological traversal of the DAG, which corresponds to a right-to-left preorder
traversal of any depth-first spanning tree of the DAG. Figure 2 shows an example
illustrating this procedure.

3 Join Point Discovery

The join points in the original program at which we need to inject instructions
to enter these scopes must also be determined. Consider Figure 3, a possible

28

CSEG
28

stack
4 pointa' 4:1 A, B, & Chorn
stack
pointer 4’3 D born * 3| Dborn
2 2
1 1
ol _Eborn ol _Eborn
@ (b)
i 4 <— A,B,& Cdie 4 -— A,B,&Cdie
s pwime | y S
pointer o] 2 ’
. stack) D dies
10 ¢ pointer 1| °
oLE born oLE born
(©) (d)

Fig. 3. A view into the execution stack of prograf at different points inP’s execution.(a) E

is born first, in frame 0. In frame 3) is allocated, thertb) A, B, andC (which refer back to

D) are allocated in frame 4, B, andC are not returned or thrown from the execution scope
that generated them, and we know from Figure 2 that there are no references to them, so they
must die upon exiting their birth stack frame—this indicates that we can close their associated
memory scope when frame 4 pojfjs) However, D escapes the execution scope of its birth (it

was returned or thrown), and it is still live in frame (&) Therefore,D’s scope must not close

until frame 2 is popped an® is known to be dead.

execution stack for the program whose reference behavior is described by
Figure 2. FirstF is constructed, then in some later stack frabhis constructed

(and stores a reference). If we can determine thab is always dead at the
time a particular stack frame pops, we can close its scope at that point. This is
demonstrated in the figure.

We can reason about the frame events of Figure 3 by engineering advice on
method and constructor join points. To determine the points at which objects
are dead, we weavel@eness-probing aspeato programP. This aspect in-
spects method and constructor executions to determine when objects are born
and when they become unreachable.

By combining thedoesReferencecope information harvested by trefer-
ence-probingaspect and the frame birth and death data fronlivle@ess-prob-
ing aspectwe can discover a scoping hierarchy that respects both RTSJ's re-
quirements on object references and the observed execution flBw of

4 Conclusion

Our approach has the following advantages:

29

CSEG
29

1. The memory concerns of the system are described and enforced in a mod-
ular fashion. The memory concerns are described through the use of as-
pects, rather than sprinkling memory instructions throughout the code via
newlnstance invocations. This is a particularly important issue for ob-
jects in real-time Java packages that want or need to manage their own mem-
ory concerns under RTSJ. Without aspects, the user would have the respon-
sibility of placing packaged objects in the correct type of memory area.

2. Automation ofScopeMemory detection and management lowers develop-
ment costsThis dynamic analysis approach can be used to find a memory-
efficient scoping structure, and the resulting, automatically generated mem-
ory aspect is easily tested by weaving it in to user code. Human-readable de-
scriptions of object behavior can be generated that allow a useful view into
the system and point out inefficiencies or unintended design consequences
in the system.

3. The introduction of aspect code into the target program introduces real-time
predictability. Because the scoping hierarchies are computed and the neces-
sary join points are discovered offline, the aspect that enforces the runtime
use of RTSJ scoped memory areas consists mainly of a table lookup. This
can be done in bounded time, and we expect the translated program’s per-
formance to be more predictable (and suitable to real-time environments)
than the original program.

4. User source files are unchangédhe real-time modifications are completely
described in separate aspect source code; our aspect weaves into the user’s
source in order to modify it. For large source code trees, disk space require-
ments can be dramatically smaller. Additionally, one source code tree is
sufficient for both Java an8copeMemory -enhanced RTSJ code.

In summary, we have proposed a mechanism for automating the creation of
RTSJ memory scopes. The expression of those scopes is accomplished via as-
pects, as is the offline dynamic analysis to determine the scopes. At present we
have pieces in place to perform the analysis and to create scopes that are re-
spectful of object references from program runs. Our future plans call for inves-
tigating tradeoffs between various scope nesting structures, in terms of footprint
and the overhead incurred for managing the scopes.

References

1. Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbulhe Real-Time Specification
for Java Addison-Wesley, 2000.

2. Gregor Kiczales. Aspect-Oriented ProgrammingPtaceedings of the 11th European Con-
ference on Object-Oriented Programmijrigine 1997.

3. The Aspect] Organization. Aspect-Oriented Programming for Jawav.aspectj.org
2001.

30

CSEG
30

Middleware Architecture Design Based on
Aspects, the Open Implementation Metaphor
and Modularity

H.-Arno Jacobsen
University of Toronto
Department of Electrical and Computer Engineering and
Department of Computer Science
jacobsen@eecg.toronto.edu *

1 Introduction

A 7"middleware system” constitutes a set of services that aim at facilitating
the development of distributed applications in heterogeneous environments. The
primary objectives of a middleware are to foster application portability and
distributed system interoperability. At least conceptually, the ”middleware layer”
comprises a layer below the application and above the operating system and
network substrate. Common middleware platforms include CORBA, DCOM,
and the Java suite of protocols.

The key design principal underlying middleware design has been to hide and
encapsulate system details behind common abstractions and offer various dimen-
sions of transparency to the application developer (e.g., with respect to object
location, data access, and service implementation language). As systems code
(or near systems code) standard middleware has not been designed with exten-
sibility, modularity, configuration, openness, and customization in mind. It is, for
instance, impossible to enhance a platform with techniques that address network
awareness, mobile awareness, and dynamic adaptability, or to exploit applica-
tion level semantic for system operation. Commonly, the argument against such
a design is a postulated sacrifice of performance.

Some of these issues have been partially recognized by bodies defining mid-
dleware specifications, more notably the OMG, who has introduced a number
of features addressing this dilemma. This includes, for instance, message and
method level interceptors, hooks for custom marshalling (restricted to value
types), open stub-to-orb interface (restricted to the Java language mapping),
and pluggable transports (restricted to the real-time CORBA profile, although
often implemented by standard ORBs). These enhancements leverage part of the
problem, but leave much to be desired. Extending ORBs with language map-
pings, protocol mappings, object adaptors, general custom marshalling, smart

* This work is supported by NSERC. Position Paper in Workshop on Aspect-Oriented
Programming and Separation of Concerns, Lancaster, UK, August 2001.

31

CSEG
31

proxies, or techniques to achieve network awareness and dynamic adaptability
to run-time conditions is still not a given (see [8, 5] for a more detailed discussion
of some of these issues.)

Moreover, middleware systems are extended to address requirements of the
most diverse application domains and new middleware services supporting appli-
cation transcending requirements are constantly added. The application domains
addressed by the CORBA platform alone, range from (distributed) business ap-
plications (standard CORBA), real-time systems (Real Time CORBA), and sci-
entific and high performance computing (Data Parallel CORBA), to wireless and
embedded systems (Minimum CORBA). The service sets extend from fault toler-
ance, security, and object group management to synchronous and asynchronous
communication, to just name a few.

Middleware platform families are evolving to support these different applica-
tion domain requirements within the same platform line (i.e., essentially product
line). Different profiles (i.e., specialized subsets of the core model) are defined to
address service sets and specific domain requirements. Similar efforts are emerg-
ing for Java-based middleware, and to some extend for DCOM-based systems.
This proliferation as well as the aim to support a vast functional spectrum with-
in one environment is leading to the co-existence of middleware platforms with
many non-orthogonal features and considerable functional overlap.

To summarize, the key problem with current middleware systems is non-
extensibility, proliferation with respect to supported features and application
domains, and a too coarse-grained service model exhibiting functional redun-
dancy.

While we cannot offer a full solution to these problems, we intend to outline
our position towards a new architecture for middleware systems. We first discuss
a number of principles to address shortcomings in current middleware architec-
tures and then present potential solutions to the above outlined problems. The
new middleware architecture will be based on three key concept, modularity,
aspect orientation, and the open implementation metaphor. We also summarize
related work that has addressed some of these issues.

2 Our Position: Towards an Improved Middleware
Architecture Model

Our position is that, for the above outlined reasons, the design of a middleware
platform should be re-thought from ground up and the hypothesis of whether or
not an efficient modular platform cannot be developed, must be tested. We first
discuss a set of principles a new middleware platform design should be based
upon and then discuss how to achieve this with emerging development concepts.

Middleware Design Principles

1. Micro-kernel like architecture:

32

CSEG
32

Current middleware architectures favor one primary communication style
— synchronous RPC — as basis and build other styles, as secondary add-
on services next to it! (e.g., asynchronous communication, non-continuous
operations, reliable / unreliable multicast, publish / subscribe, group com-
munication etc.) A major drawback of this approach in current platform
implementations is the overlap of the different models, the replication of
core functional units that are part of all communication style, the subtle
difference in the models (as they were incrementally developed over years),
and the complexity of the final programming model supporting several non-
orthogonal overlapping features.
To address these issues, a new middleware architecture should provide a
model in which all communication styles are equally placed side-by-side and
modularly broken down into functional units. Different communication styles
are incrementally obtained from the composition of underlying functional
units. In this model no one style is favored in the architecture over another
one, functional redundancy is avoided, and consistency is maintained. We
refer to this as a micro-kernel like design to emphasize that there should
only be a very minimal core onto which different communication styles are
to be configured.

