
Aspect-Oriented
Programming
and
Separation of
Concerns
Proceedings of the International Workshop
Lancaster University, UK
24 August 2001

Awais Rashid, Lynne Blair (eds.)

Computing Department, Lancaster University
Technical Report No. CSEG/03/01

http://www.comp.lancs.ac.uk/computing/users/marash/aopws2001/

Preface

These proceedings contain the position papers and extended abstracts accepted for
presentation at the Workshop on Aspect-Oriented Programming (AOP) and
Separation of Concerns held on 24 August 2001 at Lancaster University, UK. The
goal of the workshop was to increase awareness about AOP and other separation of
concerns mechanisms in the UK computer science community by bringing together
both UK-based and international researchers working in these areas. The workshop
was aimed at providing a forum to present on-going or completed research work and
exchange ideas about outstanding research issues. A tutorial was held before the
workshop on 23 August 2001 to provide an introduction to AOP concepts and hands-
on experience with AspectJ: an AOP language from Xerox PARC which enables
writing aspect-oriented programs in Java. The tutorial was aimed at people
relatively new to the area. Since the tutorial was held before the workshop, tutorial
participants attending the workshop had an opportunity to expand their knowledge to
state of the art research in the area.
The accepted papers for the workshop covered a wide but coherent set of topics
including adaptive systems, persistence, mapping and automation, middleware and
future directions for AOP. We wish to extend our thanks to the authors of the papers
for their contribution to the workshop. We also wish to express our gratitude to
Cooperative Systems Engineering Group at Computing Department, Lancaster
University for providing funding for the workshop and the British Computer Society
Advanced Programming Group for their help in advertising the workshop. In addition,
we wish to thank Aimee Doggett, Chris Needham and Michelle Spence for local
arrangements. Last but not least we thank all the participants without whom the
workshop would not have been possible.

Awais Rashid
Lynne Blair

August 2001

Table of Contents

Adaptive Systems

Grouping Objects using Aspect-Oriented Adapters 1
Stefan Hanenberg, Rainer Unland

From Software Parameterization to Software Profiling 8
Philippe Bouaziz, Lionel Seinturier

Aspect-Based Workflow Evolution 13
Boris Bachmendo, Rainer Unland

Mapping and Automation

Some Insights on the Use of AspectJ and Hyper/J 20
Christina von Flach G. Chavez, Alessandro Farbricio Garcia,
Carlos J. P. de Lucena

Translation of Java to Real-Time Java using Aspects 25
Morgan Deters, Nick Leidenfrost, Ron K. Cytron

Middleware

Middleware Architecture Design based on Aspects,
the Open Implementation Metaphor and Modularity 31
H.-Arno Jacobsen

Aspects of Exceptions at the Meta-Level 38
Ian S. Welch, Robert J. Stroud, Alexander Romanovsky

JReplica: An AOP Approach for a Transparent, Manageable
and ORB Independent Object Replication 44
Jose Luis Herrero, Fernando Sanchez, Miguel Toro

Miscellaneous

Transferring Persistence Concepts in Java ODBMSs to AspectJ
Based on ODMG Standards 53
Arno Schmidmeier

Alternatives to Aspect-Oriented Programming? 58
David Bruce, Nick Exon

Grouping Objects using Aspect-Oriented Adapters

Stefan Hanenberg, Rainer Unland

Institute for Computer Science
University of Essen, D - 45117 Essen

{shanenbe, unlandR}@cs.uni-essen.de

Abstract. Aspect-Oriented Programming (AOP) is an approach for realizing
separation of concerns and allows different concerns to be weaved into existing
applications. Concerns usually cross-cut the object-oriented structure. When-
ever a concern needs to invoke some operations on objects of the given structure
the problem arises, that those objects have different types, but the concern ex-
pects them to be handled in the same way. Therefore a mechanism for grouping
objects of different types is needed.This paper discusses different mechanisms
and proposes aspect-oriented adapters for grouping types and shows how this
approach permits a higher level of flexibility and reduces the limitations of
known approaches. Aspect-oriented adapters are not limited to a specific gen-
eral purpose aspect language (GPAL). Nevertheless the examples in this paper
are realized in AspectJ, which is by far the most popular and well-established
general purpose aspect language.

1 Motivation and Problem Description

Let us assume we want to make objects persistent, which are created by an existing
simulation-application. As pointed out in [3] persistency is a concern and so this is a
typical application of Aspect-Oriented Programming [4]. Every newly created object
should be added to a persistent storage and whenever the state of a certain object
changes, its representation on the store must be updated. There is no need to offer an
interface for retrieving objects, because the simulation itself does not use former ob-
jects. Instead the information is used by another application which directly accesses
the storage for retrieving information about the simulation. The objects to be stored
are all instances of class Point.

A suitable (straight-forward) solution for this problem in AspectJ [5] would be an
aspect, which writes the state to the store every time an object is created and when-
ever its state changes (fig. 1). An instance of the aspect PersistentPoint is
created for every Point instance. The aspect generates an object id (realized as an
instance counter) and stores it in its attribute id. After creating a new Point the
object is written to the persistent storage realized in the constructor of Persis-
tentPoint.

CSEG
1

The state of a point changes, whenever the methods setX() or setY()are in-
voked. Therefore a pointcut setPC() is defined for any instance of Point receiving
a set-message. Whenever this happens the corresponding pointcut method (or advice
in the AspectJ terminology) is executed which reads a point's state (getX() ,
getY()) and updates the persistent storage.

 aspect PersistentPoint

 of eachobject(instanceof(Point)){
 private static int idnum = 0;
 private int id = ++idnum;
 public PersistentPoint() {
 .. write new (unitialized) object to storage}
 pointcut setPC(Point p): instanceof(p) &&
 (receptions(void setX(float)) ||
 receptions(void setY(float)));
 after(Point p): setPC(p) {
 float x = p.getX());
 float y = p.getY());
 …update x,y of object id}
}

class Point {
 private float x=0;
 private float y=0;
 public float getX() {
 return x;}
 public float getY() {
 return y;}
 public void setX(float x) {
 this.x = x;}
 public void setY(float y) {
 this.y = y;}
}

Figure 1: a) Class Point, b) Aspect PersistentPoint

Let us assume there is another (similar) application having its own implementation

of a point AnotherPoint identical to Point. The proposed solution directly de-
pends on the class Point and cannot be used for other classes. Therefore it would
be more desirable to define a persistency aspect without being limited to class Point.

AspectJ supports inheritance relationships between aspects and allows to declare
abstract aspects, so it seems to be a good choice to define an abstract aspect Per-
sistentObject, which is responsible for creating the object id and reading the
object's state (fig. 2, see [2] for a detailed discussion on inheritance and AOP). Its sub-
aspects only have to define the class this aspect should be weaved to. Therefore
PersistentObject contains an abstract pointcut weavedClassPC(), which
has to be defined by the subaspects. We want the aspects to be instantiated for every
instance of Point and AnotherPoint, so the definitions of weaved-
ClassPC()in our concrete aspects corresponds to that.

But now a new problem arises: how can the state of the object be read in the point-
cut method? The intention of the aspect is to be woven to classes, having the meth-
ods getX(), getY(), setX(float) and setY(float). The set-methods are
used for the pointcut definition, and the get-methods are needed by the aspect in-
stance to read an object’s state. But although knowing those method signatures the
concrete type of those classes is unknown and left to those aspects, which make the
abstract pointcut concrete. Because aspects crosscut the inheritance structure of
classes usually those classes do not have any common type but
java.lang.Object. So it is not possible to send getter-messages to the related
object, because the type is unknown and therefore a typecast is not possible.1 A pos-

1 We assume here general purpose aspect languages with static type checking like AspectJ or

Sally [8] which are both based on the programming language Java.

CSEG
2

sibility would be to use reflection for those method calls, but that requires an enor-
mous effort.

 abstract aspect PersistentObject of

eachobject(weavedClassPC) {
 private static int idnum = 0;
 private int id = ++idnum;
 public PersistentObject() {
 .. write new (unitialized) object to storage}
 abstract pointcut weavedInstances(Object o);
 pointcut setPC(Object o): weavedInstances(o) &&
 (receptions(void setX(float)) ||
 receptions(void setY(float)));
 after(Object p): setPC(p) {
 ..write state to data storage}
}

aspect PersistentPoint
 extends PersistentObject {
 pointcut
 weavedInstances(Point p):
 instanceof (p);
}

aspect PersistentAnotherPoint
 extends PersistentObject {
 pointcut weavedInstances
 (AnotherPoint p):
 instanceof (p);
}

Figure 2: abstract persistency aspect (trial)

The concrete problem is, that aspect-oriented programming groups objects in an-

other way than the predefined object-oriented structures do. So a mechanism is
needed how to group objects of different types and allow to sent messages to them.

In the next section we discuss approaches related to this problem and demonstrate
that they do not solve this problem appropriately. Afterwards we introduce and dis-
cuss aspect-oriented adapters for grouping types and show how this approach allows
a higher level of flexibility and reduce the limitations of other approaches. We will also
apply the adapter to the introducing example. In the forth section we map the introduc-
ing example to aspect-oriented adapters. Finally we summarize and conclude the paper.

2 Related Work

AspectJ offers a mechanism called introductions which can be applied to the given
problem. The mechanism allows aspects to change the structure of the object-oriented
classes. In this way additional methods and attributes can be inserted into existing
classes. For the purpose of grouping objects introductions allow to insert new types
to the target classes. So the interface needed by an aspect has to be defined and af-
terwards integrated into those classes.

Applied to the example from the first section that means, that an interface needed
by the aspect PersistentObject has to be specified. This interface has to con-
tain the getter-methods the aspect needs to invoke for reading a point’s state. The
concrete aspects PersistentPoint and PersistentAnotherPoint have to
introduce this interface to the classes Point and AnotherPoint. The type of the
parameter in the pointcut and pointcut method must be of that introduced interface, so
the advice can invoke the getter-methods.

But this way to handle the problem leads to additional problems:

CSEG
3

• Tangled introduction statements: The introduction-statements in every sub-aspect
logically belong to the abstract aspect. They have to be implemented redundantly
and are in that way tangled.

• Confusing class structure: After weaving the classes of the original application
implement a new interface (fig. 3). If a lot of aspects are woven this approach leads
to numerous interfaces spread all over the class structure. In this way the original
code becomes confusing and makes it difficult for developers to understand the
original code for reasons of reuse.

• Lack of structure after unweaving: After weaving developers extending the appli-
cation can use the common interfaces introduced by the aspects, because they
cannot distinguish the original interface from the introduced ones. So after unweav-
ing the aspects the original classes do not implement those interfaces any longer,
and so the extended application is incorrect.
Because of this we regard introductions to be inappropriate for the given problem.

The problem of grouping objects has already been discussed widely in the context of
object-orientation. Classes are templates from which objects are created (cf. [10]) and
in that way group objects. [9] pointed out the importance of classification as a mecha-
nism for conceptual modeling in object-oriented programming. The difference to the
problem handled here is that the needed classification is not an inherent property of
the objects, but depends on an aspect’s subjective perspective on the system.

AnotherPointPoint

Object Object

AnotherPointPoint

interface

PointInterface
Weaving

Figure 3: Using introductions for Point and AnotherPoint

In that way the mechanism of generalization introduced in [7] seems to be appropri-
ate for the problem stated. Generalization permits to define a super-type based on an
existing class. In [7] one of the main purposes of generalization is to achieve a late
classification. That is exactly what aspects are doing: while they cross-cut an existing
structure they accomplish a late classification for their special purposes.

Neglecting the fact, that generalization is not available in popular object-oriented
programming languages, the criticism of that mechanism is corresponds to the of criti-
cism introductions in AspectJ: developers extending the original application can not
distinguish between the original classes and those created for the purpose of late
classification. Also the problem of the confusing class structure stays the same.

3 Aspect-Oriented Adapters

Adapters (cf. [1]) are special classes, which adapt the interface of a class in the way
expected from its clients. In that way the functionality of adapters match the problem

CSEG
4

stated above. The traditional use of adapters for mapping interfaces assumes, that
clients expect a certain interface of a class which differs from that class which is able to
fulfill the requests. The problem depicted here is different: advices expect their parame-
ters to have some method signatures to send messages to them. Although the signa-
tures are known, the type of those objects is unknown, respectively those objects do
not have any common type. So an adapter is needed which has the interface expected
by the aspect and which forwards messages to a certain object.

receptions(* *(*))

of eachobject
 (instanceof(Adapter)) <<aspect>>

ForwardingAspect
Adapter

+refObject:Object
+getRefObject():Object
+createAdapter(o:Object,c:Class):Adapter

ConcreteAdapter1

+Operation1……
+Operation2……

ConcreteAdapter2

+Operation1……
+Operation2……

Figure 4: Aspect-Oriented Adapters2

An object-oriented solution for this problem is quite complex: the type of the object
to which the messages have to be forwarded is unknown, so the developer has to use
reflection to realized it. This code has to be used in every method which means an
enormous effort.

public aspect ForwardingAspect
 of eachobject(instanceof(Adapter)) {
 ...
 around() returns Object: receptions(* *()) {
 ...
 return invokeMethodFromReceptionsJoinPoint((ReceptionJoinPoint) thisJoinPoint);

...}
 private Object invokeMethodFromReceptionsJoinPoint(ReceptionJoinPoint jp) throws Exception {
 Method m = getMethodFromReceptionJoinPoint(jp);
 return m.invoke(((Adapter) jp.getExecutingObject()).refObject, jp.getParameters());}

 private Method getMethodFromReceptionJoinPoint(ReceptionJoinPoint jp) throws Exception {
 Adapter wrap = (Adapter) jp.getExecutingObject();
 MethodSignature sig = (MethodSignature) jp.getSignature();
 String methodName = sig.getName();
 Class[] paramTypes = sig.getParameterTypes();
 return wrap.refObject.getClass().getMethod(methodName, paramTypes);}
}

Figure 5: Example-implementation for forward-adapter

The aspect-oriented solution for such adapters is much easier and allows a higher
degree of reusability (figure 4). The abstract class Adapter contains the reference to
the object to which every message is to be forwarded. The aspect ForwardingAs-
pect is responsible for forwarding every message received by an instance of
Adapter. Therefore an instance of ForwardingAspect is created for every in-
stance of Adapter and the aspect contains pointcut methods, which forward every
message received by the adapter to the corresponding object.

2 The UML-like notation used here serves the understanding of the ingredients of the aspect-

oriented wrapper, but does not match the UML standard.

CSEG
5

The aspect-oriented adapter is used by creating a ConcreteAdapter, subclass
of Adapter, which contains all methods needed by the aspect. Those methods have
to contain a dummy implementation needed for compiling the class. The implementa-
tion will never be executed, because the ForwardingAspect replaces it by forward
implementations.

Whenever a client wants an object to be adapted, he has to create an adapter in-
stance by invoking the static createAdapter(..)-method of Adapter. The
parameters of this method are an instance of the object which is about to be adapted,
and a reference to the concrete adapter class. The adapter uses reflection to create a
new instance of the concrete adapter and initializes refObject with the adapted
object. The developer doesn’t have to write glue code for forwarding messages, be-
cause this is already done by the ForwardingAspect.

Figure 5 shows an extract from the implementation of a forward aspect in AspectJ.
The advice overrides every method of the adapter having an arbitrary return type. This
is realized by a receptions pointcut consisting only of wildcards. The implementation
uses the Reflection API part of AspectJ for finding out, what the target method is and
the Java Reflection API for getting a reference to and invoking the target method .

For applying the aspect-oriented adapter to the introducing example a concrete
adapter (PointAdapter) has to be created containing both getter-methods used by
the advice in PersistentObject. The advice has to create an adapter object for
the incoming object using the create method of the abstract adapters:

PointAdapter a = (PointAdapter) Adapter.createAdapter(p, PointAdapter.class);

Afterwards object a can be used as if it is an instance of PointAdapter.

4 Conclusion and further work

We introduced aspect-oriented adapters as a mechanism for grouping objects and
compared it to existing approaches. The main advantage of using adapters is, that
objects can be grouped without touching the existing inheritance structure. The effort
of using aspect-oriented wrappers is compareable to introductions known from the
GPAL AspectJ.

Nevertheless aspect-oriented adapters need to be used very carefully and in a dis-
ciplined maner. Because forwarding messages is realized on object-level using reflec-
tion there is no static type-checking available. So the developer has to be sure, that
the interface of the adapted object really fulfills the signatures specified in the con-
crete adapter.

This presented approach can be used for composing aspectual components [6],
which represent aspects whose interfaces have to be adapted to let them interact with
their environment. In the future we will examine, how such components can be realized
in existing general purpose aspect languages.

CSEG
6

References

1. Gamma, E., Helm R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, 1995

2. Hanenberg, S., Unland, R.: Concerning AOP and Inheritance. In: Mehner, K., Mezini, M.,
Pulvermüller, E., Speck, A. (Eds.): Aspect-Orientation - Workshop. Paderborn, Mai 2001,
University of Paderborn, Technical Report, tr-ri-01-223, 2001

3. Hürsch, W., Lopes C.: Separation of Concerns. Northeastern University, technical report,
no. NU-CCS-95-03, 1995.

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwing, J.:
Aspect-Oriented Programming. Proceedings of ECOOP '97, LNCS 1241, Springer-Verlag,
pp. 220-242, 1997

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An Overview of
AspectJ. Appears in ECOOP 2001

6. Lieberherr, K., Lorenz, D., Mezini, M.: Programming with Aspectual Components , Technical
Report, NU-CCS-99-01, Northeastern University, Boston, 1999

7. Pedersen, C.: Extending Ordinary Inheritance Schemes to Include Generalization. In: Mey-
rowitz, N. (Ed.): Conference on Object-Oriented Programming: Systems, Languages, and
Applications (OOPSLA'89), October 1-6, 1989, New Orleans, Louisiana, Proceedings.
SIGPLAN Notices 24(10), October 1989

8. Sally: A General-Purpose Aspect Language, http://www.cs.uni-essen.de/dawis/
research/ aop/sally/, January 2001

9. Taivalsaari, A.: On the Notion of Inheritance. ACM Computing Surveys, Vol. 28, No. 3, pp.
439-479, 1996

10. Wegner, P.: Dimensions of object-based language design. In: Meyrowitz, N. (Ed.), Proceed-
ings of OOPSLA '87, SIGPLAN Notices 22 (12), pp. 168-182, 1987

CSEG
7

From Software Parameterization to Software

Pro�ling

Philippe Bouaziz1;2 and Lionel Seinturier1

1 Univ. Paris 6, Lab. LIP6, 4 place Jussieu, F-75252 Paris cedex 05, France

fPhilippe.Bouaziz, Lionel.Seinturierg@lip6.fr
2 Prodware Group, 45 quai de la Seine, F-75019 Paris, France

Abstract. Over the last years, software engineering research applied

to separation of concerns has focused on new software paradigms such

as Aspect Oriented Programming. Aspects are abstractions which cap-

ture and localize crosscutting concerns. Many works have been conducted

with regard to non functional concerns such as performance or semantics

of component. This paper wants to demonstrate their interest for func-

tional concerns. It introduces a new software engineering process that

we call Software pro�ling which represents a step further in software pa-

rameterization using functional/non-functional aspects to provide highly

adaptable and evolving software.

1 Introduction

Over the last years, software engineering research applied to separation of con-

cerns has focused on new software paradigms such as Aspect Oriented Program-

ming [8][7]. It aims at optimizing software development by providing tools to

improve modularization, so that it corresponds to the natural view of concerns

such as de�ned by developers [10]. Aspects are abstractions which capture and

localize crosscutting concerns e.g. code which cannot be encapsulated within one

class but that is tangled over many classes. Synchronization, failure handling,

load balancing, real time constraints, memory management, optimization are

classical examples of aspects. Many works have been conducted with regard to

non functional concerns such as performance or semantics of component where-

as crosscutting concerns are widely presents in codes dealing with functional

aspect.

Research in AOP is in its early stage with programming tools available,

but its contribution to software development process is still not clearly de�ned,

especially in term of penetration degree in the functional part. We think that

capabilities of aspect are broader than system and environmental concerns, and

that they can be widely used in the software development process, and especially

concerning software parameterization that has been the last ten years goal in

software industry.