2. Open and modular middleware platform design:
All platform functionalities, including the non-application exposed middle-
ware service layers, should become accessible, open and modular building
blocks. This refers to platform units such as communication sub-system, s-
tubs, skeletons, ORB transport layer, interface repository, implementation
repository, and all parts of the object adapter.

3. All functional units in the platform should be accessible, customizable, and
replaceable by custom implementations:
A functional unit refers to one step in the execution chain of a service pro-
vided by the middleware (e.g., this could be one of the building blocks re-
ferred to in the item above). The exact extend of a step depends on the
concrete platform design and the service offered. For a synchronous method
invocation the functional units may be data structure packing, argument
marshalling (unpacking and unmarshalling respectively), system-level RPC
(possibly broken down in its constituent protocols), and call dispatching.
These units should not be too coarse, to enable reuse, ease of customization,
and low level access to their end-points (needed as join points for aspects).
Different functional unit implementations, specialized for various environ-
mental conditions and usage patterns, may be included with the platform
to be selected at configuration time or provided as custom extensions. This
unit breakdown is also required to enable very low-level aspects to be woven
around unit end-points. Platform aspects such as, exception managemen-
t, monitoring, authentication, encryption / decryption, and selective type
support will need this modular break down as well.

1
Not around or on top of it, i.e., these services are commonly stand alone implemen-
tations.

33

CSEG
33

4. Fine-grained configuration of platform:
To date middleware systems are not configurable at all. For the most part, a
one size fits all approach is taken. Under fine-grained configuration we under-
stand the specialization of a platform instance for one particular application
domain and, potentially, for one particular application in this domain. A
higher level specification of the aspects the platform requires and the inter-
faces (e.g., required services, types, and exceptions) of the application guide
the synthesis of the platform instance.

5. Independence of accompanying platform tools:
By platform tools we mean stub-/ skeleton-generator and meta-data reposi-
tories (IDL and implementation repositories). Current middleware platforms
tightly integrate these tools into the platforms. This refrains from third party
implementations of these components, use of standard technology, or the use
of these components for purposes they were not immediately intended for.
These tools should be separable form the platform, build on open interfaces,
and follow an extensible design themselves.

Towards Realizing these Principles:

We think that all of the above principles can be achieved by defining an open
framework of a middleware platform, by using techniques from aspect-oriented
programming for the generative configuration of middleware platform instances,
and applying the open implementation metaphor to functional unit design to
obtain customization at a very low level.

The Role of an Open Middleware Platform Framework: The framework
lays out the middleware architecture, defines all platform interfaces, defines exe-
cution chains and access points (i.e., interfaces to individual steps in an execution
chain), and defines how they inter-relate. This framework is the principal pre-
requisite for all the rest. It defines the level at which aspects can intervene and
their granularity. It also impacts the possible design choices for all functional
units.

The Role of Aspects: An aspect is a system feature that cross-cuts the imple-
mentation of the system and is manifest at multiple loci in the code [9]. Examples
of aspects in the context of middleware are:

— exception management (raising, propagation, handling)
If an exception were to be defined as a system aspect and a middleware
platform could be configured for a particular application (domain), the ex-
ception aspect could be configured in or configured out, depending on the
application semantic and runtime environment.?

> When the Minimum CORBA (embedded system profile) standard was conceived
a discussion of whether or not to include exception handling came up. Opponents

34

CSEG
34

— synchronization management and concurrency control
Synchronization constraints have often been used to illustrate aspect oriented
programming techniques [9].

— interface definition language extensions
Many extensions for interface definition languages have been proposed. This
includes, for example, quality of service annotations, real-time constraints,
assertions, pre and post conditions, and behavioral annotations. All of these
constitute aspects.

— access control and security
Access control (e.g., object-based, method-based, interface-based) and secu-
rity (e.g., authentication and encryption / decryption) constitute examples
of middleware aspects that may need to be blended in or out depending on
the execution context.

— computing and network resource monitoring

— individual platform types
A middleware platform supports a certain type model, ranging from ba-
sic types (e.g., int, float, char) to very sophisticated dynamically managed
types (e.g., type ANY in the CORBA model). The processing of a type in-
tervenes at different levels of the platform (e.g., in marshalling, in packaging,
in transport etc.) In that sense a particular type constitutes an aspect of the
middleware.

The above list comprises concrete aspects, there also exists a number of more
abstract aspects, that will require a more refined decomposition. These include
real-time, quality of service, and fault tolerance aspects.

Aspects could intervene at several stages in middleware platforms. For one,
they could be used to extend the platform with certain features (cf. list above),
but, more interestingly, aspects could be applied to configure a platform instance
for a particular application domain and specific application.

The great benefit of this is that the proliferation of static platform profiles
would disappear and, as new requirements (domain and feature) arise, simply
more aspects need to be added. Clearly, this approach is entirely based on a
modular open middleware platform framework that permits to define access
points at which aspects can intervene.

The Role of the Open Implementation Metaphor: The open implemen-
tation metaphor reveals, at a function’s interface, details about its implementa-
tion [10]. A client of the interface may influence the underlying implementation
according to its usage pattern (this may be decided statically or dynamically
depending on the sophistication of the open implementation based design of the
function’s implementation.) This concept can be applied to customize functional

argued that in the context of embedded systems exceptions were not needed and the
primary design goal would be a small memory footprint. Similarly, other features
of the platform where at scrutiny (e.g., various types of the CORBA type model,
dynamic invocation support etc.)

35

CSEG
35

units of the middleware platform. OI suggests several different levels of doing
that, ranging to client provided implementation of the unit as final instance.

3 Related Work

Related work on the topics discussed in this position paper can be broadly
classified into approaches that provide customization through static or dynamic
policy selection, reflection to adapt middleware internals to changing runtime
conditions, and configuration based on various forms of aspect definitions. Much
of the discussed projects use several of these techniques. We briefly discuss some
of them below.

Astley et al. [1] achieve middleware customization through techniques based
on separation of communication styles from protocols and a framework for pro-
tocol composition. Further aspects that cross cut the system implementation are
not explicitly addressed.

Several projects exploit reflective programming techniques to allow the mid-
dleware platform to adapt itself to changing runtime conditions. This includes
projects such as openORB [2], openCORBA [12], and dynamicTAQ [11]. Recent
progress in this area has been summarized in a reflective middleware workshop 2.

LegORB* [13] and Universally Interoperable Core (UIC)5 are middleware
platforms designed for hand-held devices, which allow for interoperability with
standard platforms. Both offer static and dynamic configuration and aim to
maintain a small memory footprint by only offering the functionality an applica-
tion actually needs. Customizable functions range from the transport protocol to
method dispatching and marshalling. Both platforms do not support the notion
of aspects as code cross cutting concerns. Aspects in the sense of LegORB and
UIC are functional units supporting application-level requirements.

Similarly, Jonathan® constitutes an open middleware framework that can be
customized with respect to a large number of functions. Jonathan aims to em-
brace several standard middleware platforms and offer customization according
to application needs. It can be configured to use IIOP or RMI.

The effectiveness of the open implementation metaphor for the design of a
light-weight thread package is demonstrated by Haines [4]. The renewed design
leads to a more efficient and portable package. While this approach is not pri-
marily addressing middleware platform issues per se, it may also prove effective
for the design of functional units within a platform.

Brodsky et al. [3] demonstrate very elegantly the use of aspect oriented pro-
gramming for customization and extensibility of a distributed file system mid-
dleware with fault tolerance features.

Jacobsen and Krémer [8] show how to weave interface level specification of
synchronization constraints into stubs and skeletons generated by standard IDL

3 http://www.comp.lancs.ac.uk/computing/rm2000/

4 http://devius.cs.uiuc.edu/2k/LegORB/

® http://www.ubi-core.com/

5 http://www.objectweb.org/jonathan /jonathanHomePage.htm

36

CSEG
36

compilers. This work is extend in Jacobsen and Kramer [6] to also account for
other aspects defined at the interface level (e.g., QoS annotations, behavioral
annotations, and pre and post conditions). A processing framework based on
the extended markup language (XML) for this approach is presented in [7].

References

1.

2.

11.

12.

13.

M. Astley, D. C. Sturman, and G. A. Agha. Customizable middleware for modular
software. ACM Communications, 44(5), May 2001.

G. S. Blair, G. Coulson, A. Andersen, M. Clarke, F. M. Costa, H. A. Duran,
R. Moreira, N. Parlavantzas, and K. B. Saikoski. The design and implementation
of OpenORB version 2. IEEE Distributed Systems Online Journal, 2(6), 2001.
Alex Brodsky, Dima Brodsky, Ida Chan, Yvonne Coady, Jody Pomkoski, and Gre-
gor Kiczales. Aspect-oriented incremental customization of middleware services.
Submitted.