We present here the foundation of a software engineering process that we call

Software pro�ling which represent a step further in software parameterization by

CSEG
8

2

using functional/non-functional aspects to provide highly adaptable and evolving

software. It permits to obtain clear, modular and strongly evolving software that

can be pro�led statically or dynamically depending on the problematic of the

user with no alteration of the standard source code which is only concerned

by standard evolutions, keeping this way ascendant compatibility in software

versions.

First of all, we describe quickly Aspect Oriented Programming. In a second

part we present the goals and fundamentals of Software pro�ling and its con-

tribution to software engineering industry. Finally we consider the bene�ts of a

Case tools for software pro�ling as a base for further works.

2 AOP

Aspect Oriented Programming aims to achieved separation of concerns by im-

proving code modularization using Aspects. Most of the time, aspects repre-

sent non-functional requirements. In AOP, components and aspects are separate

codes and the weaving process is done by a static (compile time) or dynamic

(run time) compiler that is called an aspect weaver. The aspect weaver, weaves

aspects and components at speci�c points named join points which can be im-

plicit such as language keywords or explicit. Speci�c code is then added at this

points. [6] classify join points among open, class-directional, aspect-directional,

and closed depending on the fact that the aspect or the class knows about each

other or not:

{ Open: Both classes and aspects know about each over,
{ Class-directional: the aspect knows about the class,
{ Aspect-directional: the class knows about the aspect,
{ Closed: neither the aspect nor the class knows about the other.

AspectJ [1] and the Composition Filter Object Model (CFOM) [2] are some

of the leader tools in AOP. AspectJ is an aspect-oriented extension to Java that

is being developed at the Xerox Palo Alto Research center. It o�ers a language

to de�ne a new kind of module, called an aspect. Aspects are de�ned separately

from the standard code. AspectJ provides a static aspect weaver in Java, and oth-

er development tools. It is widely used in AOP research community, and version

1.0 is due next fall. A version of AspectJ for C [4] is under development. CFOM

is a project developed by the Trese group. The composition �lter approach [2]

extends objects with �lters that deal with inter-objects messages. Input and out-

put �lters are used to localize aspect code. Other AOP approach exists, among

them Subject Oriented Programming [5], Adaptive Programming [9], and other

language extension like AOP/St for Smalltalk [3].

3 Software pro�ling

3.1 Software parameterization

Customer requirements and needs tend to evolve as technology, business and

company processes advance. Software developed in the last decade with initial

Awais Rashid

CSEG
9

3

customer needs in mind tend to be unsuitable to follow these changes as no

proper design technique is available for this. Development teams that try nev-

ertheless to achieve this goal, end up with source code more and more diÆcult

to maintain, upgrade, and reuse. Along a long embryo period, software is install

with many diÆculties and is in permanent beta stages to meet new requirements

or requirements that emerge from the analysis.

The increasing speed of technological evolution over the last twenty years and

the fact that computer software became more and more common, created a clear

need for rationalizing software processes to deliver cheaper products, with short

integration times, quality-oriented maintainability and evolution capabilities to

guarantee a longer software life.

To achieve this goal, software industry evolved, just as the textile industry did

with ready-made clothes, and committed itself in developing standard business

software, based on common needs of a signi�cant community of customers. Base

on this, customizations are being made possible with parameters that re
ect

the various management practices of customer organizations. These software are

developed by editors that provide maintenance, that are permanently auditing

their market, and that are arbitrating the functional and technological changes

of software.

These days, the existing level of parameterization existing in major products,

such as ERPs1 (e.g. SAP), provides many important features to meet needs of

various industry �elds. Nevertheless, the level of adaptability of these products to

non-mutualizable features is weak due to the complexity introduced by the huge

number of available parameters. Most of the time, this adaptation is done in an

ad-hoc manner. Faced with this problem, partial solutions have been proposed

based on object technologies, n-tiers architectures and in the industry, relational

databases. They allow delocalizing treatments such as reporting, that can (re)

become speci�c, and to slightly amend software based on entry points, triggers

or stored procedures, to better integrate it with the information system.

Nevertheless, for simple needs such as ascending compatibility, the behavior

of the application or of the data model can never be altered. This prevents a strai-

ght and optimized answer to above mentioned issues. Furthermore, programs end

up being tangled due to the many possibilities introduced by parameterization

and cannot be reuse.

3.2 The bene�ts of functional aspects

Software design aims at: (1) factorizing functionalities, and (2) allowing that

these functionalities be parameterized in order to meet customer speci�c needs.

From an industrial point of view, the modi�cation of these parameters can induce

too deep modi�cations of the software internal structure preventing the addition

of new or customer speci�c features. Many technical solutions exist, but they

bring either an overload of scattered code, or a parameterization of existing

parameters, and in all cases are to diÆcult to maintain (each case needs to be

1 Entreprise Resource Planing

Awais Rashid

CSEG
10

4

individually treated). Aspect oriented development should allow to standardize

and centralize these speci�cities in order to avoid overloading and tangling.

3.3 Software pro�ling

The notion of aspect allows to pro�le software depending on the needs and

notably:

{ to encapsulate in a clear and centralized way, parameters leading to massive

cross-cutting all along the code,
{ to perform without altering the main code, modi�cations or extensions in

functional part, for example altering the behavior of business objects to

obtain a di�erent action on the information
ows, and even its replacement

by another object,
{ to encapsulate in a clear and centralized way system features such as syn-

chronization, load balancing, real time, ...,
{ to ease code reuse,
{ to bring capabilities of dynamic reactivity to the software depending on

the evolution of pro�les such as dynamic design of GUI and contents (for

instance to pro�le Internet applications furnished by ASPs - application

service providers).

Usage of aspects in parameterized software therefore allows to pro�le software

depending on data and strategy de�ned in static or dynamic ways. The pending

diÆculty is to be able to de�ne what in a pro�le is relevant to aspects.

4 Further works

As mentioned before, parameterized software design, is a global process. To be

a part of it, the notion of aspect should impact all levels, analysis, design and

implementation. To do so, CASE tools should integrate this notion, furnishing

an environment taking all this considerations in account. We can imagine to �nd

there :

{ a set of rules to help decide whether to use aspects or not,
{ an extension to existing methods to take aspects into account during the

analysis phase,
{ a graphic design tool to describe aspects and their relationships with other

aspects and components,
{ an environment for managing and testing projects integrating aspects char-

acteristics.

Some works have been realised in this sense such as UML/UXF [11] for the

design phase or AJDE [1] as a development environment. Nevertheless, as far as

we know, no break throws have been made in terms of designing aspects and their

relationships or about methods, or decisional purpose. Our goal is to provide a

CASE tools for software pro�ling design taking all this needs in account. One of

the �rst steps will be to de�ne, method speci�cs, components speci�cations and

rules.

Awais Rashid

CSEG
11

5

5 Conclusion

We show in this paper the interest of introducing aspects in software parameter-

ization, and by the way demonstrate the capabilities of aspects in the functional

�eld of software development. Aspects in the development process will bring

clear, modular, strongly evolving and adaptable parameterized software. In this

article we enlarged the scope of aspect to functional domains. We are now work-

ing, on de�ning rules to decide where and when aspects should apply. The next

step will be for us to de�ne fundamentals for Software pro�ling, especially in

terms of method speci�cs, components speci�cations and rules.

References

1. AspectJ home page. http://www.aspectj.org.

2. Aksit, M., Wakita, K., Bosch, J., and Bergmans, L. Abstracting object interactions

using composition �lters. vol. 791 of LNCS, pp. 152{184.

3. Bollert, K. On weaving aspects. In Workshop Aspect-Oriented Programming at

ECOOP'99 (June 1999). http://trese.cs.utwente.nl/aop-ecoop99/.

4. Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N., and Ong, J. Structuring

system aspects. In Proceedings of the workshop on Aspect-Oriented Programming

at ICSE'01 (2001).

5. Harrison, W., and Ossher, H. Subject-oriented programming (A critique of pure

objects). In OOPSLA 1993 Conference Proceedings, A. Paepcke, Ed., vol. 28 of

ACM SIGPLAN Notices. ACM Press, Oct. 1993, pp. 411{428.

6. Kersten, M., and Murphy, G. Atlas: A case study in building a web-based learn-

ing environment using AOP. In Workshop Aspect-Oriented Programming at E-

COOP'99 (June 1999). http://trese.cs.utwente.nl/aop-ecoop99/.

7. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W.

An overview of AspectJ. In Proceedings of the 15th European Conference on

Object-Oriented Programming (ECOOP'01) (2001), Lecture Notes in Computer

Science.

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,

and Irwin, J. Aspect-oriented programming. In Proceedings of the 11th European

Conference on Object-Oriented Programming (ECOOP'97) (June 1997), vol. 1241

of Lecture Notes in Computer Science, Springer, pp. 220{242.

9. Lieberherr, K. Adaptive Object-Oriented Software: The Demeter Method with

Propagation Patterns. PWS Publishing Company, Boston, 1996.

http://www.ccs.neu.edu/research/demeter/biblio/dem-book.html.

10. Parnas, D. On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15, 12 (1972), 1053{1058.

11. Suzuki, J., and Yamamoto, Y. Extending UML with aspects: Aspect support the

design phase. In Workshop Aspect-Oriented Programming at ECOOP'99 (June

1999). http://trese.cs.utwente.nl/aop-ecoop99/.

Awais Rashid

CSEG
12

Aspect-Based Workflow Evolution

Boris Bachmendo and Rainer Unland

Department of Mathematics and Computer Science
University of Essen, D - 45117 Essen

{bachmendo, unlandR}@cs.uni-essen.de

Abstract. In this position paper we propose an approach for the flexible
evolution of object oriented workflow implementations using AOP. We show
how reusable aspects can apply changes (e.g. insertion of activities or control
flow constructs) to OMG compliant implemented processes. Besides aspects
providing different workflow auditing methods can trigger necessary
alternations. In that way a cyclic workflow improvement can be realized.

1. Introduction

Aspect-Oriented Programming is a new software engineering paradigm which
supports a separation of concerns. Concern composition is realized by extending
programming language with special constructs: joinpoints (which define relevant
points for the insertion of concern-related code in the application class structure),
pointcuts (which describe interactions between joinpoints) and pointcut-methods (also
known as advises, define action to be performed before, after or instead the invocation
a certain pointcut is activated by) [6].

Different perspectives of workflow modelling and implementation, e.g. control
flow (execution order), data flow (data interchange) or resources are described in [7].
The applicability of AOP for supporting flexible workflow execution was first
identified in [12], that propose implementing these perspective separately using AOP
and weaving them together in a workflow application.

Although workflow management arose from automating well structured repetitive
production processes, the need for supporting dynamic altering workflows, e.g. in
office and scientific areas, is obvious nowadays. [3] distinguish between static
workflow evolution, i.e. modifying workflow models, and dynamic evolution, i.e.
adapting running process instances. Unlike [12] we propose dynamic evolution of
existing object oriented workflow implementations by weaving appropriate aspects.
This approach allows the reuse of both adaptation cases realized as aspects (e.g.
insertion of control flow constructs) and workflow implementations. At the same time
aspects implementing arbitrary auditing methods can be used to control process
execution and trigger workflow evolution when necessary.

In the next section we briefly present an object-oriented workflow implementation
approach. Possible evolution scenarios of control flow as well as resource and
auditing perspective are described in the third section. Section four summarizes the
paper and discusses some open issues.

CSEG
13

+requester

0..1

+performer

*

+container1

+step* +master

1

+instance of

*

+assignment

*

+activity

1

+assignee

1

+work_list

*

WfExecutionObject

WfActivity

WfProcess WfRequester

WfRessource

WfProcessMgr

WfAssignment

Fig. 1. Simplified Workflow Management Facility Model

2. Object-Oriented Workflow Implementation

First workflow management systems (WfMS) had a highly centralized architecture
with a single workflow engine (e.g. FlowMark) or multiple replicated execution units
(e.g. MOBILE [7]). But an optimal level of flexibility and scalability can only be
provided by a truly distributed object-oriented implementation, where workflows are
realized as independent distributed objects. In order to standardize object-oriented
WfMS and to make them compliant to Object Management Architecture the OMG
proposed the Workflow Management Facility Specification. Since we will explain our
approach using this model as a reference, we will briefly outline it in the following.

A simplified version of Workflow Management Facility Model [10] is depicted in
Figure 1. WfRequester interface represents a request for some job to be done.
WfProcess has to perform the work, inform its requester upon completion and
deliver him the execution result. The requester uses WfProcessMgr to create a
process instance, i.e. it is a factory and locator for the instances of certain process
type. WfExecutionObject is a basic interface which contains common members
of WfProcess and WfActivity. While a WfProcess implements an instance of
a particular process model, the single process steps are represented by WfActivity.
The process creates corresponding activities and defines its context (i.e. input data).
The result that is produced by activity can be used to determine the following one.
WfActivity can also act as WfRequester, thereby the process it creates
becomes a subprocess of its owner. WfResorce represents a resource necessary for
activity execution.

3. Workflow Adaptation Using Aspect-Oriented Programming

3.1 Control Flow Perspective

First of all we consider the control perspective and describe how the control flow can
flexibly be changed using AOP. Figure 2 depicts the insertion of activities and control
flow constructs, defined by the Workflow Management Coalition [14], such as
sequence, split, join and iteration. Activity diagrams on the left side show a process
fragment, while sequence diagrams to the right represent interactions between objects.
Replaced control flows are depicted by dashed arrows in activity diagrams, while
interactions contain some special constructs showing interceptions by the aspects.

In Figure 2a an activity (A1) which is an instance of WfActivityA is replaced
by the instance of WfActivityB (A2). We assume WfActivityA and

CSEG
14

WfActivityB to be subtypes of the OMG-interface WfActivity. In this case we
use an aspect that has a pointcut activated by the invocation of an WfActivityA-
constructor performed by WfProcess instance P. The corresponding pointcut
method is executed instead of the original invocation. In the sequence diagram the
original call is depicted as a dashed connector with a transparent dot at the beginning
and transparent arrow at the end. Although this call is not executed it should
especially be depicted for instead-invocations to clarify what pointcut was activated.
The aspectual invocation is depicted by the connector between the caller object and
the aspect instance with the black dot on the aspect side. It is labelled with the original
method call.

In this case (Fig. 2a) the pointcut-method creates an instance of WfActivityB
and returns it to P instead of a WfActivityA-object (we assume the process is
handling its activities through the WfActivity interface). The context used for the
creation of A2 can differ from the original data. A2 considers P as its owner process
and reports it the execution results. Deletion of activities can be realized analogously
by replacement by dummy activities.

In Figure 2b a new activity (A2) is inserted between two existing ones and all of
them are executed in a sequence. The activity constructor invocation is once again
intercepted by the aspect. But in contrast to the first example the pointcut method is
executed before the constructor. It creates a new instance of WfActivityB. This
activity cannot report its results to the process, because P is not aware of its existence
and it would interpret the call as the result of A1. So the result is reported to the
aspect and thereafter the intercepted constructer call is executed. The context passed
over to A1 can be derived from the A2 result which in that way can influence the rest
of the process.

Figure 2c shows an inserted AND-Split between the activities A0 and A1. A single
thread of control now splits into two concurrently executing threads [14]: the old
(starting with A1) and the new one (A2). In contrast to the previous case the aspect
does not wait until A2 is finished before it continues the instantiation of A1.
Therefore the context of A1 cannot be affected by A2, whose returning result is
omitted since it is not relevant. An OR-Split (i.e. branching into several alternative
threads) can be inserted analogously to the activity replacement with the help of an
instead pointcut method. The method evaluates given conditions and decides on
creating either A1 or A2 (XOR-Split) or both of them.

Multiple threads converge into a single one by using the join construct [14]. The
insertion of an AND-join that merges parallel threads is depicted in the Figure 2d.
Since the coordination of A0 and A1 is already handled by the process, the aspect has
to ensure that A1 can only start after A2 is finished. Therefore one pointcut observes
the final call of A2 that return the result and sets an internal flag as soon as it was
executed. Another pointcut method intercepts the instantiation of A1 and lets it
proceed only after the flag was set. If the converging branches are alternatives (OR-
Join) the aspect has to detect the termination of the both, A0 and A2. It has to trigger
the creation of A1 at the moment the first of these events occurs and has to prevent
the instantiation when the second one takes place.

An iteration (i.e. repetitive execution of a process segment) is added in Figure 2e.
Activity A1 is performed repeatedly as long as a certain condition is fulfilled. A
before pointcut detecting the result delivery of A1 and starting it again and again, is

CSEG
15

P:WfProcess

A1:WfActivityA

Asp:WfAspectA0 A1

A2

A2:WfActivityBWfActivityB
(context)

set_result(result)

WfActivityA(context)

Activity

A0 A1

A2

A0 A1

A2

P:WfProcess

A1:WfActivityA

Asp:WfAspect

A2:WfActivityBWfActivityA(context)
WfActivityB

(context)

set_result(result)

set_result(result)WfActivityA
(context)

P:WfProcess

A1:WfActivityA

Asp:WfAspect

A2:WfActivityB

WfActivityA(context)
WfActivityB

(context)

set_result(result)

WfActivityA
(context)

A0 A1

A2

P:WfProcess

A1:WfActivityA

Asp:WfAspect A2:WfActivityB

WfActivityA(context)

set_result(result)

WfActivityA
(context)

set_result(result)

A0 A1

A2

[condition]

[not condition]

P:WfProcess A1:WfActivityA Asp:WfAspect

A2:WfActivityB

set_result(result)

[condition]
start(context)

[not condition]
set_result(result)

WfActivityB(context)

WfActivityA
(context)

WfActivityA
(context)

WfActivityA
(context)

WfActivityA
(context)

set_result(result)

a)

b)

c)

d)

e)

Fig. 2. Control flow adaptation using aspects.

CSEG
16

not appropriate in this case, since it would mean that results are reported repeatedly to
the process object, that cannot handle them, since it is not aware of the repetition. So
the instead pointcut method is used. It checks the condition (which can be based on
the returned result or an independent of A1) and either starts the activity once more or
forwards the result of the last execution to the process. After the process object gets
this result it instantiates the next activity A2.

3.2 Resources Perspective

Another workflow execution concern where flexibility is an essential requirement is
the dynamic assignment of resources to activities. The WfMC differentiates four
kinds of resources: human (person), organizational unit, role (e.g. the function of a
person within an organization) and system (i.e. automated machine resource) [13]. As
proposed in [15] the workflow resource model can be separated into the static meta
model, the dynamic assignment rules and access synchronisation mechanisms.
Although the frequent changes in the resource meta model are extremely seldom and,
therefore, can be realized by redesigning the application, they can also be
implemented by using aspectual introductions. It is a mechanism provided by the
general purpose aspect language AspectJ [8] that allows extending given types or
certain objects with additional member fields and methods.

Much more undecided and, therefore, changeable units are the dynamic assignment
rules also referred to as policy resolution. They handle the resource assignment to
process activities at runtime. In the Workflow Management Facility Specification of
the OMG an object implementing the WfAssignment interface is responsible for
linking WfActivity with WfRessource objects. It selects appropriate resources
according to the given activity context and other process independent information.
Although eligible resources are selected dynamically, the used resolution policy
depends on the WfAssignment object the activity is related to. But often the
assignment strategy itself has to be changed or extended dynamically. In this case
reusable aspects can be used to either replace the assignment objects or extend the
activity selection procedure by inserting additional code before or after it. Possible
extensions can consider the actual workload (e.g. appropriate aspects can be
dynamically added in overload situations) or history dependent assignment either in
order to take advantage of personal experience or to ensure equal work partitioning
[2]. On the other hand it can be necessary to replace a resource either for all
assignments resp. activities (e.g. if an employee is absent and his work has to be
delegated) or only for selected ones (e.g. for security reasons). This changes can also
easily be realized by adding an aspect intercepting the resource invocations.

The third component of the workflow resource model mentioned above is the
synchronisation of the concurrent access of multiple activities to a single resource.
Since synchronisation of concurrent threads was the first application of AOP and the
main purpose for the specification of the domain specific aspect language COOL [9],
the suitability of aspects in this area doesn’t needs no further elucidation.

3.3 Auditing Perspective

Monitoring and logging of workflow executions as well as a comprehensive
evaluation of recorded audit trails is an essential part of workflow management, since
it closes the workflow development cycle comprising workflow identification,

CSEG
17

modelling, implementation, execution and controlling [11]. The main tasks of
workflow auditing are acquisition of execution data, its analysis and the utilization of
the results. Both acquisition and utilization can be differentiated in short and long
term, as well as active and passive approaches.

In the OMG Workflow Management Facility the acquisition of execution data is
realized by the WfEventAudit and its subtypes which record certain types of
workflow events (e.g. process or activity start and termination, context and result
changes etc.). But this scheme means a passive way of acquisition, even if using the
OMG Notification Service as proposed in [10], because only events published by
workflow execution objects can be received. An active acquiring component can
obtain arbitrary information it is interested in. It can be achieved by implementing the
acquisition with the help of aspects. In the case of object-oriented (and especially
OMG compliant) implementations all the relevant execution events can be detected
by appropriate pointcuts. An arbitrary replacement or combination of multiple aspects
without any modification of execution objects provides the necessary flexibility. For
example the short term acquisition aspect providing an order processing status for a
customer can be combined with an aspect implementing a long term history logging.

Using aspects modules implementing different analysis methods for audit data can
be dynamically added or replaced. While passive utilization implies simple recording
and/or visualisation of the results an active approach intends an intervention in the
workflow execution. Long term utilization means changes to the process models that
influence all future executions. Short term intervention concerns the current running
process instances and can be realized by aspects adding or replacing activities and
modifying control flow as described in the section 3.1, or changing the context data.

4 Summary

In this position paper we proposed an approach for the dynamic evolution of
workflow instances by using aspects. It allows flexible process adaption and reuse of
both the object-oriented process implementation and the adopting aspects. The
changes can either be caused externally or triggered by the auditing component that
can be realized by aspects too. In that way a cyclic workflow improvement can be
realized.

Unfortunately the most implementations of aspect languages only support static
aspect weaving at the pre-compile time (a good overview is e.g. offered by [4]).
Though if using this languages a workflow has to be restarted, in order to be changed,
the aspect-based adaption still allows the reuse of both primary workflow
implementation and adapting aspects. Dynamic run-time aspect assignment is
desirable, in order to realize automatic improvement cycle. The approaches allowing
dynamic weaving are e.g. AOP/ST [1], that makes use of reflective capabilities of
Smalltalk, or Aspect Moderator Framework [4], which is implemented in Java and
introduces a special design pattern for objects aspects are assigned to. General
purpose aspect language Sally [5] is an extension of Java realized by a pre-compiler.
It also supports dynamic aspect assignment at the run-time.

Other potential application areas like process error handling are to be examined in
the future. An open implementation issue is the aspect realization in distributed
environments, which is especially important for workflow management systems.

CSEG
18

References

1. Boellert, K.: On Weaving Aspects. In: Proceedings of the Aspect-Oriented Programming
Workshop at ECOOP’99.

2. Bussler, Ch.: Policy Resolution in Workflow Management Systems. In: Digital Technical
Journal, Vol. 6, No. 4, Maynard, MA: Digital Equipment Corporation, 1995.

3. Casati F.; Ceri S.; Pernici B.; Pozzi G.: Workflow Evolution. In: Proceedings of the 15 the
International Conference on Conceptual Modeling, ER'96, Cottbus, Germany. Springer
Verlag, Lecture Notes in Computer Science, 1996.

4. Constantinides, C.; Bader, A.; Elrad, T.: A framework to address a two-dimensional
composition of concerns. In: Proceedings of the First Workshop on Multi-Dimensional
Separation of Concerns in Object-Oriented Systems at OOSPLA'99.

5. Hanenberg, S.; Bachmendo, B.; Unland, R.: An Object Model for General-Purpose Aspect
Languages. To appear in the Proceedings of the Third International Conference on
Generative and Component-Based Software Engineering (GCSE) 2001.

6. Hanenberg, S.; Unland, R.: Concerning AOP and Inheritance. In: Mehner, K., Mezini, M.,
Pulvermüller, E., Speck, A.(Eds.): Aspect-Orientation - Workshop. Paderborn, Mai 2001,
University of Paderborn, Technical Report, tr-ri-01-223,2001

7. Jablonski, S.; Bussler, Ch.: Workflow Management. Modeling Concepts, Architecture and
Implementation. International Thomson Computer Press. London et. al. 1996.

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An Overview
of AspectJ. To appear in ECOOP 2001.

9. Lopes, C.: D: A Language Framework for Distributed Programming. A Ph.D. Thesis.
College of Computer Science. November 1997.

10. Object Management Group: Workflow Management Facility Specification, Version 1.2.
April 2000.

11. Rosemann, M.: Workflow Monitoring and Controlling. In.: Jablonski, S.; Boehm, M.;
Schulze, W. (Eds.): Workflow Management. Development of Applications and Systems.
Heidelberg 1997, pp. 201-210. (in German).

12. Schmidt, R.; Assmann, U.: Extending Aspect-Oriented-Programming In Order To Flexibly
Support Workflows. In: Lopes, C.; Murphy, G.; Kiczales, G.: Proceedings of the Aspect-
Oriented Programming Workshop at ICSE’98.

13. Workflow Management Coalition: Interface 1: Process Definition Interchange Process
Model. Document Number WfMC TC-1016-P. Version 1.1. October 29, 1999

14. Workflow Management Coalition: Terminology & Glossary. Document Number WFMC-
TC- 1011. February 1999.

15. zur Muehlen, M.: Resource Modeling in Workflow Applications. In.: Becker, J.; R zur
Muehlen, M.; Rosemann, M.(Eds.): Proceedings of the 1999 Workflow Management
Conference “Workflow-based Applications” in Muenster. November 1999.

CSEG
19

���������
	���
�����������	������������������������! "�$#&%'	�(*),+-���!."/0#

132547698;:<69=?>@132?>BADC�EBFHG IKJ?LNMOCP8<87>Q=SRT4<UWVX>Q4ZY[6\>]FBJ?>Q=?R^1">Q47M9UD8`_
a?Y�C�=?>bF
c�d >eYZ2
J5>QfhgD>Q4ZY[6\>5JbM9a?Y[Ci=?>TjQk06O=5fml n5aSYHop4<69U?l q54

rWs�tPuwvDxDymz7{3|Q}Z~�zZ�]}Zz"�`zZvb�[{�ymuwzZ�KyH�D��tP�Kym~��b}H����s��[ym�]tP��~�}!�"�D~��Pz7{m��~�y���ti����~�tw�Dz!�P�i�]z7~�{mte�
��~�tX�Dz��B���]zZ~�{mte�T�${;���Z~��h���s�tiuwv]xeymz7{3|e}Z~�zZ�D}Zz��`zZv]��{�ymuwzZ�KyH�e�]zZ�Dz7{;���S�3�]~��Bz7{m��~�y���t��
���i�D~��e�T���i�]~��Q�T�${;���Z~��h�

�' �¡Z¢Z£[¤b¥i¢P¦X§ ��ym�]~��"v]�ivTz7{H�]¨�z!{mzZvTti{�y"��tPuwz!~��]��~�©P�Kym�`}Zti����z7}7ymzH�@�Dxe{m~��D©wym�]z!~�uXªvD��z7uwzZ�Ky;��ym~�tP�Wt��«ym�DzN¬Q­i®B¯Q°B±[²e°i®K³��p�D�pymz7u´�bx]��~��D©�µTt�ym��¶3��vTzZ}7y;�'���b�W·3�evTz7{<¸��D��]�[�Q~��]©X�i���¹�py;��{�ym~��D©XvTtP~��Ky3�i�´����vTzZ}7y�ªºti{m~�zZ�KymzH���DzZ��~�©P��uwtQ�DzZ�»�b¼"�]z`t���ym�]z`uwt�ªym~��i��ym~�tP�D��µTz7�]~��b�'ym�]~����DzZ�Bz7��tiv]uwzZ�Ky½z<¾Dz<{m}Z~���z�~����¹ve{;�i}7ym~�}H����������zZ����uwzZ�Ky�ti�
zH��}<���v]vD{mtP�i};�S¿ �"��~�uw~�����{m~�ym~�zZ�`���b�W�e~�À5z<{mzZ�]}Zz7�Z�b�py�{mzZ�D©iym�]�3�i�]��¨�zZ�iÁQ�]zZ����z7�3ymtw�]z7��vW~��ym�Dz¹�i�i��~��]��ym~�ti�-t��½�'©PzZ�Dz7{m~�}X�i��vTz7}7y�ªºµb�i��zZ�-�ezZ��~�©P��uwtQ�ezZ�Âym�]��y�}H���@µTz¹u'�ivDvTzH�ymt¹ym�Dz`~�uwv]��zZuwzZ�Ky;�[ym~�ti��uwtQ�ezZ���½��x]v]vTt�{�ymzH��µK��¶3��vTz7}7y;�w�i�]��·3�evTz7{<¸��D�

Ã Ä]Å�ÆTÇ5È�É0ÊNËÂÆ5ÌmÈ�Å
Í 25CÎ6\RTC�=]:<6OÏSYi>K:<69Ue=Ð>e=?RÑ8m:74<aSYH:<a?4<69=5gÒUQf'8<UQf»:mÓ`>Q47C^Y[UeÔ´nÂUe=5Ci=]:78iJ3Y[47UD8787Y[aT:<:<69=5gÒ>e8<nSCPYH:78iJ
>Q=?RÕ:<2?C�694'4<CiM9>Q:<69Ue=?8<2569n?8w>Q47C´Ci878;Ci=]:<6\>QM�:7>D8;ÖT8X69=×Ue4ZRTC�4X:7U^n54<UTRTaSY[C´C[Ø�CiY[:<69AeC�M9ÙÚ47C�aS8<>eq5MOC
Y[UeÔ´nÂUe=5Ci=]:78!>e=?R->D8;nÂCiY[:78il?Û!UKÓ"C�ADC�4PJ]:<25CP8;CX:Z>e8<Öb8�>e4<Cw=?UQ:�:<4769A]6\>QM
>e=?R�Y[UD=?8;CPÜ]a5C�=]:<M9Ù@47C[o
ÜDa?6O47CÎ>ÝRT6\8<Y�6On?MO69=5CiRÞR5Ci8<6OgD=Ñ>en5n547UD>DYZ2ß>D8WÓ3CiMOM¹>e8@8<a56O:7>eq5MOCÚ6OÔ´n5M9C�Ô´C�=]:Z>K:<69Ue=Ñ:7UbUeM\8�láà�=
:<256\8�Y�Ue=]:<C�â]:PJ�:mÓ"U^4<CP8;CP>Q4ZYZ2�>DYH:<69Ab6�:76OCP8'Y[UD=?Y[Ci4<=?CiRÕ:<U^Ô�a5M�:76�o�RT69Ô´C�=?8<6OUD=?>QM38;Cin?>Q4Z>K:76OUD=ÕUef
Y[Ue=SY[C�47=?8'ãåäÎæXçbUb1`è0>Q47C'Y[a54747C�=]:<M9Ù-qÂC�69=5g-25C�M\R�Ó�6�:72569=Î:<2?C�çbUef»:mÓ">e4<C'é�=5ge69=5C�Ci4<69=5g@_$>QqTo
Ue4Z>K:<UD4<ÙÒãå_«é3ç?è0>Q:'ê�ë¹1�o�ì�69U?í½ãh6»èN:<25C@>D8<8<Ci878<Ô�Ci=]:¹>Q=SRÚCiAB>eMOaS>K:<69Ue=ÕUQf`>Qn5n5M9Ùb6O=?g�>D8;nÂCiY[:;o
Ue476OCi=D:7CiR^RTCP8;69ge=Õ>Q=?R^n?4<UDge4Z>QÔ´Ô´6O=5g´:7CiYZ25=?69Ü]a5CP8!:7U@:<2?C�RTCP8;69ge=Ú>e=?R^69Ô´n5MOCiÔ´C�=]:7>Q:<69Ue=ÎUef
Ô�a5MO:<6Oop>egeCi=D:�UDqTîmCiY[:;opUe476OCi=D:7CiR�8;Uef»:mÓ">e4<CDJT>Q=?R×ãh696»è":<25C'>D8<8<Ci878<Ô�Ci=]:�>e=?R-C�AK>QM9a?>K:76OUD=�UQf�:<25C
8m:74<Ci=5gQ:72?8!>Q=SR�Ó3CP>QÖb=5Ci878<Ci8`UQfá>en5n547UD>eYZ2?Ci8`>Q=?R�:7UbUeM\8`:<2?>Q:08<a5n5nÂUe4<:0äÎæXçbUb1Ð:<U�25C�M9n^6O=
:<25CwAK>QM96\R5>K:76OUD=-Uef�>�geCi=5C�476\Y0>D8;nÂCiY[:;opq?>e8<CiR�RTCi8<69ge=�Ô�UTRTCiM
a5=?R5C�4!RTCiAeC�M9Uen?Ô�Ci=]:il

L!=ïa5=56OfhÙb6O=?g�8;a?qTîmCiY[:ÚUQfW8m:7a?RTÙðfhUe4^:725Ci8<Cñ>DYH:<69Ab6�:76OCP8^6\8^:<2?CñRTC�ADC�M9Uen5Ô´Ci=D:ÎUef´:<25C
òTóDôbõ5öT÷Kø?öDô5ù 8<ÙT8m:7C�Ô,ú ûeü�JS>´Ó3CiqTo�qS>e8<CiR-C�=bAb6O47Ue=5Ô´Ci=D:�:72?>K:¹>Qn5n5M969Ci8�gD4<UDa5nbÓ">e4<CXY[UD=?Y[CinT:78
6O=ÝUD47R5C�4X:<U�8;a?n5nSUD4;:�>^RT6987Y[69n5M96O=?CiRÝ>en5n547UD>eYZ2ÕfhUe4�:<25C�Y[UD=?8m:74<aSYH:<69Ue=Ò>e=?R×ÔW>Q=?>egeC�Ô´Ci=D:
UQf0C�opY�UeÔ´Ô´C�4ZY[C-nSUD4;:Z>QM\8�láçbUef»:mÓ">e4<C�>QgeCi=]:78�Ó3Ci4<C-6O=]:74<UTRTa?Y�CiRý6O= ò5óDô]õ5öT÷Qø?öeô5ù :7UÒ>e878;6\8m:6�:Z8!a?8<C�4Z8�Ó�6O:<2�:<69Ô´C[o�Y[UD=?8;a?Ô�69=5g@>DYH:<69Ab6�:76OCP8!>Q=SR�:<U@>Qa5:<UeÔW>Q:<Cw47C�nÂC[:<6O:<69AeC�a?8;Ci4�:7>D8;ÖT8il?L!=
6O=5=?UKAB>Q:<69AeC!>D8;nÂCiY[:;opq?>e8<CiR´>QgDC�=]:áÔ´UTRTC�MÂn547UenÂUD8<CiR�6O=Îú þBüÂÓ">D8á>Qn?n5MO69CiR´69=´:<2?CNCi>e4<M9Ù�R5Ci8<6OgD=
UQf�:<25C òTóDôbõ5öT÷Kø?öDô5ù 8;ÙT8;:<C�Ô�JT:7U�>QM9M9UKÓÐ:<2?C�8<C�n?>e47>Q:<69Ue=�>Q=?R d C�âb69q5M9C'69=D:7C�gD47>Q:<69Ue=�UQf�Ô�a5MOo:<69n5MOCW>D8;nÂCiY[:78¹UQf`>QgeCi=]:<25UbUTR�J�8;aSYZ2Õ>e8¹69=]:<C�4Z>eY[:<69Ue=
J�>eaT:<UD=5UeÔ�ÙeJ�>eR5>enT:7>Q:<69Ue=Ú>e=?RÕUQ:<2?C�4Z8�l
ä^Ue47C�UKADC�4PJ$>Q=ßC[âTn5M9Ue4Z>K:7Ue47Ù×6OÔ´n5M9C�Ô´C�=]:Z>K:<69Ue=ýfhUe4 ò5óDôbõ5öb÷Qø?öDô5ù a?8<6O=?g×L08;nÂCiY[:7ÿÞú �Kü!Ó`>e8RTC�ADC�M9UenÂCiR�l?çbUDÔ´Cw6O=]:<Ci4<CP8m:76O=?g�47Ci8<a5MO:78`2?>BADC0qÂC�Ci=�fhUea5=?R�>e=?R-R56987Y[a?878<CiR�C�M\8;CiÓ�25C�47C´ú �Qü�l

Í 25C!47Ci8<a5M�:76O=?g�>e8<nÂCiYH:<o�qS>e8<CiRWRTCP8;69ge=WÔ´UTRTC�M�ãh2?6OgD25MOÙ´69= d a5Ci=?Y[CPRWqbÙ�:<25C¹LN8<nSCPYH:7ÿ�n547UQo
ge4Z>QÔ´Ô´6O=5g-Ô´UbR5C�M»èX>Q=?RÎ:<25CWLN8<nÂCiYH:Zÿ��Q8m:Z>Q=?R?>Q4ZRÚÿ]>BAB>-Y[UTRTC´Ó"C�47C�47C�a?8<CiRÚ6O=Õ:<2?C�69Ô´n5M9C[o
Ô�Ci=]:7>K:76OUD=�Uef ò5óeôbõ5öT÷Qø5öDô5ù Ó�6O:<2´Û!ÙbnÂC�4��Kÿ´ú����[üpJP>N:<UbUDMD:72?>K:á8<a5n5nÂUe4<:78�Ô�a?M�:76�o�RT69Ô�Ci=?8<6OUD=?>QM8;Cin?>Q4Z>K:76OUD=�>e=?R�6O=]:7C�ge4Z>K:76OUD=�UQfáY[UD=?Y[Ci4<=?8!6O=Î8;:7>e=?R5>Q4ZR�ÿD>BAK>W8<UQf»:mÓ`>Q47Cel Í 2?C�>eRTUDnT:<69Ue=�Uef
>Q=×>e8<nSCPYH:;opq?>D8;CPRÚRTCP8;69ge=�Ô´UbR5C�Má8<a5n5nÂUe4<:78XUea?4wqSCiMO69C[f":<2?>Q:X:<25CWq?>D8;C�op>D8;nÂCiY[:XR569YZ25Ue:<UDÔ�Ù
8;69Ô´n5MO6OÏ?CP8!Y[UD=?Y[Ci4<=Topq?>D8;CPRWÔ´UbR5a5M9>e4<6O:mÙÚú��
	Qü�l

CSEG
20

¶3��vTzZ}<y;� ·��DvTz<{<¸i�
s${mtP����}Zxey�ym~��]©X}Zti�]}Zz<{m� �i��vTzZ}<y �K�DvTz<{m����~�}Zz
s�tPuwvTti��~�ym~�ti�¨á�]z7{mz ��tP~��WvTtP~��Ky }Zti{�{mzZ��vTti�b�e~��D©Xx]�D~�y�]tH¨ uwz<{m©Pz�µTz7�9ti{mzP�b���9ymz<{H�T��{mtix]�]� uwz7{m©izP�Dt��Pz7{�{m~��Dz
s�tPuwvTti��~�ym~�ti�@|evTzZ}7~��]}H��ym~�ti� ~��D��~��Dz!�i��vTz7}7y tixDym��~��Dz��K�evTz7{m����~�}Zz
s�tPuwvTti��~�ym~�ti�W�
{mz7}ZzH�Dz7�]}Zz �p�Dtiuw~��b��ymz7��
 ��t�{;�Dz7{�
~�uwv]��~�}Z~�y�{mxD��zZ� �K�evTz7{m����~�}Zz!�Dz7}Z����{;��ym~�ti�
s�tPuwvTti��~�ym~�ti����~�uwz }ZtPuwvD~���z<ªºym~�uwz }ZtPuwvD~���z<ªºym~�uwz