Matthew Haines. An open implementation analysis and design for lightweight
threads. In OOPSLA, pages 229 — 242, 1997.

H.-A. Jacobsen. Programming language interoperability in distributed comput-
ing environments. In Lea Kutvonen, Harmunt Knig, and Martti Tienari, editors,
Second IFIP Working Conference on Distributed Applications and Interoperable
Systems II (DAIS), Helsinki, Finland, June 1999. Kluwer Academic Publisher.
H.-A. Jacobsen and B. Krimer. Design patterns for synchronization adaptors of
CORBA objects. Special issue of L’'OBJET Journal on ”Object Orientation and
Formal Methods, 2000. Hermes Publisher.

H.-A. Jacobsen and B. Kriamer. Modeling interface definition language extensions.
In 87th International Conference on Technology of Object-Oriented Languages and
Systems (TOOLS-37), Sydney, Australia, 20-23 November 2000.

H.-A. Jacobsen and B. J. Kridmer. A design pattern based approach to generating
synchronization adaptors from annotated IDL. In IEEE Automated Software En-
gineering Conference (ASE’98), pages 63-72. IEEE Computer Society, September
1998.

G. Kiczales. Aspect-oriented programming. ACM Comput. Surv, 28(4), Dec 1996.

. Gregor Kiczales, John Lamping, Christina Videira Lopes, Chris Maeda, Anurag

Mendhekar, and Gail Murphy. Open implementation design guidelines. In inter-
national conference on Software engineering, pages 481 — 490, 1997.

Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio
Magalhdes, and Roy H. Campbell. Monitoring, Security, and Dynamic Configu-
ration with the dynamicTAO Reflective ORB. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware’2000), number 1795 in LNCS, pages 121-143, New York,
April 2000. Springer-Verlag.

T. Ledoux. OpenCorba: A reflective open broker. Lecture Notes in Computer
Science, 1616:197-77, 1999.

Manuel Roman, M. Dennis Mickunas, Fabio Kon, and Roy Campbell. LegORB
and ubiquitous CORBA. Reflective Middleware Workshop. Held in conjunction
with Middleware 2000. http://www.comp.lancs.ac.uk/computing/rm2000/, 7th-
8th April 2000.

37

CSEG
37

Aspects of Exceptions at the Meta-Level
(Position Paper)

Ian S. Welch!, Robert J. Stroud, and Alexander Romanovsky

Department of Computing, University of Newcastle upon Tyne,
United Kingdom NE1 7TRU
{i.s.welch, r.j.stroud, alexander.romanovsky}@ncl.ac.uk
http://www.cs.ncl.ac.uk/research/dependability/reflection/

1 Introduction

This paper describes the design and usage of a metaobject protocol that explic-
itly includes support for handling exceptions. We do not propose implementing
exception mechanisms anew [3, 5] or proposing a unified meta-level software ar-
chitecture for exception handling [4]. To make our discussion concrete we de-
scribe an extension of the Kava [9] metaobject protocol that includes exceptions
as first class values, provide examples of Kava’s use, and compare Kava with
related Java extensions.

We believe that insufficient attention has been paid to exceptions by de-
signers of metaobject protocols for object-oriented languages. Most metaobject
protocols provide a way of intercepting method execution but these protocols are
usually discussed solely in terms of arguments and results. Signalled exceptions
are rarely discussed. However, in order to successfully implement non-functional
requirements using metaobject protocols it is important that exceptions are ex-
plicitly considered. For example, consider using a metaobject protocol approach
to implement distributed objects. It is not sufficient just to convert method calls
into remote method calls, exceptions must be converted into remote exceptions
as well. Therefore, a metaobject protocol should be designed to treat method
arguments, method return values and exceptions equally. This means that if
the behaviour of method execution is reflected upon, then any signalled excep-
tion should be reified and be manipulable at the meta-level. Note that such a
“exception-aware” metaobject protocol should not lead to base-level program-
mer’s expectations being confounded, as doing so would make both programming
and verification very difficult. For example, the exception model should not be
able to be changed dynamically, say from a termination model to a resumption
model (as opposed to [2]).

2 Meta-Level Requirements

What facilities should a “exception-aware” metaobject protocol have? We pro-
pose that such a metaobject protocol needs two facilities: meta-level interception

38

CSEG
38

of exceptions signalled from the base-level, and meta-level raising of exceptions
at the base-level.

Meta-level interception is required to handle new exceptions introduced as
a side-effect of the implementation of non-functional requirements. It may also
be required to reinterpret existing base-level exceptions in the context of new
non-functional requirements. An example of this was given in the introduction
where distribution requires that local exceptions are reinterpreted as remote
exceptions.

Meta-level raising of exceptions at the base-level is required to allow metaob-
jects to raise new types of exceptions and maintain the transparency of the meta-
layer. For example, a metaobject may enforce a security policy by raising a secu-
rity exception whenever the security policy is violated. Since we normally wish
to implement non-functional requirements transparently this exception should
appear to be raised at the base-level. If it appears to have been raised by the
metaobject then the meta-level becomes visible to any clients of the base-level
and then transparency is shattered.

These two features allow the metaobject protocol to support the following
mappings between exceptions and values: from one exception to another, from
one exception to a value, or from a value to an exception. In the remainder of
this section we provide examples of how these mappings can be used.

Exception to exception. Adding debugging information to exceptions re-
quires that one exception is mapped to another. Here, we want to add meta-
information to an exception such as the time it was signalled. An extended
version of the exception class could be defined that encapsulates the base-level
exception and the meta-information. At the meta-level the signalled exception
is replaced by an instance of the extended exception class.

Exception to value. Logging and then ignoring an exception requires that
an exception is mapped to a value. Here, the base-level exception is suppressed
and the method terminates normally returning a value specified at the meta-
level.

Value to exception. Assertion checking [7] requires that a value is mapped
to an exception. Here, a value of a member variable or argument of the method
causes an exception to be raised. This exception will appear to be raised at the
base-level to preserve transparency.

3 Kava

Kava is a reflective Java implementation [9]. It uses byte code transformations to
make constrained changes to the binary structure of a class in order to provide
a metaobject protocol that brings object execution under the control of a meta-
level. These changes are applied at the time that classes are loaded into the
runtime Java environment. The meta layer is made up of metaobjects that are
written using standard Java. The binding between classes and metaobject classes
are specified in an XML configuration file called a binding specification. Kava

39

CSEG
39

brings the sending of invocations, initialisation, finalization, state update, object
creation and exception signalling under the control of a metaobject protocol.

When a meta-level programmer creates a new metaobject class, the pro-
grammer extends the default metaobject class and overrides those methods that
control the behaviours the programmer wishes to redefine. In Kava we define
around style meta methods, so for each behaviour there is a before and after
method.

The following listing shows the methods relating to overriding method exe-
cution in the metaobject class interface,

public interface IMetaObject {

public void beforeMethodExecution(IMethodExecution context)
throws Exception;

public void afterMethodExecution(IMethodExecution context)
throws Exception;

}

A context object is passed as an argument to each of the meta-level methods.
The context reifies the context of the metainterception as a context object that
implements the IMethodExecution interface. In earlier versions of Kava excep-
tions that were raised during the execution of a method were not included in
the context. Now, any exceptions that have been raised is included in the con-
text in addition to reified method, its actual parameters, and the result of the
execution of the method. In addition to reifying exceptions the context API has
been extended to support the reflection of the exception back to the base-level
and the overriding of the exception signalling at the base-level.

We are currently examining how this extended metaobject protocol can be
used to implement Java language extensions such as multi-level handlers for
exceptions (statement, block, method, class and exception level), design by con-
tract, and n-version programming).

4 Examples

In this section we show how to use Kava to implement the examples described
in the meta-level requirements section.

First, we show how an exception can be intercepted and converted to another
type. Here, the exception is converted to an instance of an exception class used
for debugging which encapsulates the base-level exception, the key to this is using
the setException method to change the exception raised at the base-level,

public DebugMetaObject extends MetaObject {
public void afterMethodExecution(IMethodExecution context)
throws Exception {
if (context.isExceptionRaised()) {
context.setException(new DebugException
(context.getException())); }}}

40

CSEG
40

The next example shows how an exception can be mapped to a value and
the exception raising at the base-level suppressed. This metaobject is used to
log and suppress I0Exceptions exceptions. It checks that the base-level method
exited because an exception was raised. The base-level exception is suppressed
through the use of the overrideException method,

public LogMetaObject extends MetaObject {
public void afterMethodExecution(IMethodExecution context)
throws Exception {
if (context.isExceptionRaised()) {
Exception e = context.getException();
if (e instanceof java.io.IOException) {
context.overrideException();

log(e); }}}}

The final example shows a mapping from a value to an exception. We want
to check that a method never returns a null value. First, we check using the
convenience method getReturnType returns an object reference, then we check
that the value of that reference is not null. If it is null then we throw an
AssertionFailed exception,

public AssertMetaObject extends MetaObject {
public void afterMethodExecution(IMethodExecution context)
throws Exception {
if (context.getReturnType() == Type.0BJECT) {
if (context.getReturnValue() == null) {
throw new AssertionFailed(); }}}}

5 Related Work

Although exceptions are an integral part of the Java language there has been
little explicit attention paid to them by the Java reflection community with the
exception of Garcia et. al. [4]. Garcia et al. have proposed a unified meta-level
software architecture for sequential and concurrent exception handling that is
described using a set of design patterns. The patterns cover: Exceptions, Handler,
Exception Handling Strategy, and Concurrent Exception Handling Action. They
are attempting to codify “best practice” with regard to the implementation of
reflective exception handling. They have made an implementation using a custom
Java VM (Guarana [8]) which means it is non-portable. In contrast, our work is
more narrow in focus but has resulted in a portable implementation.