� ¤] ������]¦ s�tPuwvb�[{m~��]©w¶���vTzZ}7y;�w�i�]��·��DvTz<{<¸i�

Í 25C�n54<69ÔW>Q47ÙÝn5a547nÂUD8<C�Uef0:7256\8WÓ3UD4<Öñ698�:7UÒ4<CinSUD4;:@8<UeÔ´C�6O=?8<69ge2]:78WÓ"C�2?>BAeC�gDUQ:W6O=
6OÔ´n5M9C�Ô´C�=]:76O=5gÚ:<25C�87>QÔ´C�>Qn?n5MO6\Y�>Q:<69Ue=
J$:<2?C ò5óDôbõTöT÷Qø?öDôTù 8<ÙT8m:7C�Ô�J�a?8;69=5gÎqÂUQ:72ýL08;nÂCiY[:7ÿ>Q=?RÒÛNÙ]nÂC�4��KÿSJ
2?>BAb69=5gÚ>D8'>Î8;:7>Q4<:<69=5g^nÂUe69=]:�>Q=Ò>D8;nÂCiY[:;opUe476OCi=D:7CiR×RTCP8;69ge=ÒÔ´UTRTC�M�l«à�=Ý:<25C
fhUeM9MOUKÓ�69=5gÝçbCiY[:<69Ue=
J3Ó3CÎR5Ci87Y[476OqÂC�:<25CÚÔ´>en5n569=5g×fh47UeÔ�:725CÚ>D8;nÂCiY[:;opq?>e8<CiRßRTCi8<69ge=ÑÔ´UbR5C�M
:<UÕÛNÙbnSCi4��QÿÎ>Q=?RñRT6987Y[aS8<8':<25C-6O=?8<69ge2]:78�Ó3C@2S>BAeC@g]>K:<2?C�47CiRÒRTa54769=5g^:<2?C@:<4Z>Q=S8mfhUD4<ÔW>K:76OUD=
n54<UTY�Ci878�l
� ��Ç?È�� � �"!$#«ËÂÆ%�×ÆTÈ'&)(*!$#
Ç+��,;Ì<Ë-#.�
Í 25C"L08;nÂCiY[:7ÿXn547UegD47>eÔ´Ô�69=5g!Ô´UTRTCiMb8<a5n5nÂUe4<:78$:725C3qS>e8<C[o�>e8<nSCPYH:�R569YZ25Ue:<UDÔ�ÙelQ1347UD878<Y�aT:;:76O=5g
Y[Ue=SY[C�47=?8�>Q47CÕÔ´UTRTa5M\>Q4769E�CiRÐq]Ù0/2143%57698:1Hl013UeÔ´nÂUD8<6�:76OUD=�qÂC[:mÓ"C�Ci=�q?>D8;C×>Q=?Rð>e8<nSCPYH:Z8-6\8
RTC[Ï?=?CiR@69=W:7C�47Ô´83UQf$q?>e8<C[op4<CiM9>Q:<CPR<;9=?>A@B3+=2>A@+8C1!ú �Qü�l?1347UD878<Y�aT:;:76O=?g'qSCi2?>BAb6OUD43Yi>Q=@qÂC0>DR5RTCiR
D 5CE�=2FG5[J+/HE78I59F
Ue4J/2FK=?LM@ON
îmUe69=�nÂUe69=]:78ilK13UDÔ�nÂUD8<6O:<69Ue='6\8�RTC[Ï?=?CiR'69=?8<69R5C3>e8<nÂCiYH:Z8�lBêá47CiY�CiRTCi=?Y[C
>QÔ´Ue=5g->e8<nSCPYH:78N698047Ci8<UeM9AeCiR�69Ô´n5MO6\Y[6O:<M9ÙÒãhqÂC[fhUD4<CDJÂ>Qf»:<C�4PJS>e4<UDa5=?R�47a5M9Ci8Zè�Ue40C[âTn5M969Y�6�:7MOÙ×ã»:725C
NP=2QR>A@O/?8I5�1�Y[M\>Qa?8<CPè[l
Û!ÙbnSCi4��Qÿ´8;a5n?nSUD4;:Z8�Û!ÙbnSCi478<n?>DY[Ci8Xú��P��ü�JT>Q=�C�ADUeM9aT:<69Ue=-Ue=-:<25CwCP>Q47MOÙWÓ"Ue47Ö´Ue=�8;a?qTîmCiY[:;o

Ue476OCi=D:7CiR�n547UegD47>eÔ�Ô´69=5gWãåç+S¹ê"è�úUTPü?:72?>K:"RTUbCi8á=?UQ:�=5CPY[CP8<87>Q476OM9Ù�R5698;:<69=5gea?698<2WqSC�:mÓ3CiC�=Wq?>D8;C
>Q=?RÒY�4<U]8<87Y[aT:<:<69=5gÎY[UD=?Y[Ci4<=S8�l$13UD=?Y[Ci4<=?8�>Q47CWÔ�UTRTa?M9>e4<69E�CPRÕaS8;69=5gWVMXG3%59F71�YZ>:675�1Hl�13UeÔ´nÂUD8<6�o
:<69Ue=Ú47a5M9Ci80>Q47C�RTC�Ï?=5CiRÚ6O=Î:<C�47ÔW8¹UQf<67=2F�FK5�143%=?@ON?>A@"[\LM@]>A8:1wú��P�[üpl Í 25Ci8<C�a5=?6�:Z8¹>e4<C�4<CiM9>Q:<CPR
q]Ù^QB59FC["5`Ue4R=2_25�F�F�>:N�5!47C�M\>K:76OUD=?8;2?6On?8ilS13UeÔ´nÂUD8<6�:76OUD=-6\8!RTC�Ï?=5CPR�6O=?R5C�nÂC�=?RTCi=]:<M9Ù�fh47UeÔ :<25C
2]ÙbnÂC�4Z8;M96\Y[Ci8il?ê�4<CPY[CiR5C�=?Y�CX>eÔ´Ue=5g´2bÙbnSCi478<MO6\Y[CP8�6\8�4<CP8;UDMOADCiR-C[âTn5M969Y�6�:7MOÙ×ãºR5CiY[M\>Q4Z>K:76OUD=-Uef½2]Ù]o
nSCi478<MO6\Y[CP8N69=^:725C�2bÙbnÂC�47Ô�UTRTa?MOCDJ?:725C`=?FKNP59FNY[M\>QaS8;CBèHl Í >eq5MOCa��8<a5Ô´ÔW>Q476OEiCi8�:725Ci8<C�YZ2S>Q4Z>eYHo
:<C�476\8m:769Yi8�l
b C32?>BAeC">eRTUDnT:<CPR'>N8<6OÔ´n5M9C38<C[:�UQfT:747>e=?8;fhUe47Ô´>Q:<69Ue=w47a5M9Ci8iJ�q?>D8;CPRwUe=�ãº6\è$47C�Ó�476�:76O=?g!Ci>DYZ2

>e8<nSCPYH:
:7U!Ue=5C�Ue4
Ô´Ue47CáY[M\>e878<Ci8�Ci=?Y�>en?8;a?M9>Q:<CiR¹qbÙX>!8;Cin?>Q4Z>K:7C�2]ÙbnÂC�4Z8;M96\Y[CeJ]ãh696\è�:<4Z>Q=?8;fhUe47Ô´6O=?g
>eRTAb6\Y[C`Y[UTRTC`6O=]:7U0UD47RT69=?>e4<ÙXÔ´C[:725UTR�Y�UTRTC">e=?R�ãh696O6»è�>eRTUDnT:<69=5g0:<25CcQ�5�FC["57d*X9ef/2Q�5½geCi=5C�4Z>QM
Y[UeÔ´nÂUD8<6�:76OUD=ß8;:<4Z>K:7C�gDÙel Í 256\8@RTCiY�698<69Ue=ßÓ">D8´256OgD25M9ÙÝ6O= d a5C�=SY[CiRßqbÙÒ:725C�fº>eY[:W:<2?>Q:�8;UDÔ�C
Y[Ue=S8m:74<a?Y[:78¹fh47UeÔ ÛNÙbnSCi4��Qÿ^>Q47C�ADC�47Ù^MO69Ô´6�:7CiRÞãhfhUe4wC[â5>eÔ�n?MOCDJ�:<25C D FK/P67g�5�8"RT6O47CiY[:<69AeC F è¹Ue4
=5UQ:�>BAK>e6OM\>Qq5M9CWÙeC�:-ã»:725ChQ�59FC[�5�Y[UDÔ�nÂUD8<6O:<69Ue=Ò47C�M\>K:<69Ue=S8;2569n�:<UÎqÂC�aS8;CPR×Ó�6�:72Ò:<25CW5Gi9L+/28�5
4<CiM9>Q:<69Ue=?8<2569nSè¹ú����[üpl
j�kCl man mpo
q�r�s?t�u vxwOy:z{t
|Cw]n
Í 25C0L08;nÂCiY[:7ÿ�8;UDMOaT:76OUD=�Y[UDÔ´n54<6\8<CiR�}'UKADC�47M9>en5n569=5g'>e8<nÂCiYH:Z8Nãºà�=D:7C�4Z>eY[:<69Ue=
JbL!aT:7Ue=5UDÔ�Ù´>Q=?R
LNR5>enT:7>Q:<69Ue=Sè�>Q=?R@>eMOÔ´U]8m:�þ?	'Y�M9>D8<8<Ci8il Í 25CNfhUeM9MOUKÓ�69=5g'69=56O:<6\>QM�Y[UD=?RT6O:<69Ue=@25CiM9R
J]8<6OÔ´n5M96OfhÙ]69=5g
:<25CX:747>e=?8mfhUD4<ÔW>Q:<69Ue=�n?4<UTY[CP8<8ií
r ���]z�~G�I���H���K���e~�{mz7}7ym~��Bz"{mzZ��zZu0µ]��zZ�½ym�]z"µTz7�\t�{mz[¸i�[�9ymz7{`�P�D�Q~�}Zz�}Zti�]�py�{mxD}7ym�½�9{mtPu ¶���vTzZ}7y;�D�

CSEG
21

� Í 25C'ÿ]>BAB>�8<Uea54ZY[C0Ï?M9Ci8�Ó"C�47Cw>BAB>e6OM\>Qq?MOCX>Q=?R�Y[UDÔ´n56OM\>Qq?MOCDl
� é�>DYZ2�>D8;nÂCiY[:��KY�M9>D8<8"Ó`>e8`RTC�Ï?=5CiR�69=^>�8<C�nS>Q4Z>K:<C0Ï?M9Cel
� éáADC�47ÙWnSUD6O=]:7Y�aT:!a?8<CiR�Ue=?MOÙW:725C\�;C�âTCiY[a5:<69Ue=?8G��n?4<69Ô´6�:76OADC¹nÂUe69=]:7Y�aT:il
�0� UD40CP>eYZ2Ú>D8;nÂCiY[:¹RTC�Ï?=56O:<69Ue=
J�=5U-qSC�fhUe47C��K>Qf»:<Ci4¹>DRTAb69Y�Ci80Ó3Ci4<C�R5C[Ï?=5CPRÎUKADC�4!:725C´8<>eÔ�CnSUD6O=]:ZY[aT:N>e=?R-:<25Ci4<CXÓ"C�47C¹=?U´>e4<UDa5=?R�>eRTAb6\Y[CP8�l

j�kAj ����r����2�%n{o��Iw+�2���%t
|:wOn
Lï8;C�:!UQf«:747>e=?8;fhUe47Ô´>Q:<69Ue=-4<a5M9Ci8`Ó"C�47Cw>Qn5n?MO69CiR�fhUeM9MOUKÓ�69=5g�:<2?C'8m:7C�n?8�RTCP8<Y�4<69qÂCiR�qSCiMOUKÓwí
�el!çbC�nS>Q4Z>K:<C¹Ï?M9Ci8`Ó�6O:<2^8;:7>e=?R5>Q4ZR�ÿD>BAK>�Y[UTRTCXfh47UeÔ Ï?M9Ci8`Ó�6O:<2^L08;nÂCiY[:7ÿ@Y�UbR5C I l
� lN134<CP>K:7C�>@=5CiÓ Ï?M9C�l 2?8�ãº2bÙ]nÂC�4Z8<n?>eY�CwÏ?M9CPèHJ�RTCPY[M\>Q476O=5g@:<25C´Y[M\>e878!=?>eÔ´Ci8�:72?>K:¹Ó�6OM9M�MO69AeC
6O=�:725Cw2bÙ]nÂC�4Z8<n?>eY�Cel

}5lN134<CP>K:7CX>�=5CiÓ�ÏSMOCWl 25Ô�ãº2bÙ]nÂC�47Ô´UTRTa5M9C0ÏSMOCBèHl
û?l � UD4�Ci>eYZ2�>e8<nÂCiYH:��<�H�K�����P�H�Õ>Q=?R� �¡� ��Ó�6O:<2�25CP>eRTCi4ö+¢�£?ù%¤Kõ �<�¦¥�§ ó�¨{©
ª?öDõ5ù+¢ �J«�¬ ó"­ðùbö+¤�®?ó?¯+°bù+¤Kõ²±
©�ª-¢KõTö?ª-¤Kùbó"­�±K³�´5ö�¨Sù]µ"µãº>Dè�1347Ci>K:7Cw>�nS>eYZÖK>QgDC0=?>eÔ´CiR��¶�
ãhqSè^1347Ci>K:7Cá>"Ï?M9C½=?>QÔ´CiR$�<�I�QY[UD=?Y[Ci4<=?8il Y[ÔÐY[UD=]:7>Q69=569=5g?í £?ö+¤2·Tö�¸5ù �¶�*¹º�¶�P»�¼ ùDô"ª?ùT÷þTl�æNCPY[M\>Q47CX6O=�:<2?CXÏ?MOCWl 25Ôãº>Dè Í 25C\�<q?>e8<C
��2bÙ]nÂC�4Z8<MO6\Y[C
ãhqSè Í 25C!2bÙbnÂC�4Z8;M969Y�Ci8½� � l ¾XC�47=5CiMåJKfhUD4áCi>DYZ2W>e8<nSCPYH:�� � �K���¿���H��>Q=?R� \¡� �ZJeY�Ue=]:7>e6O=?6O=5g

ö+¢�£?ù+¤Bõ � � ¥�§ ó�¨{©�ª?öeõ5ù+¢ � « ¬ ó�­ ùbö%¤�®?óP¯+°]ù+¤Kõ½±
©
ª-¢Kõ5ö2ª-¤QùbóP­²±G³P´5ö�¨�ù+µ"µÓ�25Ci4<CDJT6�f²À © § ó�¨.©�ª?öDõ5ù%¢ À ° Jb:<25Ci=\� � l ¾XCi4<=5CiM�698�R5CiY[M\>Q47CiR�>Kf»:7C�4�� « l ¾XCi4<=?C�MÂÁKlãåYiè Í 25CwgDC�=5Ci47>eM�Y�UeÔ´nÂUD8<6�:76OUD=�8;:<4Z>K:7C�geÙ�í ¨�ùDô"¸5ùPÃMÄ�´Tö�¨�ù
�5l � UD4�Ci>eYZ2�>e8<nÂCiYH:��<�H�K�����P�H�Õ>Q=?R� �¡� �38<a?YZ2-:<2?>Q:ö+¢�£?ù%¤Kõ �<�¦¥�§ ó�¨{©
ª?öDõ5ù+¢ �J«�¬ ó"­ðùbö+¤�®?ó?¯+°bù+¤Kõ²±
©�ª-¢KõTö?ª-¤Kùbó"­�±K³�´5ö�¨Sù]µ"µãº>Dè�1347Ci>K:7Cw>�ÏSMOCw=?>eÔ´CiR��¶�I� ³�ª?ö�¨�ù l î;>BAB>�>Q=?R�RTCPY[M\>Q47CXY�M9>D8<8 ³�ª?ö�¨�ù 69=�6�:ãhqSè^13UenbÙ@69=]:<47UTRTa?YH:76OUD=?8"fh47UeÔ >D8;nÂCiY[:¶�¶��:<U@Y�M9>D8<8 ³�ª?ö�¨�ùãåYiè � UD4�Ci>DYZ2-nÂUe69=]:7Y[a5:�:<2?>Q:NY[Ue=]:Z>Q69=?8 ù�ÅTù+¤�ÆTõ-©KóPª-¢.±KÇW¨�ùDõ�®?ó § ´5ö�¨�ù]µ J6ål�æ0C[Ï?=?C'=5C�ÓðÔ´C[:<2?UbR�Ô´C[:725UTR%ÈN>eÔ´CwÓ�6�:72�qÂUTRTÙaÉðRTC[ÏS=5CiR�69=-:725C'>eR5A]6\Y[C

696ål`àpf½>eRTAb6\Y[CwRTC�Ï?=5CiR�UD=�nÂUe69=]:7Y�aT:!698 ¯?ù"­TóDôTùæ0CiY�M9>e4<CX69=-:725CXÏ?M9CWl 2?Ô
óDô § ùeô ö+¤Kõ-©KóPª À © »�¼ ùDô"ª?ùT÷ » ³"´5ö�¨Âù » ¨�ùeõ�®?ó § ´Tö�¨Âù

¯?ù"­Tóeô5ùÞö+¤Kõ-©KóPª À ¸5ùPªbõ »�¼ ùDô�ª?ùT÷ » ³�´5ö�¨�ù » ¨�ùQõ"®?ó § ´Tö�¨�ù�Ê6O696ål`àpf Í ¡�ÒADUe6\R�J[Y[47Ci>Q:<Cá>�8<a5Ô´ÔW>Q47Ù�fha5=?Y[:<69Ue='>Q=SR¹R5CiY[M\>Q47C ¢eùDõ¿¢�Æ?¨�¨�öDô�ÄË­PÆ�ª-¤Kõ-©KóPª69=�:<25CXÏ?M9CWl 25Ô�l
j�kÂÌ man Í�Î�q�r"�?ÏMuÐv.w]yCz.t�|:wOn
Í 25C`4<CP8;a5MO:<69=5gX8;UDMOa5:<69Ue=�69=´Û!ÙbnSCi4��QÿNÓ`>e8�8;:<47a?YH:7a547CiR'69=´>Q=�2bÙbnÂC�4Z8;n?>DY[C"Ó�6�:72�fhUDa54½RT69Ô�Ci=To
8;69Ue=?8�ãºL!gDC�=]:iJ�à�=D:7C�4Z>eY[:<69Ue=
J�LNaT:<UD=5UeÔ�ÙeJ�L0R5>Qn5:7>K:76OUD=SèHJ[fhUea54
ÔW>e6O=w2bÙbnSCi478<M969Y�Ci8½ãºLNgeCi=D:Pl ¾XCi4<=?C�M�J
à�=D:7C�4Z>eY[:<69Ue=
l ¾XC�47=5C�M�JSLNaT:<UD=5UeÔ�Ùel ¾XC�47=5C�M�J�LNR5>enT:7>Q:<69Ue=
l ¾XC�47=5C�M»èHJ�>Q=Ú2]ÙbnÂC�4Z8;nS>eY[C�Ï?M9CeJ�Ue=5C
Y[Ue=SY[C�47=�Ô´>en�Ï?MOC`fhUD4áCi>DYZ2�R56OÔ´C�=S8;69Ue=
JD>Q=´2bÙ]nÂC�47Ô´UTRTa5M9C`Ï?MOC!>e=?R´>X8;C�:áUQf�8m:Z>Q=?R5>e47R�ÿ]>BAB>
Y[M\>e878;CP8�l�é�>DYZ2Õ8<Uea54ZY[CW>D8;nÂCiY[:¹ÏSMOC´Ó�6O:<2Ò>Q=×LN8<nSCPYH:ZÿÎ>e8<nSCPYH:'RTCPY[M\>Q4Z>K:<69Ue=Õ2?>e8XgDC�=5Ci47>Q:<CPR
Ue=5C'UD4NÔ´Ue47C'ÿ]>BAB>WÏ?MOCP8�JÂRTC�nÂC�=SRT6O=?g�Ue=�:725C�47CiÜ]a56947C�Ô´C�=]:78!UQf�RTCPY[M\>Q4Z>K:<69AeC'Y�UeÔ´n5M9C[:7C�=5CP8<8
6OÔ´nÂUD8<CiR�qbÙ�Û!ÙbnÂC�4��KÿSl
� ���]z�t�{m~�©i~��b�i�?�b��zZ�½¨á~�ym�´�py;�i�]�]�[{;�´�B�H�P�N¨�z7{mz��Dtiyá{mz7¨½{m~�y�ymzZ�S�
Ñ �]ti{�t[�Bz7{m����v]v]~��D©¹ym�D{mtix]©P�����Oymz7{`�i�D�Q~�}ZzZ�Z�

CSEG
22

j�k�Ò Ó`|:o�sPz�o
o�|:wOn

çbÖb6On5nÂC�4Xú��
	Kü�Y[UDÔ�nS>Q47Ci8á8<a5qTîmCPYH:;opUe4769C�=]:<CPR´n54<UDge4Z>QÔ´Ô´6O=?gX>e=?R@>D8;nÂCiY[:;opUe476OCi=D:7CiR�n547UegD47>eÔ�o
Ô�69=5gß>Q=?RÐR54<UDn?8@69=]:<C�47Ci8;:<69=5gñY�Ue=?Y�MOaS8;69Ue=?8-8;2S>Q47CiRÑqbÙß:<256\8-R5C�AeCiMOUDn5Ô´C�=]:�C�âbnÂC�4769Ô�Ci=]:il
� Ue4�C�â5>QÔ´n5M9CeJb:<2?C'q?>e8<C[o�>e8<nÂCiYH:�RT6\YZ25UQ:7UeÔ�ÙeJTÓ�6O:<2�C[âTn5M969Y�6�:NR5C�nÂC�=?RTCi=?Y[Ù-Ue=^8<UeÔ´C��;q?>D8;C��Ó�25UD8<C�ADUbYi>Qq5a?M9>e4<Ù-698X8<2?>Q47CiR^>eÔ�UD=5g@:725Ch�7>e8<nSCPYH:Z8K�?JSÔW>BÙ�qSC�4<CigD>e47RTCPR^>e8¹>�RT6\87Y[69n5MO69=5C
:<2?>Q:�ÔW>BÙÑ8;69Ô´n5MO6OfhÙÑ:<2?CÕRTCiAeC�M9Uen?Ô�Ci=]:-UQf�äÚæ¹çbUT1�8<UeM9aT:<69Ue=?8iJ�CP8;nÂCiY�69>eMOM9Ùß:<25C�47a5MOCP8@Uef
Y[UeÔ´nÂUD8<6�:76OUD=
l

_«>Q6�JSäÎa54<n?2]Ù^>e=?R b >QM9ÖeC�4�ú ÔQü�R5Ci87Y[476OqÂC�>e=ÎC[âTnÂC�476OÔ´C�=]:¹Ó�6�:72ÕÛ!ÙbnÂC�4��Kÿ�>Q=?RÚRT6987Y[aS8<8
8;UDÔ�C¹Y[UTRTC¹4<CP8m:74<aSYH:<a?4<69=5g�aS8;CPRW:<U�C�=S>Qq5M9C!:725CwY�>Qn5:<a5476O=?g�>Q=SR�Y[UDÔ´nSU]8;6O:<69Ue=@Uef$Y[UD=?Y[Ci4<=S8�l
à�=-:7256\8�C[âTnÂC�476OÔ´C�=]:PJ5Ó3CX2?>BADC¹8<2?>e4<CPR�qÂUQ:72-:725Cw47C�nÂUe4<:<CiR-qÂC�=5C�Ï5:780>Q=?R-MO69Ô´6�:Z>K:76OUD=?8�n547C[o
8;Ci=D:7CiRýã;ú ÔKüpJ�8<CiY[:<69Ue=ÎûSl � èHJ�>QMO:<2?Uea5gD2ÎÓ3C�RT6\RÚ=5Ue:¹47Ci8;:<47a?Y[:<a547C�Y[M\>e878<Ci8
ÕS69=?8;:<Ci>DR�J�Ó3C�2?>BAeC
4<CiÓ�4<6O:;:7C�=Õ>D8;nÂCiY[:7806O=]:7U-UD=5C�UD40Ô´Ue47C´Y[M\>e878;CP8�lÂæNa54769=5g�:725C�:<4Z>Q=?8;fhUe47ÔW>K:<69Ue=Ún54<UTY�Ci878�JSÓ3C
2?>BAeC0=5UQ:769Y�CiR´:72?>K:�LN8<nSCPYH:Zÿ+Ö 8`>e8<nSCPYH:78">Q=SR@=?>eÔ�CPRWnÂUe69=D:ZY[aT:Z8`>Q47CNgeUbUTRWÔ´CiYZ2S>Q=56\8;ÔW8�fhUe4
6OÔ´n547UKAb6O=5gÚ:<25C�47Ci>DR5>Qq569M96�:mÙÒUef!:<25C^Y�4<U]8<87Y[aT:<:<69=5gÕY�UTRTCel½É"ÙÒ47Ci8;:<47a?YH:7a54<69=5gÕCi>eYZ2ß>e8<nSCPYH:
RTC[Ï?=?6�:76OUD=�69=]:<U^Ô�a5M�:76On?MOC@Y�M9>D8<8<Ci8iJ�4<CiÓ�4<6O:<69=5g^>eR5A]6\Y[CWY�UbR5C�69=]:<U^UD47RT69=?>e4<Ù^Ô´C[:725UTR58iJ«>Q=?R
fha5MOM9Ù�aS8;69=5g�:<25C�Q�59FC[�57d�X9e×/2Q�5!Y�UeÔ´nÂUD8<6�:76OUD=�8;:<4Z>K:7C�geÙW69=^Û!ÙbnÂC�4��KÿSJTÓ3CX2?>BADCX8<69Ô�n?MO6OÏ?CiR
:<25C�:747>e=?8mfhUD4<ÔW>Q:<69Ue=Ýn547UTY[CP8<8iJ�q5aT:@Ó"C�ÔW>BÙÝ2S>BAeC�MOU]8m:@8<UeÔ´C-UefN:725C^4<CinSUD4;:7CiRýqSCi=5C[Ï?:78
n54<UKAb6\RTCiR-qbÙ�>e8<nÂCiYH:Z8�>Q=?R�=?>eÔ´CiR-nSUD6O=]:7Y�aT:78�ú���ü�l
È!C�ADC�4<:<25CiMOCP8<8iJ«Ó�2?C�=ý:<25C�6O=?6�:769>eM`Y�Ue=?R56�:76OUD=?8�4<CinSUD4;:7CiRÒ69=ý8<CiY[:<69Ue= � l���RTUÚ=?UQ:´25UeM\R�J

:<25CN:<4Z>Q=?8;fhUe47ÔW>K:<69Ue=WÔW>BÙ�4<CPÜ]a56O47CN>�MOUe:3UQf«>DR5RT6O:<69Ue=?>eM?Ó"Ue47Ö�JD>Q=SRWnSU]8<8<69q5MOÙDJD8<UeÔ´CNÖb69=?RWUef
4<C�fº>eYH:7Ue476O=?gw6O=�8;UDÔ�CNÔ�C�:<25UTR58369=?8;6\RTCN:<25CX>e8<nSCPYH:3R5C[Ï?=56O:<69Ue=«l%S0=?CN8;UDa54ZY[C!Uef
n54<UDq5M9C�Ô fhUe4
:<25C�:747>e=?8<M9>Q:<69Ue=�:<U'Û!ÙbnÂC�4��KÿX6\8á8<UeÔ´C[:7256O=?gX:<2?>Q:áa?8;aS>QM9MOÙ�2?>Qn5nÂC�=S8½6O=@L08;nÂCiY[:7ÿwn?4<UDge4Z>QÔW8�í
:<25C'>DR5RT6O:<69Ue=�UQf�8<UeÔ´C�:<2569=5g�:<U´:725Cwq?>e8<C¹A]6\>´>Q=�6O=]:74<UTRTa?Y[:<69Ue=�>Q=?R�>´8<a5q?8<CiÜ]a5C�=]:!>eR5A]6\Y[C
RTC[Ï?=?CiR^UD=^6�:PJÂ>eMOM$6O=?8<6\RTC':725C�87>QÔ´C'>e8<nÂCiYH:Pl�çT6O=?Y�C'Ó"C�Y�>e=Î=5UQ:02?>BAeCX:mÓ"U@Ô´C[:725UTR58NÓ�6O:<2
:<25Cw87>QÔ´C¹8<69ge=?>Q:<a547C069=�>�Y�M9>D8<8iJe:7256\8`Ó3UDa5M9R-47CiÜ]a5694<C¹>�Ô´Ue47CXY[UeÔ´n5M9C[â@47C�Ó�476O:<C¹4<a5M9CeJTÓ�6O:<2
RT6�Ø�C�47C�=]:`=?>QÔ´69=5g´Y[Ue=bADC�=]:<69Ue=´fhUD43:725CX>eRTAb6\Y[CX>Q=?R@:<25C¹6O=SY[M9a?8;69Ue=-UQf$>e=->DR5RT6O:<Ue=S>QM²5Gi9L+/28�5
Y[M\>Qa?8<C!69=´:<25C02]ÙbnÂC�47Ô´UbR5a5MOC!Ï?MOCDl � Ue43>�Y[UeÔ´n5M9C[:7C!47C�nÂUe4<:�Ue=´:725C!n547Ueq5M9C�ÔW8áfhUea5=?R�RTa5476O=5g:<256\8�C[âTnÂC�476OÔ´Ci=D:PJ58;CiC@ú � ü�l

Í 25C@C[âTnÂC�476OÔ´Ci=D:�>QM\8;UÎ>eMOM9UKÓ3CPR�a?8w:7UÎC�AK>QM9a?>Q:<C@25UKÓ :725C�Y[UDÔ´nSU]8;6O:<69Ue=ÒÔ´CiYZ2S>Q=56\8;ÔW8
UQfáCi>DYZ2^:<UbUDM$Ó"Ue47Ö-69=În54Z>eY[:<6\Y[CDlSà�=ÚL08;nÂCiY[:7ÿSJ�C�AeCi=ÎÓ�6O:<2Î:725C�C�âTn54<CP8<8<69AeC'nÂUKÓ3Ci4NUefáÓ�6OM\Rbo
Y�>Q4ZR58¹69=�nÂUe69=]:7Y�aT:78iJ�6�:'ÔW>BÙÎqÂC´C�ADC�=]:<a?>eMOM9ÙÎ=5CPY[CP8<87>Q47Ù�:<U�6O=bAK>e8<69AeC�M9ÙÎÔ´UTRT6OfhÙÚ>Q=×>e8<nSCPYH:
RTC[Ï?=?6�:76OUD=
J�qÂCiYi>Qa?8<C^:<2?CÚY[UDÔ�nÂUD8<6O:<69Ue=ÞqÂC[:mÓ"C�C�=Þ>D8;nÂCiY[:78�>e=?RÞY[M\>e878<Ci8´6\8@2?>e47RTÓ�6947CiRß6O=
:<25C�>e8<nSCPYH:02?Ci>eR5C�4Pl?ä^Ue47C�UKADC�4PJb:<25C�a?8<C�UQf<N�=2QR>A@O/?8I5�1�Ci8;:7>Qq?MO6\8;2?Ci8N>�8m:74<6\YH:¹4<CiM9>Q:<69Ue=?8<2569n
>QÔ´Ue=5gw>D8;nÂCiY[:78iJe>Q=?RWY�Ue=?8<CiÜ]a5Ci=]:<M9ÙeJQ>QÔ´UD=5gp/2YAYB:725C�694�nÂUe69=]:7Y[a5:78ilQàp:�Ó"Uea5M\R�qSC!69=]:<Ci4<CP8m:76O=5g
6�f�:725C�RTCP8;69ge=5Ci4�Y�Uea5M\RÒ8;nÂCiY�6�fhÙ�C[â5Y�C�nT:76OUD=?8w:7U^:<25C�Y[UDÔ�nÂUD8<6O:<69Ue=×Ue4ZRTC�4'fhUe4�8<UeÔ´C@Uef`:<25C
nSUD6O=]:7Y�aT:78il�Û!ÙbnSCi4��Qÿ@n547UKAb69R5Ci8!>WÔ´UD4<C'CiMOCigD>e=D:N>e=?R d C�âT6Oq5M9C�8<UeM9aT:<69Ue=«J?qbÙ-47CiÜ]a569476O=5g@:<25C
RTC[Ï?=?6�:76OUD=ßUef0:725CÎY[UDÔ´nSU]8;6O:<69Ue=Ñ8m:747>Q:<CigeÙÝC�âbn?MO6\Y[6O:<M9ÙñUDaT:78<69R5C-:725CÎ2bÙbnSCi478<M969Y�C�R5C[Ï?=56O:<69Ue=
>Q=?R�qbÙ�>QM9MOUKÓ�69=5g´:<2?C�8;nÂCiY�6�ÏÂY�>K:76OUD=^UQf½C[â5Y�C�nT:76OUD=?8`:<U@:<25C�Y[UeÔ´nÂUD8<6�:76OUD=Î8m:747>Q:<CigeÙ�>e=?R�:<U
:<25C'Y�UeÔ´nSU]8;6O:<69Ue=-Ue4ZRTC�4�>eÔ�UD=5g�a5=56O:78wãº>eM98<UW>K:`:<2?C¹M9C�ADC�M�Uef$UenÂC�4Z>K:76OUD=?8ZèHl Í 256\8�>Qn5n547UD>DYZ2
6O=?Y�4<CP>e8<Ci8�:725CNnÂUQ:7C�=]:<6\>QMSfhUe43=5Ue=5o�69=bAB>D8;69AeC�Ô´UTRT6OÏSY�>Q:<69Ue=@>e=?RW47CiY[UD=TÏ?gDa547>Q:<69Ue=
l � 69=?>QM9M9ÙeJ]6�:698�Ó3UD4;:72ÒÔ�Ci=]:<69Ue=569=5g^:72?>K:�>e=Ò6OÔ´nÂUe4<:7>e=D:�4<CPÜDa?6O47C�Ô´C�=]:�8;:7>Q:<CPR�fhUe4 ò5óDôbõ5öb÷Qø?öDô5ù�Ø :<25C>K:;:Z>eYZ25Ô´Ci=D:�UQfNRT6OØÂCi4<Ci=]:�>e8<nÂCiYH:Z8w:7UÕRT6\8m:76O=SYH:�69=?8;:7>e=?Y[CP8�Uef�>egeCi=D:Z8�ú þBü Ø 2?>D8'=5Ue:�qÂC�C�=fha5M�ÏSMOM9CiR^RTa?C0:7U@Y[a54747C�=]:�MO69Ô´6�:Z>K:<69Ue=S8`UQf�:<25C'Y�UeÔ´nSU]8;6O:<69Ue=�Ô´CiYZ2?>e=56\8;ÔW8`UQf�qSUe:<2�:<UbUDM98il

CSEG
23

Ù ÚÕÈ3ÅNË�,;Ê<�bÌmÈ�Å<�
b C@2S>BAeC´4<CinSUD4;:7CiR�8;UDÔ´CW6O=?8<69ge2]:78wY�UeM9MOCPYH:<CPR×RTa5476O=5g�:725C@69Ô´n5MOCiÔ´C�=]:7>Q:<69Ue=×UQf":<25C-8<>eÔ�C
>Qn5n5M96\Y�>K:76OUD=
J�:<2?C òTóDôbõ5öT÷Kø?öDô5ù 8<ÙT8m:7C�Ô�J�a?8<6O=5g�qÂUQ:72×L08;nÂCiY[:7ÿÎ>e=?R�Û!ÙbnSCi4��Qÿ?J�2?>BAb69=5g^>e8>Ú8;:7>Q4<:<69=5gÎnÂUe69=]:�>e=Ý>e8<nSCPYH:;opUe4769C�=]:<CPRÒRTCi8<6OgD=ÝÔ´UTRTC�M�l Í 2?Ci8<C@6O=S8;69ge2]:78�47C[fhC�4�=5UQ:�:<UÚ:<25C
Ô´>Q:<a5476O:mÙ@Ue4`nÂC�4<fhUe47Ô´>e=?Y[C¹UQf�Ci>DYZ2�:7U]UDMåJTq?aT:�:<U�:<2?C�694!>Qq569MO6O:mÙW:7U´8<C�nS>Q4Z>K:<CX>Q=SR-Y�UeÔ´nSU]8;C
Y[Ue=SY[C�47=?8iJT>Q=?R-:<2?C'Y[Ue4747Ci8<nSUD=?RTC�=SY[CX>QÔ´Ue=5g�:<2?C�694!n547Uege4Z>QÔ´Ô´69=5g�CiMOCiÔ�Ci=]:78il
b CÕqSCiMO69C�ADCÎ:<2S>K:iJ"2?>DRÑÓ3C�8m:Z>Q4<:<CiRß:7256\8�C�âbnÂC�4769Ô�Ci=]:-Ó�6O:<2�2bÙbnÂC�4Z8;M969Y�Ci8W69=?8;:<CP>eRÞUef

>e8<nSCPYH:78iJ5:725C':747>e=?8;fhUe47Ô´>Q:<69Ue=�n547UTY[Ci878!Ó"Uea?M9R�nÂUD8<C'Ô´Ue47C�RT6�Û@Y[a5MO:<69Ci8iJSnS>Q4<:<6\>QM9MOÙ�qSCPY�>ea?8;C
:<25CWY[UDÔ´nSU]8;6O:<69Ue=ÕÔ�CPYZ2?>Q=?698<ÔW80n?4<UKAb6\RTCiR^qbÙÚÛNÙbnSCi4��Qÿ->e4<C�Ô´Ue47C�nÂUKÓ3Ci4;fha?M�>e=?R d C[âT6Oq?MOC
:<2?>e=^:<25U]8;C�n54<UKAb6\RTCiR�qbÙ�LN8<nSCPYH:7ÿSJÂn?>Q4<:<6\>QM9MOÙ-qSCPY�>ea?8;C�Ó3C'Ó"Uea?M9R�2?>BADC'8;UDÔ´C�>eR5R56�:76OUD=?>QM
Ó3UD4<Ö^:7U^Y[Ue=S8;6\RTC�4X:725C@2bÙbnSCi478<M969Y�Ci8¹a5=?RTCi4w:<2?C@q?>e8<C[o�>e8<nÂCiYH:wRT6\YZ25UQ:7UeÔ�ÙÎnSCi478<nÂCiYH:76OADCel
à�=
ú }Qü�J!13M9>e4<ÖDCÚ>Q47gea?Ci8´:72?>K:�:<25Ci4<CÕ698�>ÒnÂUQ:7C�=]:<6\>QM¹fhUe4�>Ý47C�M\>K:76OADC�M9ÙßY�MOCP>Q=ÐÔW>Qn?n56O=?gÒfh4<UDÔ
13UeÔ´nSU]8;6O:<69Ue=×ê½>K:<:<Ci4<=?8 Ø >�RTCi8<6OgD=ÚÔ´UTRTC�M�6O=?8<n5694<CPRÎ69=�:<25CWäÎæXçbUb1 Ô´UTRTC�M½n547Ci87Y[4769qSCPR
q]Ù�ç+S¹ê Ø :7U@Û!ÙbnÂC�4��KÿWY[UTRTCDJTÓ�2569MOCX:725CwÔW>Qn5n569=5g�:<UWL08;nÂCiY[:7ÿ@Y�UbR5CwÔ´>BÙ�qSC'8<a5qTîmCPYH:`:<U8<Yi>K:;:7C�476O=?g´>e=?R�:7>Q=?geM96O=5g´69=^>e8<nSCPYH:78il
b C0C[âTnSCPYH:3:<2?>Q:�:<2?CNgeCi=5C�476\Y!>e8<nSCPYH:<o�q?>D8;CPR´RTCi8<6OgD=WÔ´UbR5C�MÂÓ3C02?>BAeC�qÂC�Ci=@Ó3UD4<Öb69=5gwUe=

>QM9MOUKÓ!8á:<25CXYZ2?>Q4Z>eY[:<Ci4<69Ei>Q:<69Ue=W>Q=?R�Y[UeÔ´n?>e4<6\8<Ue=´UQf«C�âT698;:<69=5g�>e=?RW=5CiÓÐ>Qn5n?4<U]>eYZ25CP8�J]>e8áÓ"C�M9M
>e8X>Q=ÕCi>e8<Ù�ÔW>Qn5n569=5g-fh4<UDÔ�:<25CWRTCP8;69ge=ÕÔ´UbR5C�M�:<U�RT6OØÂCi4<Ci=]:¹n547UegD47>eÔ´Ô�69=5g-Ô�UTRTCiM980:72?>K:
8;a5n?nSUD4;:!8<C�n?>e47>Q:<69Ue=�Uef�Y�Ue=?Y�C�47=?8il
Ü #.ÝG#«Ç%#«ÅNË-#{�
Þ �!���?¶3��¨á~��`z7y!���h�!s�tQ�D~��]© § ����x]z7�`~��-¶���vTzZ}7y;�D� § �`ßHà"��á â�ãBä
����å�ä
àpæ�ç
è9�
à��H��çRéM�CêP�
���9�Aëìä
àhäIí
î ä9àM�H�K�Kà�ï¶�
�ñðñð.ò²é2ó-æ"�Mô9õ�õ
õe�ôQ�Ns3�5s��b�H�BzZ�P�b¶N�Mö`��{m}Z~��e�?���b�@s3�%÷?x]}Zz7�b�e��¶��ùø
¾evTz7{m~�zZ�D}Zz!�3z7vTti{�y3tP�Wym�]z��3��z0t���¶���vTzZ}7y;����b��·3�evTz7{<¸i�e�Mô9õ�õ Þ ���SzZ}<�?�]��zZvTt�{�yH�]�
��s$ªº��~�tBú\ymtw�ivDvTzH��{Kû<�

ü �N|T�Âs��O�[{mÁBzw���b�-�!�%ý^����ÁPz7{H�$þ´��v]vD~��D©@s�tPuwvTti��~�ym~�ti�^����y�ymz<{m�]�`ymt´¶���vTzZ}7y;�´���b��·3�evTz7{<¸i�e�§ �ùßHà���á â î ä
à�í��K���KàM�H�ÿä
àùé�äIíK���{�
�����²à��
ëÂà%���K�HëÂà����Aß î é��
	��
�
���[�Mþ´�Z��ô9õ�õ Þ �
� �!¶!�²ö`�[{m}Z~��e��þ-�½s�ti{�ymzZ�Z�á���b�Òs3��÷SxD}ZzZ�b�Q�Þ¶ ý�zZµ ø
�Q�e~�{mti�]uwzZ�Kyw�\t�{�ym�DzW�`zZ�BzZ��tiv]uwzZ�Ky���b� þ´�i~��KymzZ�]�i�]}7z-t��cø�ª�s�tPuwuwz7{m}Zz-��ti{�y;�����´µb����zH�ñti�ñ�^ö3{mtix]vK¨½�[{mz�¶�v]vD{mtP�i};�S��ô9õ�õ Þ �§ �D�9ti{mu'��ym~�ti����zZ��tPxe{m}ZzZ��þ´�i�]�i©Pz7uwzZ�Ky"¶�����tK}Z~���ym~�tP� § �KyH¿ �Âs�tP�e�\z7{mz7�]}Zz�ú § �ñþ´¶ ô
õ�õ Þ û<�
� �!¶!�%ö`�[{m}Z~������b�@s3�%÷?x]}Zz7�b�e�½¶3�@¶3��vTz7}7y�ªå���i��zH�@¼"µ?�pz7}7y�ª�¼3{m~�z7�QymzZ��þ�tQ�DzZ�S�\ti{*þ�x]��ym~�ªå¶3©Pz7�Qy|K�e�pymzZuw�Z� § �Ræ�ç
è9�9àM�H��ç�éM�CêP�
���
�AëAä
àaäIí î ä
à��K�K�Hà"ïñëÂàRé�äIíK���{�
������à��
ëÂàM�H�K�HëÂà��×�
��ß î é��$á 	����
���

� ä
��ä
à��:äi�%þ´�Z�Bô
õ
õ Þ �
� �!¶!�?ö`�[{m}Z~��e�]s3�?÷SxD}ZzZ�]�e�Q���b�X�¹�es�tH¨��i�S�]ø
�]©i~��DzZz7{m~��]©ÿþ�x]��ym~�ªå¶3©izZ�Ky½¼"µ?�pzZ}<y�ªp¼3{m~�zZ�KymzH�'|Qti�Oy�ª¨���{mzX¨á~�ym�^¶���vTzZ}7y�ª�¼3{m~�zZ�KymzH�-��{mtP©�{;�iuwuw~��]©e�Oô
õ�õ Þ ��|exDµ]uw~�y�ymzH�´ymt@|Qti�9yå¨½�[{mz�����{;�i}7ym~�}Zz��
ø�¾evTz7{m~�zZ�]}7zP��ø
����zZ�Q~�z7{H�T¶�vD{m~��]ô
õ�õ Þ �

� �Jýß��·`�[{�{m~���tP�ý�i�b�×·N�á¼"�����Dz7{H� |ex]µ?�pz7}7y�ª�¼3{m~�z7�QymzZ�×�
{mti©i{;��uwuw~��D©�úh¶ s${m~�ym~��Kx]z�ti�0�
xD{mz¼"µ?�pz7}7ym�Hû<� § �Bò²�Iä��K����ç
ëÂà��
ï<äIícðJð.ò�é?ó-æBá �� i�]v]�i©Pz7� � Þ�Þ"! � ô�#e� Þ%$�$�ü �
#e�¶ö0�'&�~�}Z�H����zZ�Z�²ø½�«·"~����m�]�i��zP���D�$·"xD©Px]�D~��S�{þ-�'&�z7{m�pymzZ�?���e��������u´�$���b�\ýÑ��ö3{m~��p¨�tP���?�ñ¶��¼"�Pz7{m�Q~�z<¨�ti�´¶3��vTzZ}<y;�D�<ô
õ
õ Þ � ú»�Ky�ymv(� ¸i¸i����vTzZ}7yA�7� t�{m©K¸i�etK}Zx]uwz7�Qy;�[ym~�tP�T¸[t[�Bz7{m�Q~�z7¨3¸i����vTzZ}7yA��ªt[�Bz<{m�e~�z7¨�� v5�Q�Hû<�
$ �!¶!�.÷Â��~h��ö0��s3��þ�xD{mvD�Q�K���i�b�Î�!�«�D�xý^�i��ÁBz<{H�Ò|QzZvb�[{;��ym~��]©�s�tP�D}Zz7{m�]�w¨á~�ym�Ú·3�evTz7{<¸i����¶��
ø�¾evTz7{m~�zZ�]}7zN��zZvTt�{�yH� § �ùßHà"��á â½ãBä9���9ï*)�äKê\ä
à,+�-�â �Aë/.�0Jë/1��Kà�ïHëAä
àM��â+é%�CêP�
�I�
�Aëìä
à�äIí î ä
àM�H�K�Hà"ï
ë�à�éMäIíK���{�
������à��
ëÂàM���K�KëÂà��R�
�xß î é����Mô9õ�õ�õQ�

Þ õe�¶þ-�S|QÁQ~�vDvTz7{H�¶���]z¶ý^�[ym��tP��|ex]µ?�pz7}7yNs�tPuwvD~���z<{2� ¶3��vTz7}7y;�`úh¶�s${m~�ym~3�KxDz¹ti���
{;��}7ym~�}H�i��¼"µDª
��zZ}7ym�Hû<� § � ãBä
���9ï*)�äKêpä
à4+,-Pâ �Aë�./0*ë/1$�Kà"ï�ëìä
à���â"éM�CêP�
���
�AëAä
àpäIí î ä9àM�H�K�Kà�ïJ�9�²ðJð.ò�é?ó-æ"� Þ%$�$5$ �

Þ
Þ �!�������[{�{`���b��·N�]¼"�����]z7{H�«·3�evTz7{<¸��X�"��z7{����b� § �]�py;�������[ym~�ti�ùþ´�i�Qx]�i�»�%ô9õ�õ�õQ�

CSEG
24

Translation of Java? to Real-Time Java Using Aspects??

Extended Abstract

Morgan Deters, Nicholas Leidenfrost, and Ron K. Cytron? ? ?

Washington University Box 1045
Department of Computer Science

St. Louis, MO 63130 USA

Abstract. The Real-Time Specification for Java [1] (RTSJ) introduces the con-
cept of nested-scope memory areas to Java. This design allows a programmer to
allocate objects in areas that are ignored by the garbage collector. Unfortunately,
the specification of scoped memory areas currently involves the introduction of
unwieldy, application-specific constructs that can ruin the reusability of the af-
fected software.
We propose the use of aspects [2], in particular the AspectJ [3] system, to trans-
form a Java program into a scope-aware RTSJ program automatically. Moreover,
we have developed analysis that automatically determines storage scopes, in re-
sponse to information provided by an instrumented form of the application at
hand. That instrumentation is also accomplished using aspects. Here we present
our ongoing work in using aspects to detect and specify memory scopes automat-
ically in Java programs.

1 Motivation

One major roadblock to the widespread acceptance of Java as a language for
real-time and embedded systems is its reliance at runtime on an asynchronous
garbage collector. Such a collector may preempt threads running in a real-time
environment or take control of the system during memory allocation requests.
The collector can then take an unbounded amount of time to complete its task,
introducing unacceptable unpredictability into the system. To address these con-
cerns and provide greater programmatic control over memory allocation and us-
age, the Real-Time Specification for Java [1] (RTSJ) introduces to Java the use
of structuralmemory areasthrough theMemoryArea type, the subtyping of
which can admit multiple strategies for allocating and deallocating storage.

One of the key memory strategies of RTSJ is provided with theScope-
Memory type, which allows for memory areas to be associated with a particular

? A registered trademark of Sun Microsystems
?? Funded by the National Science Foundation under grant 0081214 and by DARPA under con-

tract F33615-00-C-1697
? ? ? Contact author: mdeters@cs.WUSTL.edu

CSEG
25

scope of thread execution. When an execution scope is exited, objects in the
memory area are released without the need for a garbage collector. However,
the unit of a thread is not necessarily the most natural or useful level at which
to create and manipulate memory areas. Consider the introduction of aCache
type into a system (Figure 1(a)). A singletonCache object is constructed when
the cache is first accessed. In a corresponding RTSJ design, we want this ob-
ject to be allocated inImmortalMemory , because the singletonCache is
around for the length of the program. Placing it inImmortalMemory keeps
the garbage collector from scanning or marking it. This would be a waste of time
since we know that it will never become collectible: the scope of theCache ob-
ject is global. To realize this RTSJ design, the programmer replaces occurrences
of new Cache with invocations ofnewInstance on the desired memory
area, as shown in Figure 1(b).

If classCache had a more complicated design that supported multiple in-
stances, this recoding ofnew instructions tonewInstance invocations would
need to be pushed into the user’s code ateverysite that aCache object was con-
structed. This breaks the encapsulation of theCache type. Memory instructions
are sprinkled throughout user code rather than being factored out into a separate,
decoupled memory strategy. The resulting code will not be easily reusable.

Figure 1(c) shows a better approach. With theCacheMemory aspect, we
can write theCache class just as we did in the Java implementation; the aspect
assumes the responsibility of placing it into the correct type of memory area.
Further, if we extendedCache to support multiple instantiations, thenCache-
Memory could weave into user code, allowing the user to construct aCache
instance naturally, without being responsible for its memory requirements.

We propose an automatic system for translating Java code intoMemory-
Area -aware RTSJ code by determining the necessary RTSJ memory scopes re-
quired to describe it. By employingprobing aspects, we determine where scopes
can be used and develop a graph from which we can compute provably legal
scope hierarchies. A scope hierarchy is selected, runtime execution points are
chosen for opening and closing scopes, and an aspect is generated to enforce the
structure on the original program’s execution. Objects in the modified program
are located in scoped memory areas rather than in the garbage-collected heap.

2 Scope Determination

As specified by RTSJ, a thread becomes associated with a scope when that
thread callsenter on the scope. The scope then resumes the thread by call-
ing its run method. Any number of threads can enter a scope, and that scope
can be deleted only when all threads that have entered it have exited theirrun

CSEG
26

class Cache {
protected static Cache singleton;
public static Cache instance() {

if(singleton == null)
try {

singleton = new Cache();
} catch(Exception e) { ... }

return singleton;
}
// etc.

}

(a)

class Cache {
protected static Cache singleton;
public static Cache instance() {

if(singleton == null)
try {

singleton = (Cache)
ImmortalMemory.instance().

newInstance(Cache.class);
} catch(Exception e) { ... }

return singleton;
}
// etc.

}

(b)

aspect CacheMemory {
around() returns Cache : calls(Cache.new(..)) {

ConstructorCallJoinPoint ccjp =
(ConstructorCallJoinPoint) thisJoinPoint;

ConstructorSignature cs =
(ConstructorSignature) ccjp.getSignature();

return (Cache)(ImmortalMemory.instance().
newInstance(Cache.class)

}
}

(c)

Fig. 1. (a)A partial Java implementation of aCache type.(b) A partial RTSJ implementation of a
Cache type inImmortalMemory . (c) An AspectJ aspect used to rewriteCache instantiations
to be in ImmortalMemory . RTSJCache objects can now be constructed vianew, just like
objects in Java.

method; detection of this condition is accomplished by reference-counting the
scope. Any memory allocated via a simplenew instruction is allocated in the
memory area currently associated with the allocating thread. ExplicitMemory-
Area allocation instructions are also permitted via thenewInstance method,
as in theCache example of Figure 1.

ScopeMemory scopes can be nested, and it makes sense to design nest-
ing relationships when small and perhaps iterative pieces of code produce a lot
of garbage during their computation—this garbage can then be cleaned up all
at once, on exit of the inner scope, without the need for a garbage collector.
Programmers and program analysis tools tend to associate notions of storage
scope with method scope. Thus, it may be desirable for aScopeMemory to
be associated with a particular scope of execution—a method, for example. The
scope could then be deleted when the method exits. RTSJ avoids the improper
collection of objects that are still reachable by mandating that object references
may only point to objects within the same scope or outward from inner scopes

CSEG
27

A

B

C

D E

A

D E

B
C

A B C

D

E

(a) (b) (c)

Fig. 2. A doesReference graphfor a programP (a) before and(b) after grouping strongly con-
nected objects. An arrow fromA toB indicates that objectA stores a reference to objectB. (c)
shows one possible scoping structure, whereE is in the outermost scope,D is in a sub-scope, and
A,B, andC are in a sub-scope ofD’s scope. Object references in RTSJ may only point outward
to enclosing scopes.

to enclosing scopes; scopes are at least as long-lived as those that nest within
them, so these outward-pointing references are considered safe.

If a Java program were simply moved to an RTSJ platform, then by default
all objects would be allocated in the garbage-collected heap, which offers no
guarantees for real-time activities. To generate an RTSJ scope hierarchy out of
Java’s flat memory model, we work backwards, tracking which objects reference
which others, to build a set of scope nesting structures that do not violate the
object referencing regulations of RTSJ.

We have developed areference-probing aspectto determine these legal
RTSJScopeMemory assignments. The probe defines as join points [2] the ob-
ject instantiations and assignments of interest to us and builds adoesReference
graph to track which objects refer to which other objects. ThedoesReference
graph may contain strongly connected objects; these objects are grouped to-
gether as they must share a scope. This collapses the more general graph into a
directed acyclic graph (DAG).

For example, if objectA references objectB, the DAG contains an edge
from A to B. ThenB’s scope must be at least as long-lived asA’s. There are
two legal scoping hierarchies in this instance: that whereB is in an outer scope
andA is in an inner scope, and that whereA andB are both in the same scope. A
simple (but nonoptimal) algorithm for determining suitable scopes is to perform
a topological traversal of the DAG, which corresponds to a right-to-left preorder
traversal of any depth-first spanning tree of the DAG. Figure 2 shows an example
illustrating this procedure.

3 Join Point Discovery

The join points in the original program at which we need to inject instructions
to enter these scopes must also be determined. Consider Figure 3, a possible

CSEG
28

stack
pointer

4

3

2

1

0

.

..

.

..

E born

D born

stack
pointer

0

4

3

2

1

.

..

.

..

E born

D born

A, B, & C born

(a) (b)

stack
pointer

0

3

2

1

4

.

..

.

..

A, B, & C born

E born

D born
D still live

A, B, & C die

stack
pointer

4

3

2

0

1
..
.

A, B, & C

E born

D born
A, B, & C die

D dies

(c) (d)

Fig. 3. A view into the execution stack of programP at different points inP ’s execution.(a)E
is born first, in frame 0. In frame 3,D is allocated, then(b) A, B, andC (which refer back to
D) are allocated in frame 4.A, B, andC are not returned or thrown from the execution scope
that generated them, and we know from Figure 2 that there are no references to them, so they
must die upon exiting their birth stack frame—this indicates that we can close their associated
memory scope when frame 4 pops.(c) However,D escapes the execution scope of its birth (it
was returned or thrown), and it is still live in frame 2.(d) Therefore,D’s scope must not close
until frame 2 is popped andD is known to be dead.

execution stack for the programP whose reference behavior is described by
Figure 2. First,E is constructed, then in some later stack frameD is constructed
(and stores a reference toE). If we can determine thatD is always dead at the
time a particular stack frame pops, we can close its scope at that point. This is
demonstrated in the figure.

We can reason about the frame events of Figure 3 by engineering advice on
method and constructor join points. To determine the points at which objects
are dead, we weave aliveness-probing aspectinto programP . This aspect in-
spects method and constructor executions to determine when objects are born
and when they become unreachable.

By combining thedoesReferencescope information harvested by therefer-
ence-probingaspect and the frame birth and death data from theliveness-prob-
ing aspect, we can discover a scoping hierarchy that respects both RTSJ’s re-
quirements on object references and the observed execution flow ofP .

4 Conclusion

Our approach has the following advantages:

CSEG
29

1. The memory concerns of the system are described and enforced in a mod-
ular fashion.The memory concerns are described through the use of as-
pects, rather than sprinkling memory instructions throughout the code via
newInstance invocations. This is a particularly important issue for ob-
jects in real-time Java packages that want or need to manage their own mem-
ory concerns under RTSJ. Without aspects, the user would have the respon-
sibility of placing packaged objects in the correct type of memory area.

2. Automation ofScopeMemory detection and management lowers develop-
ment costs.This dynamic analysis approach can be used to find a memory-
efficient scoping structure, and the resulting, automatically generated mem-
ory aspect is easily tested by weaving it in to user code. Human-readable de-
scriptions of object behavior can be generated that allow a useful view into
the system and point out inefficiencies or unintended design consequences
in the system.

3. The introduction of aspect code into the target program introduces real-time
predictability.Because the scoping hierarchies are computed and the neces-
sary join points are discovered offline, the aspect that enforces the runtime
use of RTSJ scoped memory areas consists mainly of a table lookup. This
can be done in bounded time, and we expect the translated program’s per-
formance to be more predictable (and suitable to real-time environments)
than the original program.

4. User source files are unchanged.The real-time modifications are completely
described in separate aspect source code; our aspect weaves into the user’s
source in order to modify it. For large source code trees, disk space require-
ments can be dramatically smaller. Additionally, one source code tree is
sufficient for both Java andScopeMemory -enhanced RTSJ code.

In summary, we have proposed a mechanism for automating the creation of
RTSJ memory scopes. The expression of those scopes is accomplished via as-
pects, as is the offline dynamic analysis to determine the scopes. At present we
have pieces in place to perform the analysis and to create scopes that are re-
spectful of object references from program runs. Our future plans call for inves-
tigating tradeoffs between various scope nesting structures, in terms of footprint
and the overhead incurred for managing the scopes.

References

1. Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull.The Real-Time Specification
for Java. Addison-Wesley, 2000.

2. Gregor Kiczales. Aspect-Oriented Programming. InProceedings of the 11th European Con-
ference on Object-Oriented Programming, June 1997.

3. The AspectJ Organization. Aspect-Oriented Programming for Java.www.aspectj.org ,
2001.

CSEG
30

� ���������	��

�����������������	�����������������! #"%$&

���	�%'("
���*)+�	�����-,������/.0)+��"21435)��!��36�7"(��
8����'#"9� �-��
:)���'#�

:"��%� ';�����!