Explicit support for exceptions has been introduced into some Java imple-
mentations of portable compile-time Java extensions for programming using ad-
vanced separation of concerns. Below we describe the approach to exceptions
taken with AspectJ! [6] and ComposeJ [10].

! the version described here is 0.8

41

CSEG
41

AspectJ allows programmers to use aspect-oriented programming techniques
in Java. AspectJ like Kava can be used to map exceptions and values to each
other. An around advice applied to a receptions pointcut can be used to im-
plement the mapping of an exception to exception, exception to value, value to
exception. This is because around advice selectively pre-empts the normal com-
putation at the specified join point. Aspect) also has two new features related
to exception handling. First, the advice after throwing allows aspects to be
invoked when an exception is thrown (in Java throw is used to raise an excep-
tion). This allows extra code to be executed when an exception is signalled but
does not allow the signalling to be overriden. This is roughly equivalent to the
interception feature in Kava. Second, aspects can be woven into existing excep-
tion handler code through the use of the handles pointcut. This allows extra
code to be invoked when an exception is handled, and it allows handling code
to overriden. This is feature is not supported in our metaobject protocol as we
currently choose to intervene only at the level of a method rather than within
try ... catch ... finally clauses.

ComposeJ allows programmers to use composition filters in Java. Composi-
tion filters [1] allow messages sent and received by objects to be intercepted and
manipulated. Filters can be composed with other filters to implement complex
non-functional behaviour. There are different types of filters in the model, one
of which has explicit support for exceptions. The Error filter allows predicates
on base-level state to be evaluated and an exception to be raised that causes the
system to halt. This allows the implementation of assertions and contracts in
Java. In the current version it is not clear if signalled exceptions are considered
to be message or not. If they are then other filters such as Dispatch could be
used to implement mappings that are similar to Kava.

Kava could implement the same functionality as the Error filter. It cannot
add behaviour to exception handlers like Aspect] although we believe that many
useful extensions for dependability can be developed without that capability. In
terms of implementation Kava differs from Aspect) and ComposelJ in that it is a
load-time extension to Java and can be used to add non-functional behaviour to
compiled code. This makes it useful for dealing with mobile or third-party code
where the API may be understood but the source code might not be available.

6 Conclusions

Metaobject protocols must be “exception aware” so that they can be used to
implement a wide range of non-functional requirements. Such a metaobject pro-
tocol requires two features to support the successful implementation of non-
functional requirements. The first feature is the ability to intercept exceptions
signalled from the base-level, and the second feature is the meta-level raising of
exceptions at the base level. These two features allow the metaobject protocol to
implement mappings between exceptions and values that can be used to improve
the dependability of applications.

42

CSEG
42

There is one reflective Java implementation that is “exception aware” but it
is non-portable. There are portable extensions to Java that introduce “exception
awareness” for advanced separation of concerns but these require access to source
code. Our implementation in Kava is portable and applies reflection and load-
time. This allows Kava to be used for a wide range of applications such as mobile
code or third-party code.

Acknowledgements

We would like to acknowledge the financial support of the ESPRIT projects:
MAFTIA project (IST-1999-11583), and DSOS project (IST-1999-11585).

References

1. M. Askit, L. Bergmans, and S. Vural. An Object-Oriented Language-Database
Integration Model: The Composition-Filters Approach. In ECOOP, volume LNCS
615, pages 372-395. Springer-Verlag, 1992.

2. A. Burns, S. Mitchell, and A. J. Wellings. Mopping up Exceptions. In ECOOP’98
Workshop on Reflective Object-Oriented Programming and Systems, pages 365—
366, 1998.

3. Christophe Dony. Exception Handling and Object Oriented Programming : To-
wards a Synthesis. In Proceedings of ECOOP/OOPSLA’90, pages 322-330, Ot-
tawa, Canada, 1990.

4. Alessandro F. Garcia, Delano M. Beder, and Cecilia M. F. Rubira. Unified Meta-
Level Software Architecture for Sequential and Concurrent Exception Handling.
The Computer Journal (Special Issue on High Assurance Systems Engineering),
2001.

5. M. Hof, H. Mossenbock, and P. Pirkelbauer. Zero-Overhead Exception Handling
Using Meta-Programming. 1338:423-431, 1997.

6. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffery Palm, and
William G. Griswold. An Overview of AspectJ. In ECOOP 2001, volume LNCS
2072, pages 327-353, Budapest, Hungary, 2001. Springer-Verlag.

7. B. Meyer. Design by Contract. In D. Mandrioli and B. Meyer, editors, Advances
in Object-Oriented Software Engineering, pages 1-50. Prentice-Hall, 1991.

8. Alexandre Oliva and L. E. Buzato. The Design and Implementation of Guaran4.
In Usezniz COOTS, pages 203-216, San Deigo, California, USA, 1999. Usenix.

9. Tan Welch and Robert Stroud. Kava — Using Byte-Code Rewriting to Add Behav-
ioral Reflection to Java. In 6th USENIX Conference on Object-Oriented Technolo-
gies and Systems (COOTS 2001), pages 119-130, San Antonio, Texas, 2001.

10. J. C. Wichman. ComposeJ: The Development of a Preprocessor to Facilitate Com-
position Filters in the Java Language. Master’s thesis, University of Twente, 1999.

43

CSEG
43

Fault tolerance AOP approach:

José Luis Herrero®, Fernando Sanchez', Miguel Toro®

! Computer Science Department
University of Extremadura.Spain
{j herrero, fernando}@nex.es

2 Computer Science Department
University of SevillaSpain
nt oro@ si . us. es

Abstract.

Object oriented systems are composed by a collection of interacting
objects. Distributed object oriented systems consider that all these
objects can be located at different computers connected through a
network. Rdiability and availability are very important trends in the
development process of these kinds of systems. In order to improve
these features, object replication mechanisms have been introduced.
Programming replication policies for a given application is not an easy
task, and this is the reason why transparency for the programmer has
been one of the most important properties offered by all replication
models. However, this transparency for the programmer is not always
desirable. There are situations in which programmers need to
manipulate by hand the replication properties. In this paper we present a
replication model, JReplica, based on Aspect Oriented Programming
(AOP). JReplica alows the separated specification of the replication
code from the functional behaviour of objects, providing not only a
high degree of transparency, as done by previous models, but also the
possibility for programmers to introduce new behaviour to specify
different fault tolerance requirements. Derived from the use of AOP,
JReplica also obtains two important added benefits: the possibility of
obtaining an ORB independent replication and the possibility of reusing
entire replication policies. Moreover, the replication aspect has been
introduced at design time, and in this way, UML has been extended in
order to consider replication issues separately at the moment of
designing fault tolerance systems.

I ntroduction

This work tries to introduce replication in object orientation by means of a new
aspect. For this purpose, a new language called JReplica has been developed. This
language tries to capture the relevant aspects of replication, encapsulating them into a

1 This work has been developed with the support of CICYT TIC 99-1083-C02-02

44

CSEG
44

component or group of related components favouring the reusability and dynamic
adaptability of replication policies. This language also favours the use and reuse of
replication policies independently from the middleware used to communicate objects.

The work is not limited to the definition of this new language. AOP ideas have
been trandated to the design level. In this way, the semantic of UML has been
extended in order to represent replication properties. From a given design, the same
for whatever middleware, a visual tool is able to generate code. The rest of the paper
is as follows: section 2 explains the different approaches to introduce replication in
object orientation. Our proposal is introduced in section 3. Section 4 shows related
works. Finaly, future works are outlined in section 5.

Fault tolerance approaches

There has been proposed different approaches to introduce fault tolerance in object
oriented systems. These models are the followings:

1. Integration approach : In this approach, replication is integrated inside the
model. Replication is coded inside the ORB. In this way, each ORB must be
modified in order to provide fault tolerance. Electra[Maf95], Orbix+Isis[1194] are
two models that are based on this approach (figure 1).

2. Interception approach : In this model, every message is intercepted and
redirected to a replication toolkit. This new tool is in charge of providing fault
tolerance. The ORB must be modified introducing the interception mechanism.
Eternal [M0s98] is an example of this approach (figure 2).

3. Service approach : A new replication service is added to the ORB. This service
provides mechanisms for object replication. OGS [Fel98] and the new Corba Fault
Tolerance specification [OMGOQ] are based on this approach (figure 3)

OICIOBCIOIO),

Fig. 1. Integration approach Fig. 2. Interception Approach Fig. 3. Service Approach

All these models introduce new elements to provide fault tolerance through
replication. Transparency is the most important property achieved. In this way,
programmers do not have to take care about replication, and they do not need to
define any protocol to develop fault tolerance applications because replication is
obtained automatically by the model. However, al these models can be considered
too restricted in the following sense:

45

CSEG
45

Close: A totdly transparent system doesn’'t adlow programmers to change
replication mechanisms. Replication properties can not be established, such as the
replication granularity, or the moment when replication protocols must be
executed. These properties are defined automatically by the model and they are the
same for every system. In this way, programmers can not take advantage from
system requirements.

ORB dependent: Replication depends on the ORB implementation. Any
replication policy must be coded into an individual ORB, and it can not be reused
in a different ORB. There's no way to port the same replication policy to other
ORBs.

Although transparency is a good property to be achieved, it is not always
necessary, moreover, sometimes it is not advisable. Sometimes the nature of the
problem may require establishing the replication properties and behaviour by the
programmer. Even more, if requirements guide the replication behaviour, the system
could take advantage of them, and system performance could be increased. If the
replication model is totally transparent, there is no way to define fault tolerance
applications according with system regquirements.

Proposal

The modd here proposed is based on the paradigm of Aspect Oriented Programming
(AOP). Our research group has gained experience with AOP during the last few years
working with the synchronization, coordination and distribution aspects [Mur99,
San00]. Here we go one step further introducing the replicatior? aspect as a new non-
functiona property of the object. With this separation transparency is granted because
replication policies can be reused among applications with no changes. In addition,
programmers can get control over the replication policy using the specific replication
language provided: JReplica.

In order to accomplish this separation, the model is based on reflective
architecture. The following two levels have been defined:

Object level: Object functionality is defined at this level. Object code does not
refer to any replication mechanism, it just only defines object functiona behavior
using whatever language.

Replication level: Replication policies are defined at thislevel using JReplica
The modd is based on the same concept that the interception model, that is, all the

messages arriving at an object are intercepted and redirected to another entity (figure
4). The interception and replication level is located just before the ORB, that is,

2 Although there are different replication strategies, in this paper we only focus on the backup
replication model due to it being suitable for deterministic and non-deterministic objects.

46

CSEG
46

before sending and receiving messages to and from the ORB, they are intercepted. It
is in this moment when new actions for replication can be added. Figure 5 illustrates
thisfact. The order of messagesisthe following:

1. A message arrives at the target object.

2. After the message is executed, the new state is sent to the replication component
of the target object.

3,4. This replication component propagates the new state to the rest of replication
components.

5,6. Every replication component updates the state of the replica objects.

ObjectLevel —_p.
A

ReplicationLevel A

“ Interception Replication
L

Fig. 4. Proposed model

Replication level
6

2 5
1
O Base level

Object Replica Replica

Replication A: L lication A:
eplication s)é 2 ;TReplloalonAspect ication Aspect

Fig. 5. Message order

1. Those benefits derived from the use of AOP, mainly modularity, reusability of
code and adaptability of applications.

2. ORB Independence: Replication agorithms are independent from de ORB. In a
previous work [San00] different distribution protocols were defined as a separated
aspect providing a dynamic, adaptable and transparent object distribution. Now, as
the replication module is defined outside the ORB, the combination of distribution
and replication aspects offer the possibility of reusing the same replication policy
in different ORBs. Figure 6 illustratesthisfact.

3. Open: Thought replication algorithms are hidden and separated from object
behaviour, replication properties and behaviour can be defined. Reflective
mechanisms can communicate the object level with the replication level. This
communication provides the way to introduce new replication actions.

JReplica: Java Fault Tolerance Language

JReplica is a language with the only purpose of defining replication policies. Its
syntax is based on Java. It introduces new primitives, which are shown in figure 7.

47

CSEG
47

This Java extension introduces two main elements:
1. Replication Policy: A new entity called Disguise® Replication defines the
repllcanon aspect. Thisentity isdivided into the following parts:
Attributes: Represent the information that defines the replication policy.
State: Represent the set of replication states.
Operations. Represent methods that can manipulate the replication state.
Guard: Represent a condition that must be true before replication. If this
condition isfalse, replication won't be executed.
Before Replication: Represent the set of actions that must be executed just
beforereplication.
After Replication: Represent the set of actions that must be executed just
after thereplication is executed.
Error: Represent the set of actions that must be executed when a replication
error appears.
2. Composition: A class can be composed with different aspects, this means that
every object will extend its functionality with replication mechanisms.

@00 @09

+ Interception + Interception
Replication
] 4 | A

——

Fig. 6. Replication policies reuse

Replication

Class <name> DiguiseReplication <name>

L {

} Attributes:
Operations:

........................ State: ...

x=new C1 Guard:

Composex with R; Before Replication:

y=new Replicaof x; After Replication:

........................ Error:

Fig. 7. Jreplicareplication primitives

Representing Replication at Design Level

Replication policies now can be defined with JReplica language. This language helps
programmers to define easily replication propertiesin object oriented systems. But we

3 The word disguise comes from the original model: Disguises Model.

48

CSEG
48

consider that replication must be introduced at earlier stages of object life cycle, more
concretely at design level. In this way, UML [UML99] is used as the modeling
language due to it being a standard. As UML does not provide mechanisms to
represent replication, its semantic has been extended in order to express replication
properties and behavior.

UML semantic can be extended with the introduction of new stereotypes. At this
point, we have considered that replication policies can be designed separately and
independently, in the same way as has been explained at the implementation level. As
such, the aspect concept is introduced in UML to express the AOP philosophy. The
replication aspect is represented with a new stereotype, called <Replication>. This
new stereotypeis shown if figure 8.

The replication stereotype represents a particular replication policy. Information is
represented as follows:

Stereotype Attributes. Represent the information that defines the replication

policy.

Stereotype Methods. Define the set of methods that can manipulate the

replication state.

As it can be shown, there are other elements that can not be represented in this
stereotype. The dynamic behaviour of replication can not be represented in a normal
class diagram. Statechart diagrams represent dynamic behaviour. So the solution goes
by attaching astatechart diagram to this replication stereotype. In thisway, replication
static properties and dynamic behaviour can be designed. The dynamic behaviour of
replication policies can be represented in a statechart diagram as it is shown in figure
9.

- o >
o Reﬁlllcatlon
<Replicated> ame
Attributes Attributes
Methods
Methods

Fig. 8. UML extension

Entry : Actions before replication

[Replication Guard] L
State 1 »(Replication

Exit : Actions after replication

Fig. 9. Statechart Representation

The elements that are represented in this statechart diagram are;

49

CSEG
49

State: Each replication state is represented by an state. There is a specia state
called Replication that represents the moment when replication is to be
executed.

Guard: Guards are represented in the transition of each state.

Before Replication: The set of actions that is executed just before the
replication beginsis represented in the entry actions of the Replication state.

- After Replication: The set of actions that are executed just after the replication
ends are represented in the exit actions of the Replication state.

Error: Replication errors are represented as anew state.

A tool is being developed in order to generate JReplica code starting from this
extension of UML. In this way Replication aspect has been introduced from design to
implementation level. This tool is based on other one we have developed for the
synchronization aspect [Her00].

Related works

There are severad models that provide replication mechanism to achieve fault

tolerance. In [Nar00], a new interception mechanism called Aroma is introduced in
the Java RMI architecture. Other models are based on the introduction of separated
entities that implement replication protocols. The Cadmium Model [Bag99] defines a
couple of new entities called Sub and Scion, which are attached to a client and a
server respectively and offer replication mechanisms. In [Bru95] a new replication
entity and a consistency manager are introduced, both separated from the object. In

AspectlX [Gel98] a single object is divided into fragments, all of which have a
different purpose. One of these fragments offers replication facilities. The GARF

[Gar95] model defines two different entitiesin order to introduce replication, they are
caled encapsulator and mailer. A two leve reflective architecture was defined for

Java in [KI€96]: object functionality is defined in the first level, while replication
protocols are established in the second one. All these models only take into account

the implementation level, they are focused on replication protocols and the definition
of aframework that provides fault tolerance, ignoring the design phase.

A new pattern [Gon97] has been defined in order to provide support for the
representation of replicated objects. Moreover, a new language that helps
programmers to build fault tolerance systems has been defined in [Fab97, Fab0Q].
This proposal is based on the concept of separation of concerns and extends Aspec]
language [Lop97] with replication primitives. It is possible to define the attributes that
need replication and what to do when areplication error happens. But there is no way
to express new replication actions or when replication must be executed. Although
these models help programmers to implement fault tolerance systems, it is necessary
to introduce mechanisms that help software engineers to design this kind of
requirements.

50

CSEG
50

Futureworks

Future works will consider extensions to JReplica in order to express more complex
replication mechanisms. The current version showed us the suitability of the model.