�<�=�?>

@:A BDC	EGFIHKJMLMN�HPORQTSUF
V	FIWYXPSUEGQZW\[^]KH`_�abHMEZHMFM[GH

c7S!dRL`EZ[ZefS!Fg[H`_�h<iYSUN�[ZEGWYNUL`ijL`FRk�lmHMe(donp[ZSUE�h<FIqMW\FoS!S!EGWYFIq(LPFok
c�SUdoL`EZ[ZefS!Fg[rH`_�lmHPefdInI[ZS!E�sIN�WYS!FoN!S
t LPN!HPOoQZS!Fvu7SUSUN!qoA [ZHPEGHPFg[GHoA SUkpnKw

x ygz�{p|I}r~7���v{I�^}�z

C��Pe(W�kIkpiYS!�-L`EGS�QZ]pQ^[GS!eK��N!HPFoQT[ZW\[Znp[GSUQ�L�QZS�[�H`_�QZS!EGX�WYN!SUQ;[Z�oL`[�LPW\e6L`[�_�LPN!W\iYW\[GL�[GW\Foq
[Z�IS�kIS!XPSUi\HMdIefS!Fg[<H`_jkpW�Q^[GEZWYOInp[GSUkKLPdIdIiYWYNUL�[ZWYHPFRQ*W\FK�IS![ZSUEZHMqPS!FoS!HPnRQ*S!F�X�W\EGHPFIefSUFM[=Q!A`a-�oS
dIEZWYeKL`EG]�HPO t S�N�[ZWYXPS�Q;HP_#L�efW�kIkpiYS!�-L`EGS�L`EGS�[GH�_�HgQ^[GS!E�L`dIdIiYW�N!L�[GW\HMF�dvHPEZ[GL`OoW\iYW�[^]�LPFok
kpWYQT[ZEGWYOInp[ZS�k
QT]pQT[ZSUe�WYFM[GS!EGHPdvS!E=L`OIWYiYW�[^]MA�C�[bi\S�LPQT[bN�HMFoN�SUdp[ZnoLPi\iY]P��[Z�IS��PefWYkIkIi\SU��LPEZS*i�L�]PS!E=�
N�HPefdIEGW�QTS�Q(L+i�L�]PSUE#OvS!iYH��&[G�IS�L`dIdIiYW�N!L�[GW\HMF�LPFok�L`OvH�XPS�[Z�IS�HPdvS!E=L�[GW\Foq+QZ]pQ^[GS!e�LPFok
FIS�[^��HPEG��QZnIOoQT[ZE=L�[GSPA-lmHMefe(HMF�efWYkIkIi\SU��LPEZS�doiYL`[T_�HPEGeKQ;WYFoN�iYnokpS�lr�8�	 -C:�-c¡lr�8¢£�
L`Fok�[Z�IS:JgL�X�LfQTnIW\[ZS
HP_¤dIEGH`[GHpN�HPi�QUA
a-�IS	�PSU]KkpSUQZW\qMFKdIEGW\FoN!W\dRL`ionoFokpS!EGiY]gWYFIq#e(W�kIkpiYS!�-L`EGS	kpS�QTWYqPF;�RLPQ<OvS!SUFK[ZH#�IW�kpS7LPFok

S!FoNUL`doQZnIi�L�[ZS�QT]pQT[ZSUe¥kpS�[=L`WYiYQ�OvS!�IWYFok�N!HPefefHPF(L`OoQT[ZE=LPN�[ZWYHPFoQ¤L`Fok�H`¦?S!E�X�LPEZWYHPnRQ¤kpWYefS!FpB
QTWYHPFoQ7H`_�[ZE=L`FoQZdoL`EGS!FRN�]�[ZH�[Z�ISfL`dIdoi\W�N!L`[ZWYHPF�kpSUXPSUi\HMdRSUE(§�SPA qoAY�v�rW\[Z��EZS�QTdvSUN�[7[GH�HMO t SUN�[
i\HpN!L`[ZWYHPF4��kIL�[=L�LMN!N�S�QZQU�bLPFok�QZS!EGXgW�N�S�W\efdIiYS!efS!Fg[=L�[ZWYHPF£i�L`FoqPnoLPqPS�¨�A¤C7Q#QZ]pQ^[GS!eKQ�N!H�kIS
§�HPE�FISULPE	QT]pQT[ZS!eKQ	N!HpkpS�¨-QT[GLPFokIL`E=k�e(W�kIkpiYS!�-L`EGS
�oLMQrFIH`[OvS!SUF�kpSUQZW\qMFISUk©�rW\[Z��ªG«M¬­ª!®o¯
°=±�²!±´³µ± ¬·¶��R¸K¹�º�» ³\¼`½�± ¬¾¶��?¿G¹`®UÀ�Á`» ½Z¼ ¬ ± ¹`®o�R¹=ÂIª!®o®?ª °=° �MLPFok�¿�» ° ¬D¹�¸ ±\ÃU¼ ¬ ± ¹`®:WYF(efWYFokjAMÄ­[�WYQU��_�HME
W\FoQT[GLPFoN�SM��W\efdvHMQGQTWYOIiYS�[GH¡S!FI�oLPFoN�SrL7dIi�L�[T_�HMEZeÅ�rW�[G��[GSUN=�IFIW�ÆgnISUQ�[G�oL�[<LMkIkpEGSUQGQbFIS![^�mHMEZ�
L���LPEZSUFISUQGQ!�jefHMOIW\iYS�L��-L`EGS!FIS�QZQU�jL`Fok£kI]gFRL`efWYN�LPkILPdp[GLPOIW\iYW\[^]P�bHME
[ZH�S�ÇpdIiYHPW\[#L`dIdoi\W�N!L`B
[ZWYHPF�iYS!XMS!i?QTSUeKL`Fg[ZW�N	_�HME�QZ]pQ^[GS!eÈHPdvS!E=L�[GW\HMF4AIlmHPefefHPFIiY]P�g[Z�oS8LPEZqMnIefS!Fg[�LPqML`WYFoQT[mQZnoN=�
L(kISUQZW\qMF�W�Q	L(dRHgQ^[GnIi�L�[ZS�k�QZLMN�EGW�ÉRN!S7HP_�dvS!EZ_�HPEGeKL`FoN!SPA
s�HPefS
H`_*[G�ISUQZS:W�QZQZnISUQ��oL�XPS¡OvS!SUF�doL`EZ[ZW�L`iYiY]�EGSUN�HMqPFIWYÊ!S�k�O�]©ORHpkpWYSUQ7kpS�ÉRFIW\Foq;efWYk�B

kpi\SU��LPEZSKQZdRS�N�W\ÉRN!L`[ZWYHPFoQU�4efHPEGSKFIHP[GL`Ooi\]�[Z�IS©�8¢�Ë(�4�r�IH��oLMQ
W\Fg[GEZHpkpnoN!SUk�L�F�nIe�OvS!E
H`_	_�S�L�[ZnoEZS�Q(LMkIkpEGSUQGQTWYFIq�[Z�IW�QKkpWYi\SUe(eKLoA<a-�IWYQ(WYFoN�iYnokpS�Q!�*_�HMEfW\FoQT[GLPFoN�SM�*e(S�QZQGL`qMS�LPFok
e(S![Z�IHpkÌi\SUXPSUi8WYFg[ZSUEGN!S!dp[GHPE=Q!���IH�HP�pQ�_�HPE�N�nRQ^[GHPeÍeKL`E=QT�RL`iYi\WYFIqÌ§�EZS�Q^[GEZW�N�[GSUk�[ZH�X�LPi\noS
[^]gdvSUQ=¨���HMdRSUF�QT[ZnoOpB¾[GH`B­HPEGO�WYFg[ZS!EZ_�LPN!S+§�EZS�Q^[GEZW�N�[GSUk�[ZH+[Z�IS�JgL�X�L�i�L`FIqMnoL`qMS�eKL`dodIW\Foqg¨��
L`Fok�doi\nIqMqMLPOIi\S¡[GEGLPFoQZdRHMET[=Q�§�EGSUQT[ZEGW�N�[ZS�k©[ZH�[Z�IS#EZS�L`i\B¾[GW\efS(lr�8�	 -CÅdIEZHPÉoiYSP�RLPi�[G�IHPnoqP�
H`_´[ZSUF#WYefdIiYS!efS!Fg[ZS�k:O�]:QT[GL`FRkIL`E=k(�8�	 -Q=¨�A�a-�IS�QTS�S!FI�RL`FoN!S!efS!Fg[GQ¤iYS!XPSUEGLPqPSmdoL`EZ[¤HP_o[Z�oS
dIEZHMOIiYS!e��bOInI[#iYSUL�XPSfe#noN=��[ZH�ORS�kISUQZW\EGSUkjA�h�Ç�[ZSUFokpWYFIq+�8�	 -Q
�rW\[Z��iYLPFIqPnoLPqPSfeKL`dpB
dIW\FoqMQU�bdIEGH`[GH�N!HPi�eKL`dodIW\FoqMQU�bHPO t SUN�[(LPkILPdp[ZHMEGQU�jqPSUFIS!E=L`i<N!noQ^[GHPeÎeKL`E=QT�oLPi\iYWYFIqo�bQZeKL`EZ[
Ï�Ð*ÑgÒµÓ4Ô*ÕUÖ^×7ÒµÓ¤ÓDØMÙgÙpÕUÖDÚ^Û=Ü8Ý�Þ7ß-àMá4â�ãmä�å?ÕUÓDÒæÚ^Ò�ÕUç�åjèUÙpÛGÖ¤Òµç¡é�ÕUÖ^×`ÓDÑMÕ�Ù¡ÕUç
êmÓDÙpÛ=ëZÚDì­ímÖ^ÒµÛ=ç�Ú^Û�Ü
å4Ö^ÕUîUÖTè!ï
ï
Ò�çMî
èUçgÜfà`Û=Ù�è�ÖTè!Ú^ÒµÕ�çfÕ!ð¤ã�Õ�çMë=ÛGÖ^çgÓ=ñgòvè!çgë�è!Ó­Ú^ÛGÖ�ñ�ómô¡ñMêmØgîUØgÓ­Úmõ!ö�öP÷Uä

CSEG
31

dIEZH�ÇpWYSUQU�?HPE¡[ZS�N=�IFIW�ÆgnISUQ8[GH�LPN=�IWYS!XMS#FIS![^�mHMEZ��L��-L`EGS!FoSUQGQ7LPFok�kI]gFRL`efWYNKLMkIL`dI[GL`OoW\iYW�[^]
[ZH¡EZnoFpB¾[GW\efSrN�HMFokpW\[ZWYHPFoQ*W�Q�QT[ZWYi\ipFIHP[<L7qMW\XMS!F�§�QZS!S
ø ùI�Zú�ûp_�HPE<L7e(HMEZSrkpS![GLPW\iYSUk(kpW�QZN!noQZQZWYHPF
H`_�QTHMe(S¡HP_b[Z�oSUQZS
WYQGQTnoSUQUA ¨
¢�HPEGS!H�XMS!E��pe(W�kIkpiYS!�-L`EGS#QZ]pQ^[GS!eKQ8L`EGS�S�Ç�[GS!FokpS�k�[GH�LPkokpEZS�QZQ7EGSUÆgnIWYEZSUe(SUFg[GQ	HP_<[Z�oS

e(HgQ^[�kpWYXPSUEGQZSmLPdIdIiYWYNUL�[ZWYHPF(kpHPeKLPW\FoQ�L`FRk:FISU��efWYkIkIi\SU��LPEZS-QTSUEZX�W�N�S�Q¤QZnIdIdvHPEZ[ZWYFIq7LPdIdIiYW�B
N!L�[GW\HMF
[ZE=L`FRQZN!S!FokpWYFIq	EGSUÆgnIWYEGS!efS!Fg[GQ¤L`EGS�N�HMFoQT[GL`Fg[Gi\]
LPkokpSUkjA�a-�IS�L`dIdIiYW�N!L�[GW\HMF�kpHMefLPW\FRQ
LPkIkpEGSUQGQZSUkfO�]f[Z�IS
lr�8�	 -C�doiYL`[T_�HPEGeüL`iYHPFISM�ME=L`FoqPSr_�EGHPeý§�kIWYQT[ZEGW\Oonp[ZS�ko¨<OonoQTWYFIS�QZQ-L`dIB
dIi\W�N!L`[ZWYHPFoQ7§�QT[GLPFokIL`E=k;lr�8�	 -C7¨��MEGSULPi�B·[ZWYefS	QT]pQT[ZS!eKQ7§��rS�L`iRa-WYefS8lr�8�	 -C7¨��gLPFokKQGN�W\B
S!Fg[ZW\ÉRN�L`Fok
�oW\qM��dvS!EZ_�HPEGefLPFoN�SmN�HPefdInI[ZWYFIq(§¾c7L`[GL8þ�L`E=L`iYi\SUiglr�8�	 -C7¨���[ZH8�rW\EGS!iYSUQGQbLPFok
S!e�OvSUkokpSUk:QZ]pQ^[GS!eKQ�§�¢�WYFIWYe�nIeÅlr�8�	 -C7¨�A�a-�oSmQZS!EGXgW�N�SmQTS![GQ4S!Ç�[ZS!FRk¡_�EZHMeÿ_�L`nIi\[b[GHPiYS!EZB
L`FoN!SP�pQTS�N�nIEGW\[^]P�pL`Fok�HPO t S�N�[-qPEGHPnId�efLPFoL`qMS!efS!Fg[�[ZHfQT]�FoN=�oEZHMFIHPnoQmL`Fok�LPQZ]�FoN=�IEGHPFIHMnoQ
N�HPefe#nIFIW�N!L�[GW\HMF4��[ZH t noQT[�FoLPefS¡L#_�SU�
A

� ± ºMº ³ ª�� ¼�½ ª-Â ³\¼ ¬ ��¹ ½ ¸�� ¼ ¸ ±´³µ± ª ° L`EGS	SUXPHPiYX�W\Foq7[GH#QZnIdIdvHPEZ[<[Z�oSUQZS�kpW\¦vSUEZSUFM[-L`dIdoi\W�N!L`B
[ZWYHPFfkpHPeKL`WYF(EZS�ÆMnoW\EGS!efS!Fg[=Q*�rW�[G�IW\F([G�IS	QZLPefS<Â ³\¼ ¬ ��¹ ½ ¸ ³µ± ®?ªr§�W·A SPAY�`SUQGQTSUFg[ZW�L`iYi\]
dIEGHpkpnoN�[
i\WYFIS�¨�Agc7W\¦vSUEZSUFM[mdIEZHPÉoiYSUQ	§�W¾A SPAY�gQZdvSUN�W�L`iYWYÊ!SUkKQZnIOoQZS�[=Q<HP_v[G�IS�N!HPEGSre(HpkpSUi�¨�L`EGS	kpS�ÉRFISUk([GH
LPkIkpEGSUQGQ<QZS!EGX�WYN!S�QTS![GQmL`FokKQZdRS�N�W\ÉRN�kIHPeKL`WYFKEZS�ÆgnIW\EGS!efSUFM[=Q!Ags�W\efWYiYLPE�S!¦vHMET[=Q�L`EGSrS!efSUEZqPB
W\FIq�_�HPE
JgL�X�L�B­OoLPQZSUk�efW�kIkpiYS!�-L`EGSP�?L`Fok�[ZH�QTHMefS#S!Çg[GS!Fok�_�HPE
c
lr�8¢�B·ORLPQZSUk�QZ]pQ^[GS!eKQ!A
a-�IWYQ�dIEGHPiYW�_�SUEGL`[ZWYHPFfLPQ���S!iYiRLMQ*[Z�IS7L`WYe¥[ZH#QTnIdodRHMET[�L
X�LMQ^[�_�nIFRN�[ZWYHPFRL`iRQZdvSUN�[GEZnoe �rW\[Z�pB
W\F�HMFIS:S!F�X�WYEZHMFIefS!Fg[rWYQ�i\S�LPkpWYFIqf[ZH;[Z�IS�N!H`B­S�ÇpW�Q^[GS!FoN!S
H`_*e(W�kIkpiYS!�-L`EGS
dIi�L�[Z_�HPEGefQ	�rW�[G�
efLPF�];FIHPFIB·HMET[G�IHPqMHPFoLPio_�S�L�[ZnoEZS�QrL`Fok©N�HMFoQTW�kpSUEGLPOIi\S7_�nIFoN�[ZWYHPFoLPi4H�XPSUEZi�L`dbA
abH�QZnIefeKL`EGW\ÊUSP�*[Z�oS��PSU]�dIEGHPOIiYS!e �rW�[G��N�nIEGEGS!Fg[;efWYkIkIi\SU��LPEZS�QZ]�QT[ZSUeKQKWYQ;FIHPFpB

S�Ç�[ZSUFoQTWYOIWYi\W\[^]P��dIEZHMi\W_�S!E=L�[GW\HMF��rW\[Z��EGSUQZdvSUN�[f[GH�QTnIdodRHMET[GSUk�_�SUL`[ZnIEGSUQ;LPFok�L`dIdoi\W�N!L`[ZWYHPF
kpHPeKL`WYFoQU��L`Fok�L�[GHgH+N�HgL`E=QTS!B·qMEGLPW\FIS�k�QTSUEZX�W�N�S�efHpkpSUirS�Çp�IWYOIW�[GW\Foq�_�nIFRN�[ZWYHPFRL`i-EZS�kpnIFpB
kIL`FoN!]PA

���IW\iYS8�mS¡N!LPFIFIH`[-H`¦?S!ErL�_�nIiYi4QTHMi\np[GW\HMF;[GH�[G�ISUQZS7doEZHMOIi\SUeKQ!����S7WYFg[ZS!FRk;[GH#HMnp[ZiYW\FoS
HPnIE�dvHMQZW�[GW\HMF�[GH���LPEGkoQ�L8FISU��LPEGN=�oW�[GSUN�[GnIEGS�_�HME�e(W�kIkpiYS!�-L`EGSrQT]pQT[ZSUefQUA��+S-ÉoEGQT[<kpW�QZN!noQZQ
L#F�nIe#ORSUE	H`_*dIEGW\FRN�WYdIi\S�Q�[ZH;LMkIkpEGSUQGQ�QZ�IHMET[=N�HPefWYFIqMQ�WYF�N�nIEGEGS!Fg[�efW�kIkpiYS!�-L`EGS
L`E=N=�IW�[GSUN�B
[ZnIEGSUQ	LPFok©[Z�oS!F�dIEGSUQZS!Fg[dvH`[ZSUFg[ZW�L`i¤QZHPiYnp[GW\HMFoQ-[ZHf[G�IS#LPORH�XMS¡HPnp[Gi\WYFISUk�doEZHMOIi\SUeKQ!Aoa-�oS
FIS!� e(W�kIkpiYS!�-L`EGS�L`E=N=�IW\[ZSUN�[ZnIEGS©�rW\iYirORS�ORLPQZSUk�HPF�[Z�IEGS!S��PSU]�N�HMFoN�SUdp[U�r¸K¹�º�» ³\¼`½�± ¬¾¶��
¼�° ÂIª=¿!¬	¹ ½�± ª!®o¬ ¼ ¬ ± ¹�®o�vL`Fok�[G�IS�¹GÂoª�® ± ¸�Â ³ ª!¸fª!®o¬ ¼ ¬ ± ¹�®�efS�[GLPdI�IHMEUA��+S�L`i�QZHfQZnIefeKL`EGW\ÊUS
EZSUiYL`[ZSUk���HPEG�f[Z�oL`[�oLPQrLMkIkpEGSUQGQTS�k�QZHPefS
H`_¤[Z�IS�QTS
W�QZQZnIS�Q!A

� 	��	|�
�}
���^{p�T}�z����(}����*|o~�����z�y����7|I}��
�b~����Z~�~� !�"����|#�
$ |o�&%��^{'�¤�v{p��|(�)� }r~���

�7nIE-dRHgQTW\[ZWYHPF©WYQ�[G�oL�[���_�HPE�[Z�oS:L`OvH�XPS�HMnp[ZiYWYFISUk©EGSULPQZHPFRQ!�M[Z�IS
kpS�QTWYqPF�H`_*L#efW�kIkpiYS!�-L`EGS
dIiYL`[T_�HMEZeÈQT�oHPnIi�kfORS7EZS!B¾[G�IHPnoqP�g[�_�EZHMeÅqMEZHMnIFokfnId;LPFok([Z�IS7��]gdvH`[G�ISUQZW�Q<H`_j�r�IS![Z�ISUE�HME
FIH`[rL`F;S�*;N�WYS!Fg[�efHpkpnIi�L`E�dIi�L�[Z_�HPEGeÈNUL`FIFoH`[mOvS¡kpS!XMS!iYHPdvSUkj�ge�noQT[-ORS7[ZS�Q^[GSUkjA'�+S�ÉoE=QT[
kpWYQGN�nRQZQ#L�QTS![#HP_-doEZWYFoN�WYdIiYSUQ#L�FIS!�üefW�kIkpiYS!�-L`EGSKdIi�L�[T_�HMEZe kpS�QTWYqPF�QZ�IHPnoiYk£OvS�ORLPQZSUk
nIdRHMF;L`Fok([G�IS!F;kIWYQGN�noQGQ<�oH���[GH�LPN=�IWYS!XMS-[Z�IW�Q<�rW\[Z�KSUefS!EGqPWYFIq:kpS!XMS!iYHPdIefSUFM[�N!HPFoN!S!dp[=Q!A

+-,/.0.�132�465�7�298:2';<,/=?>A@B7C,3>�DE,GFH1/2';