Refer ences

[Bag99] Aline Baggio. Adaptable and Mobile-Aware Distributed Objects PhD Thesis,
Université Pierre et Marie Curie and INRIA, Paris, France, June 1999.

[Bru9s] Georges Brun-Cottan and Mesaac Makpangou. Adaptable Replicated Objects in
Distributed Environments. BROADCAST TR No. 100. Appeared in the proceedings of the
2nd BROADCAST Open Workshop, Grenoble, July 1995.

[Gar95] B. Garbinato, R. Guerraoui, and K.R. Mazouni. Implementation of the GARF
replicated object platform Distributed Systems Engineering Journal, 2:14-27, 1995.

[Fab00] Johan Fabry. A Framework for replication of objects using Aspect-Oriented
Programming. Phd Thesis 1998. University of Brussel .

[Fab97] Johan Fabry. Replication as an Aspect - The Naming Problem. ECOOP Workshops
1998: 424-425.

[FEl98] Pascal Felber. The CORBA Object Group Sevice. A Service approach to object
groups in CORBA. Phd Thesis 1998. University of Lausanne.

[Gei98] Martin Geier, Martin Steckermeier, Ulrich Becker, Franz J. Hauck, Erich Meier, Uwe
Rastofer. Support for mobility and replication in the Aspectl X architecture. Object-Oriented
Technology, ECOOP'98 Workshop Reader, LNCS 1543, Springer, 1998; pp. 325-326.

[Gon97] Teresa Gongavesand Anténio Rito Silva. Passive Replicator: A Design Pattern for
Object Replication.Second European Conference on Pattern Languages of Programs. July
1997.

[Her00] J.L.Herrero. Introducing separation of concerns at design time. PhDOOS Workshop,
European Conference on Object-Oriented Programming (ECOOP 2000).

[1194] IONA and Isis. An Introduction to Orbix+lsis. IONA Technologies Ltd. and Isis
Distributed Systems, Inc., 1994

[Kle96] Jirgen Kleintder, Michael Golm. Transparent and Adaptable Object Replication
Using a Reflective Java. Tech. Report TR-14-96-07, Universitét Erlangen-Nurnberg: IMMD
IV, Sept. 1996

[Lop97] C.V. Lopes. D: A Language Framework for Distributed Programming. Phd Thesis
1997. University of Northeastern

[Maf95] S.Maffeis. Run-Time support for object-oriented distributed programming. Phd
Thesis, University of Zurich, 1995.

51

CSEG
51

[M0s98] L.E.Moser, P.M. Meliar-Smith and P. Narasimhan. Consistent object replication in
the Eternal system Theory and Practice of Object Systems, 81-92, 1998.

[Mur99] J.M. Murillo, J. Hernandez, F. Sanchez, L.A. Alvarez. Coordinated Roles: Promoting
Reusability of Coordinated Active Objects Using Events Notification Protocols. In
Coordination Languages and Models. Springer-Verlag, LNCS 1594, April, 1999

[Nar00] N. Narasmhan, L.E. Moser and P. M. Mdliar-Smith. Transparent Consistent
Replication of Java RMI Objects.2nd Intl. Symposium, Distributed Objects & Applications
(DOA 2000).

[OMGO0O] OMG TC document ptc/2000-03-04. Fault Tolerant CORBA. Draf Adopted
Specification. 2000.

[Sean00] F. Sanchez, JHernandez, JM.Murillo, JL.Herrero, R.Rodriguez. Adaptability of
Object Distribution Protocols Using the Disguises Model Approach. 2nd Intl. Symposium,
Distributed Objects & Applications (DOA 2000).

[UML99] Object Management Group. Unified Modeling Language, version 1.3.
http://www.rational .com/uml/resources/documentation

52

CSEG
52

Transferring Persistence Conceptsin Java ODBM Ssto AspectJ Based
on ODMG Standards

Arno Schmidmeier

Sirius Software GmbH,
Oberhaching

Abstract: Aspects are abstractions that capture and localise crosscutting type concerns.
Although the persistence of aspects has received an increasing interest among researchersin
software engineering, basic distinctions between persistent and transient aspects, and their
relationship to weaved objects, are lacking clarification. This paper introduces definitions
and illustrates how an existing object oriented database management system (ODBMS) can
be used as an aspect oriented database management system (ADBMS) based on such

definitions and previously established ODMG standards.

I ntroduction

Implementation approaches dealing with typical usage scenarios of an object oriented
database raise the importance of persistent aspects [1]. The capability to store aspectsin an
ODBMS requires extending the ODBMS to an ADBMS. This can be achieved by enhancing
the persistent object model of an object oriented programming language to that of a general
aspect oriented programming language (GAPL), which enhances the first programming
language and can be compiled back to it. At the design level, enhancing the persistent object
model consists of two major steps:

1. Porting the concept of persistent capable classes to persistent capabl e aspects

2. Extending the concept of persistence through reachability to encompass aspects.
Once these steps are accomplished, it is relatively easy to write persistent capable aspects.
The GAPL compiler enables translating the persistent capable aspects into persistent capable
classes, which can then be stored in the ODBMS. As aresult, existing commercial ODBMSs
can be reused with little or no modifications. The approaches discussed in this article are
based on AspectJ, versions 0.8betal to beta3 [2], the standards outlined in ODMG 2.0 [3],
and compliant database Objectivity 6.0 [4]. A similar implementation of this approach is
discussedin[1].

Analysis of the Object and Aspect Modelsof Aspect]

Aspect] offers, in addition to the java type construct, the aspect type construct. According to
the aspect language reference: ” An aspect is a crosscutting type defined by the aspect
declaration. The aspect declaration is similar to the class declaration in that it defines a type
and an implementation for that type. It differs in that the type and implementation can cut
across other types (including those defined by other aspect declarations), and that it may not
be directly instantiated with a new expression. Aspects may have one constructor definition,
but it must be of a nullary constructor throwing no checked exceptions.” [6]

53

CSEG
53

Instances of an aspect class are called aspect instances®, which only the AspectJ runtime
environment is capable of generating. The aspect class is instantiated based on the aspect
signature. However, the standard aspect signature ‘of eachJVM()' can be omitted. In this
case, one instance is generated inside each Java Virtual Machine where the aspect is used. ‘ of
eachVM()’ realises akind of asingleton [10] pattern for an aspect.

If a user wants to have more instances of an aspect, the aspect class must be declared using
“of eachobject(PCD?)’, of ‘eachcflow(PCDY , or ‘of eachcflowbelow(PCD)' . In the first case,
a new aspect instance is created for every object associated with the pointcut P. If an aspect
class A is defined ‘of eachcflow(P)’, then one object of type A is created for each flow of
control at the join points of pointcut P. If an aspect class A is defined ‘of
eachcflowbelow(P)’, then one object of type A is created for each flow of control below the
join points of pointcut P. Except the difference in generating aspect instances, aspect
instances and aspects classes behave like objects and classes. Aspect classes not only can
extend both java classes and aspects classes, but also can implement interfaces. Aspect
instances can be used anywhere a java object is expected. The Aspectd compiler transforms
an aspect classinto ajavaclass.

Transferring the Persistence Model of Java Classes to
Aspects.

For such atransfer to take place, a definition can be made similar to that which is defined for
java by the ODMG. Mainly, persistent capable aspects classes are aspect classes, whose
instances can be stored in an aspect oriented database. All aspect classes are persistent
capable if the following conditions are met:

1. Theclass eitherimplements a specific interface or extends a specific root class.

2. All attributesmust be either:
An atomic datatype
A persistent capable class
A persistent capabl e aspect
An atomic data structure
An array consisting only of elements, which fulfil a, b, c,d or e.
. or, marked as transient, static or final.
All aspect classes, which are not persistent capable, are transient aspect classes. |nstances of
transient aspect classes cannot be stored in the aspect oriented database. All aspect
instances, which are stored in the persistent storage, are called persistent aspect instances.
All other aspect instances are called transient aspect instances. Transient aspect instances
can become persistent aspect instances, like transient objects can become persistent objects,
by either storing the aspect directly in the database (e.g. clustering) or achieving persistence
through reachability.

SO0 T

Extending the Concept of Persistencethrough Reachability

It is necessary to extend the concept of persistence through reachability, which takes into
account aspect classes, in addition to the existing mapping of java classes drawn by the
ODMGI3], [5].

! For clarity, we use the term “ aspect class” for an aspect and the term aspect instance for an
instance of an aspect classin this paper.
2 PCD Pointcut discriminator

54

CSEG
54

To be made persistent at the end of a transaction, dl transient aspect instances and objects,
must be:
1. An instance of a persistent capable class or an instance of a persistent
capable aspect instance.
2. Directly or indirectly referenced from a persistent aspect instance or from a
persistent object.
This concept is called: persistence through Reachability for aspects and classes (or in the
context of aspects, simply,: persistence through Reachability) A persistent aspect instance
remains persistent, till it is removed explicitly from the database, or till it is removed from
the database by the database garbage collector. So it is obvious, that the lifecycle of a
persistent aspect instance, can easily extend the lifecycle of some Java virtual machines.
Additionally, one can use the same aspect instance in several Java virtual machines at the
sametime.
Persistence through reachability, as just defined, alows an aspect instance to get stored
alone without the object instance for which it was bound; and, vice versa, an object gets
stored without the aspects, which it was bound to it.

Some usage patterns:

A new instance of an persistent capable aspect class A is generated at any time, when a
public method foo() is called in any class. The constructor of the aspect class A stores the
aspect instance in the database. One could use explicit techniques, (e.g. clustering or using
named roots) or apply persistence through reachability. The aspect instance will be made
persistent independent from that fact, if the object that the aspect bindsis persistent capable.
When an instance of such an aspect is loaded from the database to adifferent VM, it is quite
clear, that it is not bound to any object anymore, if no reweaving takes place.

A more common usage pattern is, that only instances of transient aspect classes are bound to
an object of a persistent capable class. If this object is made persistent, the aspects instances
could not be saved.

In some other cases the weaving relationship shall be counted as a reference according the
newly established definitions for persistence through reachability. For example, when an
object is made persistent all aspect instances bound to this object should be made persistent
aswell, and vice versa.

Per sistence of Weavings

The usage patterns above illustrate the need to further define such patterns and specify which
of these patterns are to be supported by the runtime environments of the GAPL and the
ADBMS.

Definitions:
Let Oisany transient object and A is a transient aspect instance weaved to O.

If the weaving between O and A fulfilsthe following conditions:

If O ismade persistent, then A is automatically made persistent too and
If A is made persistent, then O is automatically made persistent too,

...the weaving is considered a persistent weaving.
When weaving between O and A meet these conditions:

If O is made persistent, then A is automatically made persistent or

55

CSEG
55

If A is made persistent, then O is automatically made persistent.
...the weaving is called a partial persistent weaving.
All other weavings are considered transient weavings

Based on further investigations, it is necessary to differentiate the transient weavings even
more. If a persistent object or aspect with a transient weaving is loaded into a VM and the
weaves could be re-established, the transient weaving is considered a rebindable transient
weaving, or in short a rebindable weaving. If the reweaving is not initiated by the
programmer or by another “user” -aspect, (e.g. from the database runtime or from the runtime
of the GAPL), the weaving is called transient, automatic rebindable weaving or, in short,
automatic, rebindable weaving. If areweaving is not possible we speak from a lost through
persistence weaving.

it is possible that some weavings can be persistent, some other weavings of the same
persistent object might be rebindable transient, and some other are lost through persistence
weavings.

Any ODBMS, supporting at least lost through persistence weavings and (partial) persistent
weaving can be called an ADBMS from an aspect point of view.

Experiences

Sirius Software’s Research and Development is currently using Objectivity 6.0 [4] with
AspectJ (version 0.8betal through 0.8beta3) for the ADBMS, and its GAPL based on the
concepts demonstrated in this article. Neither were the AspectJ compiler, nor the AspectJ and
Objectivity runtimes changed. Partial persistent weavings lost through per sistence weavings
and automatic rebindable transient weavings are supported out of the box and heavily used.
In the last case the class is persistent capable, while the aspect class is transient and from a
‘of eachJVM '’ type.

An automatic rebindable weaving for transient aspect classes of the type ‘of eachobject()’
can be realized by modifying the Aspectd compiler. Currently, the Aspectd compiler does not
alow the user to directly invoke the automatically generated methods responsible for
initiating the (re)weaving.

Therefore, if rebinding is necessary for transient aspects of type ‘of eachObject()’ the Java
Reflection API is used to bypass these restrictions.

The combination of Objectivity and AspectJ version 0.8beta3 does not currently support
rebindable weavings where the aspect classis persistent capable and the classis transient.

It was further discovered in areal world example, that no aspect class of the type ‘of
eachcflow()’ and ‘of eachcflowbelow()' is currently stored in the database. Moreover, no
aspect instances of the type ‘of eachJVM()' which is stored in the database. However, these
transient aspect instances are often used in rebindable weavings. Aspects instances of the
type ‘of eachobject()’ are quite often stored in persistent database most of which are stored
through persistent weavings.

Sirius Software is due to release a proof of concept in the near future (as well as detailed

website postings [7]) that will further substantiate, based on experiences, the feasibility of
ADBMSs through existing commercial ODBMSs [g], [9].

56

CSEG
56

Conclusions

Concrete definitions of persistent and transient aspects are required to establish and realize
the concept of persistence of aspects in object-oriented programming. The definition in this
article proved to be a solid foundation for a common wording of Sirius developers and
architectsin discussing and designing persistency in aspects.

The common wording is a prerequisite for pattern hatching in such an environment. It is still
important to examine which patterns of persistent aspects are needed, as well as, the types of
rebindable weavings that are really required to support these patterns, when applied in real
world projects. The weaving relationship between an aspect and an object does not
necessarily establish, or require, persistency. A dynamic weaving support from a GAPL can
further propogate the use of persistent aspects. In fact, the Java Mapping of the ODMG can
be easily extended to Java based GAPLs like AspectJ and closing the gap between existing
commercial ODBM Ss and future ADBM Ss.

Biography

Arno Schmidmeier (arno.schmidmeier@sirius-eos.com) is the Chief Scientist at Sirius
Software GmbH. Prior to his current position he architected the EOS & SLM Solution. He is
the technical representative of Sirius Software inthe TMF. He is also an independent
member of the Java Specification Request 0090 ‘OSS Quality of Service API’.

Refer ences

[1] “ On to Aspect Persistence” , Awais Rashid, Proceedings of Second International Symposium on
Generative and Component-based Software Engineering GCSE 2000 (part of Proceedings of
NetObjectDays2000), pp. 453-463 (Also to appear in post symposium proceedings published by
Soringer -Verlag)

[2] Aspectd Home Page, http://aspectj.org/, Xerox PARC, USA

[3] Cattell, R. G. G,, et al., “ The Object Database Sandard: ODMG 2.0” , Morgan Kaufmann,
c1997

[4] Objectivity Home Page, http://www.objectivity.com/, Objectivity inc. Mountain View, USA
[5] Cattel, RG.G., et al, “ The Object Database Sandard: ODMG 3.0” , Morgan Kaufmann,
2000

[6] Gregor Kiczales, Erik Hilsdale, et al, “ Language Semantics®,

http: //aspectj.ora/doc/primer/r ef/semantics.html,

[6] “ Jasmine 1.21 Documentation” , Computer Associates International, Inc., Fujitsu Limited,
€1996-98

[7] Srius Research AOD Page, http://www.sirius-eos.com/

[8] Versant Home Page, http://www.versant.conv, Fremont CA, USA

[9] Fast Objects by Poet, http: //mww.fastobjects.com/

[10] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995

[11] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, William G. Griswold.
An Overview of AspectJ. To appear in ECOOP 2001, 2001

57

CSEG
57

Alternatives to Aspect-Oriented Programming?

David Bruce Nick Exon

Distributed Technology Group
QinetiQ Itd
St Andrews Road, MALVERN WR14 3PS, UK

dibe@QinetiQ.com njexon@QinetiQ.com

Abstract. In the interest of stimulating debate, we present a broad, all-
inclusive view of aspect-oriented programming (AOP) and related initiatives.
In particular, we contrast the compelling vision used to ‘sell’ the idea of AOP
with the more finicky nature of its realizations to date. We outline a scenario
that we feel AOP ought at least aspire to address, and ask whether the direction
it is currently following is likely to take us as far as we really need to go.

Separation of concerns: there is no alternative!

In the general software world, there would appear to be an irresistible trend towards
the widespread use of components. There are countless articles, both in the technical
literature and the computing press, that expound various reasons for this, and we have
neither the space nor the inclination to re-iterate them all here. We will simply note
that much the same forces are at work in computer simulation, our core research focus
in recent years. Indeed, amidst the inevitable debates on the desirability or otherwise
of ‘federating’ simulation components for large-scale simulations, Richard Weatherly
in particular has noted on several occasions that “there is no alternative!”.

The view of many researchers is broadly similar for aspect-oriented programming
(AOP) [1,2]. The limitations of traditional, time-honoured but fundamentally quite
basic techniques for software construction are increasingly making themselves felt,
most notably through our inability to construct and evolve programs at the pace
demanded by modern times. Proper separation of concerns [3,4] plays a vital role
here, but the abstraction and composition mechanisms we have today far from suffice.
What AOP and related initiatives can offer are exciting glimpses of how we might be
able to articulate and encapsulate hitherto-elusive concepts in qualitatively new ways.
Thereby springs a much-needed sense of hope; surely there can be no alternative?

An anecdotal non sequitur

Back in autumn 2000, the first author gave an internal talk to our group, entitled
“Aspect-oriented programming and Aspect]”. This talk first examined the nature of
computer software, and some of the fundamental problems caused by inadequate

58

CSEG
58

separation of concerns. It went on to present the vision motivating aspect-oriented
programming, that one could provide independent specifications for each distinct
concern and then ‘weave’ them together to build the resulting system. The talk finally
touched on some of the prototype AOP systems/tools that were available at that time.
In particular, it outlined Xerox PARC’s Aspect] [5,6,7] and the sorts of things that
that language lets you do — specify program ‘pointcuts’, add or modify functionality
through before/after/around advice, extend classes using introduction, and associate
‘aspect’ classes with objects, pointcuts, etc.

Several of our colleagues pointed out — some there and then, others later — that
the early part of this talk was fine, as was the later part, but the two seemed a void
apart. The idea of AOP was great, they said, and Aspect] made perfect sense in its
own right ... but the former was a grand conceptual vision while the latter focussed
on low-level details.

Since then, the authors and various other members of our group have experimented
with Aspect] from time to time. This continued exposure to Aspect] has done little to
bridge the gap, however; if anything, it’s reinforced it! (We should note that we re
not picking on AspectJ in particular here, it’s just the most prominent example, and
the one that we’ve had most experience with. Other AOP and related systems seem
broadly comparable in this regard. More on this later.)

So, maybe our colleagues’ gut-reactions were founded; maybe there is something
missing? But what? Could it just be that we’re being dumb? We’d like to think not!
The Xerox PARC team behind Aspect] acknowledge that its documentation often lags
behind their implementation efforts, but it would be churlish as well as disingenuous
to suggest that that’s the problem. Aspect-oriented programming is, of course, a
relatively new field, so it is only natural that the community at large will take some
time to learn and communicate good design principles; perhaps we just need to wait?
(It is worth noting here that excellent tutorials such as [7] are now starting to emerge.)
One final option remains: it could be that Aspect] et al. really are too low-level for
our ambitions — or, turning that around, that we’re guilty of expecting too much.

A multi-dimensional functionality thought experiment

We have spoken of aspirations, but given few details. What sort of thing do we have
in mind?

One way to articulate such matters is by means of a ‘thought experiment’ — in this
case taking inspiration from the military simulation domain. Our intent is to show the
breadth of multi-dimensional functionality in what for that domain is a relatively
simple problem, and to stimulate thought about how software construction techniques
influence its subsequent evolution.

Consider a computer generated forces (CGF) assault on an enemy position. The
requirement is for a simulation (component) to plan and execute an operation:

[J according to some specified scenario (location, time, military resources,
opposition, ...)

[using a given form of reasoning process (broad agents, rule based, scripted, ...)

[following particular doctrinal principles (tactics, rules of engagement, ...)

59

CSEG
59

[inside certain computational resource limits (time, memory, ...)

[J implementing a particular style of simulation (training, analytic, predictive, ...)

[visualized as required (immersive VR, plan view display, statistical summary, ...)
[within acceptable validity tolerances

O ...

Each of the above represents a design decision that could — in principle at least —
be changed independently. To get a sense for how hard it is to plan ahead for all
possible eventualities, think about how you might go about coding such an example.
What abstraction mechanisms would you use to structure it? How well could your
approach cope with this range of changes, and with other possible variations that you
can think of?

Clearly, some of the flexibility that we and our customers demand can be
accommodated using conventional methods (e.g., parametrization of scenario).
Aspects as we currently know them might well serve for others (e.g., at least for some
forms of visualization). However, entirely new techniques would also seem to be
required (e.g., for separating out elements of ‘intelligent’ behaviour such as doctrine
— especially if this is to be in some way independent of the reasoning approach).

So what’s the point?

Having started by arguing the case for aspect-oriented programming, we conclude by
turning about-face to knock our strawman down — if only on a technicality.

Although there may be no alternative but to pursue such mechanisms, that does not
make the future entirely predestined and inevitable. We actually have a lot of choice.
It is not the choice of whether to adopt something like AOP, but the more exacting
choice of how best to adopt it. This might not be the choice we thought that we had,
but it’s actually a pretty good one; being so wide-ranging and open-ended, it gives
plenty of room for manoeuvre.

In other words, the principle seems sound, but the practice still needs a good deal
of refinement. The real question is whether the mechanisms that we know about now
(e.g., those in Aspect], in other variations on the theme such as HyperJ [8], or even
those investigated in related initiatives such as Minsky’s law-governed regularities [9]
or Microsoft’s intentional programming [10,11]) suffice to satisfy the aspirations that
we already have, and those that we are going to formulate over the coming years.

Our honest answer is that we don’t know, but on balance we remain sceptical.

We therefore challenge the research community to join us in looking for new forms
of program abstraction, composition and transformation — which may or may not end
up resembling (or being called) aspect-oriented programming — that address both the
precisely formed targets of academic fascination and the less easily characterized
problems that software developers really face. Bridging the gulf between conceptual
levels, and exploring the full life-cycle viability of aspect-oriented programs, are but
two of the more interesting that immediately spring to mind.

Aspect-oriented programming as we know it now is doing a grand job of exploring
interesting territory; we simply urge that the research community widen its horizons,
to see what else remains uncharted.

60

CSEG
60

References

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopez,
John-Marc Loingtier and John Irwin, “Aspect-Oriented Programming”, pp. 220 ff. in
Proc. 11™ European Conference on Object-Oriented Programming (Jyviskyld, Finland,
9-13 June 1997) — published by Springer-Verlag as Lecture Notes in Computer Science
no. 1241 (Mehmet Aksit and Satoshi Matsuoka, editors).

2. “Aspect-Oriented Programming”.

Xerox PARC website, URL: http://www.parc.xerox.com/csl/projects/aop/.

3. D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules”,
pp- 1053-1058 in Communications of the ACM, Vol. 15, No. 12, December 1972.

4. Edsger W. Dijkstra, “A discipline of programming”, Prentice-Hall, 1976.

[See in particular “In Retrospect” (chapter 27; pp. 209-217), and also “note 1” (p. 203).]

5. “Aspect]: Crosscutting Objects for Better Modularity”.

Xerox PARC website, URL: http://aspectj.org/.

6. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm and William G.
Griswold, “An Overview of Aspect]”, pp. 327 ff. in Proc. /5™ European Conference on
Object-Oriented Programming (Budapest, Hungary, 18-22 June 2001) — published by
Springer-Verlag as Lecture Notes in Computer Science no.2072 (Jergen Lindskov
Knudsen, editor).

7. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm and William G.
Griswold, “Getting Started with Aspect]”, tutorial article submitted for a special theme
section on Aspect-Oriented Programming to appear in Communications of the ACM,
Vol. 44, No. 10, October 2001.

(Available on-line at URL: http://aspectj.org/doc/gettingStarted/index.html.)

8. “HyperJ™: Multi-Dimensional Separation of Concerns for Java™”.

IBM Research website,
URL: http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm.

9. Naftaly H. Minsky, “Law-Governed Regularities in Object Systems. Part I: An Abstract
Model”, pp. 283-301 in Theory and Practice of Object Systems, Vol. 2, No. 4, 1996.

10. Charles Simonyi, “The Future Is Intentional”, pp. 5657 in I[EEE Computer, Vol. 32,
No. 5, May 1999. [One of nine contributions to “Software [R]evolution: A Roundtable”,
Kirk L. Kroeker (editor), pp. 48—57 of that issue.]

11. “Intentional programming”.

Microsoft Research website, URL: http://www.research.microsoft.com/ip/.

Acknowledgements

One of the authors has twice had the privilege of seeing Gregor Kiczales’ excellent
presentations on aspect-oriented programming. Our colleague David Allsopp offered
some particularly thoughtful observations. This work has been supported by the UK
Ministry of Defence under Corporate Research TG10 project 5.4.4, “Re-usable
Simulation Components for Synthetic Environments”.

© Copyright QinetiQ Itd 2001

61

CSEG
61

	Title
	Preface
	Table of Contents
	Adaptive Systems
	Group Objects using Aspect-Oriented Adapters (Stefan Hanenberg, Rainer Unland)
	From Software Parameterization to Software Profiling (Phillipe Bouaziz, Lionel Seinturier)
	Aspect-Based Workflow Evolution (Boris Bachmendo, Rainer Unland)

	Mapping and Automation
	Some Insights on the Use of AspectJ and Hyper/J (Christina Chavez, Alessandro Garcia, Carlos Lucena)
	Translation of Java to Real-Time Java using Aspects (Morgan Deters, Nicholas Leidenfrost, Ron K. Cytron)

	Middleware
	Middleware Architecture Design Based on Aspects, the Open Implementation Metaphor and Modularity (H.-Arno Jacobsen)
	Aspects of Exceptions at the Meta-Level (Ian S. Welch, Robert J. Stroud, Alexander Romanovsky)
	Fault Tolerance AOP Approach (Jose Luis Herrero, Fernando Sanchez, Miguel Toro)

	Miscellaneous
	Transferring Persistence Concepts in Java ODBMSs to AspectJ Based on ODMG Standards (Arno Schmidmeier)
	Alternatives to Aspect-Oriented Programming? (David Bruce, Nick Exon)