I AJ� ± ¿ ½ ¹`¯3KPª ½ ®vª ³b³�± KPª ¼�½ ¿ML ± ¬­ª=¿!¬¾» ½ ª<N

CSEG
32

lmnIEGEZSUFM[;efW�kIkpiYS!�-L`EGS�L`E=N=�IW�[GSUN�[ZnIEGSUQ(_�L�XMHPEfHPFIS�doEZWYeKL`EG]�N�HMe(e#nIFIW�N!L`[ZWYHPF�Q^[^]�iYS
O QT]�FoN=�IEGHPFoHPnoQ(�	þ�l O LPQfOoLMQTW�QfL`Fok�OInIWYiYk�HP[Z�ISUE;Q^[^]�iYSUQU�<LPQfQTS�N�HMFokIL`EG]�LPkok OHPF£QZS!EGXgW�N�S�Q8FIS�Ç�[
[ZH�W\[QP©§�SPA qoAY�bLPQZ]�FoN=�IEGHPFIHMnoQ8N�HPefe#nIFIW�N!L�[GW\HMF4�4FIHMFpBDN�HPFg[GW\F�nIHMnoQ
HPdvS!E=L�[GW\HMFoQ!�vEGS!iYWYLPOIi\S�RKnIFoEZSUi\W�L`OIiYS�e#nIi\[ZW�N!LPQT[U�vdInIOoi\W�QT�SRKQZnIOoQGN�EGWYORSM�RqMEZHMnId�N�HMe(B
e�nIFoWYNUL�[ZWYHPF�S![GN`Aæ¨KC eKL t HME;kpE=L��rOoLPN=�£HP_7[G�IWYQ�L`dIdoEZHgLPN=��WYF�N�nIEGEGS!Fg[KdIiYL`[T_�HMEZe
W\efdIiYS!efSUFM[=L�[GW\HMFoQ;W�Qf[Z�oS�H�XPSUEZi�L`d�H`_¡[Z�oS�kpW\¦vSUEZSUFM[�e(HpkpSUiYQU�<[G�IS�EGS!dIiYW�N!L�[GW\HMF�H`_
N�HMEZS�_�nIFoN�[ZWYHPFoLPirnIFIW\[GQ([Z�RL�[�L`EGS©doL`EZ[(HP_8LPi\i	N!HPefe�nIFoWYNUL�[ZWYHPF�Q^[^]�iYSP��[Z�oS�QTnIOI[ZiYS
kpW\¦vSUEZSUFoN�S:WYF�[G�IS�efHpkpS!i�Q�§¾LPQ	[Z�ISU]���S!EGS:WYFoN�EGS!efS!Fg[=L`iYi\]©kpS!XMS!iYHPdvSUk�H�XPSUEr]PS�L`E=QG¨��
L`Fok;[Z�IS¡N�HMefdIi\S!ÇpW�[^]fH`_j[G�IS8ÉoFoLPiRdIEGHPqMEGLPefe(WYFIq:efHpkpSUivQZnIdIdvHPEZ[ZWYFIqfQTSUXPS!E=L`ioFIHPFpB
HPEZ[Z�IHMqPHMFoL`i?H�XPSUEZi�L`dodIW\Foq:_�SUL`[ZnIEGSUQUA
abH�LPkIkpEGSUQGQf[G�ISUQZS�W�QZQZnISUQU��L£FoS!� efWYkIkIi\SU��LPEZS�LPEGN=�IW\[ZS�N�[GnIEZS�QZ�IHMnIiYk�doEZH�X�W�kpS�L
efH�kIS!ivW\F��r�IWYN=�;LPi\i?N�HMefe�nIFIW�N!L`[ZWYHPF;QT[^]�i\S�QmLPEZS	S�ÆgnoL`iYi\](dIi�LPN!SUkKQZWYkpS!B·O�]gBDQTW�kpS�LPFok
efH�kInIiYLPEZiY]¡OIEGHP�PSUF
kpH��rF:WYFM[GH	_�nIFRN�[ZWYHPFRL`ignIFIW\[GQUA�c7W\¦vSUEZSUFM[*N�HMe(e#nIFIW�N!L`[ZWYHPF�QT[^]�i\S�Q
L`EGS�WYFoN!EZSUe(SUFg[GL`iYiY]+HMOp[GLPW\FoSUk�_�EZHMe [Z�IS�N�HMefdRHgQTW\[ZWYHPF�HP_7nIFRkpS!EGi\]�WYFIq�_�nIFoN�[GW\HMFoL`i
nIFIW\[GQUAoÄDF©[Z�oWYQ�e(HpkpSUi4FIHKHMFIS:Q^[^]�iYS¡WYQ-_�L�XMHPEGSUk�W\F©[G�IS�L`E=N=�IW\[ZS�N�[ZnoEZS¡H�XPSUErL`FIHP[Z�ISUE
HPFISM�b_�noFoN�[GW\HMFoL`i�EZS�kpnIFokoL`FoN!]�W�Q#L�XMHPW�kpSUk4�bL`Fok�N�HPFRQTW�Q^[GS!FoN!]�W�Q#efLPW\Fg[=L`WYFISUkjA0�+S
EZS!_�S!E([ZH�[Z�oWYQKLMQ(L�efWYN!EZHPB·�MS!EGFIS!imi\WY�PS�kpS�QTWYqPF�[ZH+S!efdI�oLMQTWYÊ!S�[Z�oL`[f[Z�ISUEZS�QT�oHPnIi�k
HPFIiY]�ORS(L;XMS!EG]�efWYFIW\eKLPi�N!HPEGS:HPFg[ZH��r�IWYN=��kpW�¦?S!EGS!Fg[¡N�HPefe#nIFIW�N!L�[GW\HMF�QT[^]giYSUQ7L`EGS
[ZHKOvS:N�HMFpÉoqPnoEZS�kjA

T A�U¤ÂIª!® ¼ ®vºK¸K¹�º�» ³\¼`½ ¸ ± ºMº ³ ª�� ¼�½ ª�Â ³\¼ ¬ ��¹ ½ ¸ ºMª °�± ÁP®?N
C	iYi�dIi�L�[T_�HMEZe _�noFoN�[GW\HMFoL`iYW�[GW\S�Q!�?WYFoN�iYnokpWYFIq©[Z�oS#FIHMFpBDL`dIdIiYW�N!L�[GW\HMF�S�ÇpdvHMQZSUk�e(W�kIkpiYS�B
��LPEZS�QTSUEZX�W�N�S�i�L�]PSUEGQU�bQZ�IHPnoiYk�ORS�N�HPefS©LPN!N!SUQGQTWYOIiYSP��HPdvS!F�LPFok�efHpkpnIi�L`E(OInIWYi�kpW\Foq
OIiYH�N=�pQUARa-�IW�Q7EZS!_�S!E=Qr[ZH�dIi�L�[T_�HMEZe nIFoW�[=Q7QZnoN=��LMQ�N�HMefe�nIFIW�N!L`[ZWYHPF�QZnIOpBDQT]pQT[ZSUe©�?QTB
[ZnIORQ!��QT�MS!iYS�[ZHMFoQU���8�	 Å[ZE=L`FoQZdRHMET[
i�L�]PSUEU�jWYFg[ZS!EZ_�LPN!S;EGS!dvHMQZW�[GHPEG]P�jWYe(doi\SUe(SUFg[GL�[GW\HMF
EZSUdRHgQTW\[ZHMEZ]M�pL`Fok�L`iYijdoLPET[=Q-H`_b[G�IS
HPO t SUN�[�LMkIL`dI[ZS!E�A

V A�W ³´³ �=»p®v¿!¬ ± ¹`® ¼`³ »p® ± ¬ °#± ®�¬GLIª¡Â ³\¼ ¬ ��¹ ½ ¸ ° LI¹`» ³ º ² ª ¼ ¿=¿Gª °=°�±�²�³ ªYX7¿!» ° ¬D¹�¸ ±\Ã�¼P²!³ ªYX ¼ ®vº
½ ªDÂ ³\¼ ¿Gª ¼M²�³ ª ² ¶�¿!» ° ¬D¹�¸ ± ¸	Â ³ ª!¸fª!®o¬ ¼ ¬ ± ¹�® ° N
C _�nIFRN�[ZWYHPFRL`ibnoFIW�[7EZS!_�S!E=Q-[ZH;HMFIS�QT[ZSUd�W\F�[G�IS�S!Ç�S�N�np[GW\HMF�N=�oL`WYF�H`_<LKQZS!EGXgW�N�S
doEZHPB
X�WYkpS�k�O�]�[G�ISfe(W�kIkpiYS!�-L`EGS�§�SPA qoAY�?[Z�oWYQ
N!HPnIi�k�OvSfHPFIS(H`_m[Z�ISfOInIWYi�kpW\Foq©Ooi\HpN=�pQ8EZS!B
_�S!EGEZS�k�[GH�WYF�[Z�IS�W\[ZSUe�L`OvH�XPS�¨�A�a-�IS�S�ÇILPN�[KS�Ç�[ZSUFok�HP_8L+Q^[GS!d�kpSUdRSUFokIQfHPF�[Z�oS
N�HMFoN�EGS�[GS7dIi�L�[Z_�HPEGe&kpSUQZWYqPF�LPFok;[G�IS¡QTSUEZX�W�N�S8H`¦?S!EGSUkjA'ZIHME-L(QZ]gFRN=�IEZHMFIHPnRQ<efS�[G�IHpk
W\F�XMH�NUL�[GW\HMF�[Z�oS�_�nIFoN�[GW\HMFoL`i�nIFIW\[GQKeKL�]�OvS�kIL�[=L�Q^[GEZnoN�[ZnIEGS�doLPN=��WYFIqo��LPEZqMnIefS!Fg[
eKL`E=QT�oLPi\iYWYFIq�§�nIFodoLPN=��WYFIq�L`FRk�nIFIeKL`E=QZ�oL`iYi\WYFIqKEGSUQZdRS�N�[GW\XMS!iY]p¨��RQZ]pQ^[GS!e(B·iYS!XMS!ib��þ�l
§�dvHMQGQTWYOIiY]�OIEGHP�MS!F�kpH��rF�WYF�W�[=Q;N�HMFoQT[ZW\[ZnISUFM[KdIEGH`[GHpN�HPi�Q=¨��<L`FRk�NUL`iYi�kpW�QTdoL`[GN=�IWYFIqRA
a-�ISUQZS	nIFoW�[=QmQZ�IHPnoiYk(FIHP[�ORS�[ZH�H�N!HML`E=QZSP��[ZH�S!FoLPOIi\S�EZSUnoQTSM�`SULMQTS�H`_4N�noQT[ZHMefW\Ê�L�[ZWYHPFb�
L`Fok�iYH�� i\SUXPSUi¤LPNUN�S�QZQ-[GHK[Z�oS!WYE�S!FRk�B·dvHPWYFg[GQ#§�FISUSUkpS�k�LPQ t HPWYF�dRHMW\Fg[GQ	_�HPE8LPQZdRS�N�[GQ=¨�A
c�W\¦?S!EGS!Fg[f_�nIFoN�[GW\HMFoL`irnoFIW�[KWYefdIi\SUefS!Fg[GL`[ZWYHPFoQU��QTdvSUN!WYLPi\WYÊ!S�k£_�HPEfX�L`EGWYHPnoQ(S!F�X�WYEZHMFpB
efS!Fg[GLPimN�HMFokpW\[ZWYHPFoQ�L`Fok�noQGL`qMSfdoL�[Z[ZS!EGFoQU�beKL�]�OvS;WYFoN�iYnokpS�k��rW�[G��[Z�IS�dIiYL`[T_�HMEZe
[ZHKOvS�QZS!iYSUN�[GSUk�L�[�N!HPFpÉRqPnIE=L�[GW\HMF�[GW\efS
HPE�dIEZH�X�W�kpSUk©LPQrN!noQT[ZHPe S�Ç�[ZSUFoQZW\HMFoQ!ARa-�IWYQ
nIFIW\[mOIEGSULP�pkpH��rFfWYQ�L`i�QTH
EGSUÆgnIWYEGSUk([ZH�S!FoLPOIi\S7XPSUEZ]#i\H��-B­i\SUXPSUioLPQZdRS�N�[=Q�[ZH#ORS7�mH�XMS!F
L`EGHPnIFRk�nIFIW\[;S!FRk�B·dvHPWYFg[GQUA<þ<i�L�[Z_�HPEGe�LPQZdRS�N�[GQfQZnoN=��LPQU��S�ÇIN�SUdp[ZWYHPF�efLPFoL`qMS!efS!FIB
[U��efHPFoW�[GHPEGW\FIqR��LPnp[Z�oS!Fg[ZW�N!L`[ZWYHPF4�*S!FRN�EG]gdI[ZWYHPFAR�kpSUN!EZ]�dp[GW\HMF4��L`Fok�QTSUi\S�N�[GW\XMS�[^]�dvS
QTnodIdRHMET[�rWYiYijFIS!S�k�[G�IW�QrefH�kInIiYLPErOIEGSUL`��kpH��rF©LMQ-�mSUi\i·A

[ß�Õ!Ú<è!Ö^ÕUØgç�Ü�ÕUÖ<ÕUç�Ú^ÕUÙ(ÕUðvÒæÚ�ñMÒ´ä Û�äµñPÚ^ÑgÛ=ÓDÛ-ÓDÛZÖ]\PÒµë=ÛGÓ<è!Ö^Û-ë=ÕUï
ï
Õ�çE^µÞ¡Ó­ÚTèUç�Ü#è_^µÕ�çMÛ-Òµï
Ù�^µÛ=ï
Û=çPì
ÚTè!Ú^ÒµÕ�çMÓ=ä

CSEG
33

`oA�a ± ®vª!¯�Á ½Z¼`± ®vª=º©¿G¹`®UÀ�Á`» ½Z¼ ¬ ± ¹`®+¹!�mÂ ³\¼ ¬ ��¹ ½ ¸�N
abH#kIL�[GS	efWYkIkIi\SU��LPEZS	QZ]pQ^[GS!eKQ<L`EGSrFIHP[mN�HMFpÉoqPnoEGLPOIi\S	L`[mL`iYi·AbZIHME<[Z�oS	efHMQT[�doL`EZ[U�ML
HPFIS�QTWYÊ!SmÉI[=Q¤LPi\ipL`dodIEZHgLPN=�¡W�Qb[=L`�MS!F4A�V	FokIS!E¤ÉoFIS�B­qPE=L`WYFIS�k
N�HPFIÉoqPnIE=L�[GW\HMF
�mSmnIFokpSUETB
Q^[=L`Fok([G�IS7QZdvSUN�W�L`iYWYÊUL�[GW\HMFfH`_4L
dIi�L�[Z_�HPEGe WYFoQT[GL`FRN�Sr_�HME�HPFoS	doL`EZ[ZW�N�noiYLPE�L`dIdoi\W�N!L`[ZWYHPF
kpHPeKLPW\F�L`Fok4��dRHP[ZS!Fg[GWYLPi\iY]P�*_�HMEKHPFIS�doLPET[GWYN!nIiYLPEKL`dIdIiYW�N!L�[GW\HMF�WYF�[Z�IW�Q;kpHMefLPW\FbA<C
�IWYqP�ISUEri\SUXPS!i¤QTdvSUN!W�ÉRNUL�[GW\HMF�HP_¤[G�IS:LPQZdRS�N�[=Q-[Z�IS
doiYL`[T_�HPEGe&EGSUÆgnIWYEZS�QrL`Fok�[Z�oS:W\Fg[GS!EZB
_�LPN!SUQ8§�SPA qoAY��EZS�ÆgnIW\EGSUkKQZS!EGX�WYN!SUQU�P[^]�dvSUQU�gLPFok;S!ÇIN�S!dI[ZWYHPFoQ=¨�HP_j[Z�IS¡L`dIdoi\W�N!L`[ZWYHPF;qMnIWYkIS
[Z�IS:QZ]�Fg[Z�IS�QTW�Q-H`_�[Z�IS
doiYL`[T_�HPEGe&WYFoQT[GL`FRN�SPA

úpAdc�®?ºPªDÂIª!®vºMª�®?¿Gªf¹!� ¼ ¿=¿=¹�¸�Â ¼ ®o¶ ± ®gÁ�Â ³\¼ ¬ ��¹ ½ ¸ ¬D¹U¹ ³æ° N
 �]KdIiYL`[T_�HMEZe�[ZH�HMiYQm�mS8efSULPF�Q^[GnIOpB!R
QZ�PSUi\S![ZHPFIB·qMS!FISUEGL`[ZHPEmL`FokKefS![GL�BDkIL`[GL:EGS!dvHMQZW\B
[ZHMEZWYSUQ-§�Ä^cJe�L`FRk�WYefdIi\SUefS!Fg[GL`[ZWYHPF(EZSUdRHgQTW\[ZHMEZWYSUQ=¨�A`lmnIEGEZSUFM[�efW�kIkpiYS!�-L`EGSmdIi�L�[Z_�HPEGeKQ
[ZWYqP�g[ZiY]¡W\Fg[GS!qPE=L�[GS�[Z�oSUQZS�[GHgHMiYQbW\Fg[GH	[Z�oSmdIi�L�[Z_�HPEGeKQ!A�a-�IW�QbEGS�_�E=L`WYFoQj_�EGHPeÿ[G�IW\E=k
doLPET[^]
W\efdIiYS!efSUFM[=L�[GW\HMFoQ�H`_R[Z�IS�QTS	N!HPefdvHPFISUFM[=Q!�PnoQTS-HP_?QT[GLPFokIL`E=k�[ZSUN=�oFIHPiYHPqM]P��HPE*[G�ISrnoQZS
H`_m[Z�IS�QTSKN�HMefdRHMFIS!Fg[GQ8_�HME¡dInIEGdRHgQTS�Q�[G�IS!]��mSUEZS(FIHP[¡WYefefSUkpW�L�[GS!iY]�W\Fg[GS!FokpS�k�_�HMEUA
a-�ISUQZSr[GHgHMiYQmQT�oHPnIi�kfORS8QTSUdoL`E=L`Ooi\S�_�HPEGe [Z�IS7dIiYL`[T_�HMEZe��POonIW\i�kKHMFKHPdvS!FKWYFM[GS!EZ_�LPN!SUQU�
L`Fok�_�HMi\iYH���L`F�S!Çg[GS!FoQZWYOIi\S
kpS�QTWYqPF�[Z�oS!eKQTSUi\XMSUQUA

fhg 465(7C.0;ji:2�5#1/,/kE,/>0=ml_n02�;<29@B7�,/>0Db,/F0132�;Eo

��S([Z�oW\FI��[Z�oL`[:L`iYi�H`_�[G�ISKL`OvH�XPS#dIEZWYFoN!W\dIiYSUQ
NUL`F+ORSKLMN=�IW\SUXPS�k�O�]�kpS�ÉRFIW\Foq�LPF�HMdRSUF
�EGLPe(SU�mHMEZ��H`�L�e(W�kIkpiYS!�-L`EGS:dIi�L�[Z_�HPEGe��RO�]©noQTWYFIq�[ZSUN=�oFIWYÆgnIS�Q	_�EGHPe LPQZdvSUN�[ZB·HMEZWYS!Fg[GSUk
dIEZHMqPE=L`efefW\Foq7_�HME<[G�IS�qMS!FISUEGL`[ZWYXPSrN�HMFpÉoqPnoEGL`[ZWYHPFfH`_jefWYkokpi\SU��LPEZS�dIiYL`[T_�HMEZe W\FoQT[GLPFoN�S�Q!�
L`Fok�LPdIdIiY]�W\FIq�[Z�IS©HPdvS!F�W\efdIiYS!efS!Fg[=L�[ZWYHPF�e(S![GLPdI�IHPE#[ZH�_�nIFoN�[ZWYHPFoLPimnIFoW�[KkpSUQZWYqPF£[GH
HPOp[=L`WYF©N!noQ^[GHPefWYÊUL�[GW\HMF©L`[�L(XPS!EG]KiYH���iYS!XPSUi¾A

f n�2:i g 1/2 g?p 5(>rqsF
2'>t+-,/.0.�132�465�7�2s@u1/5�l pvg 7�wyxz7�5(wS2�4 g 7C{|o-a-�oSr_�EGLPefS!��HPEG�
iYL�]pQ�HMnp[<[Z�oS	efWYkIkIi\SU��LPEZS	LPEGN=�IW\[ZS�N�[GnIEZSM�PkpS!ÉoFISUQmL`iYiodIi�L�[Z_�HPEGe WYFg[ZSUET_�LMN�SUQU�PkpS!ÉoFIS�Q<S�ÇpS!B
N�np[GW\HMF�N=�oL`WYFoQ¤L`Fok
LMN!N�S�QZQbdRHMW\Fg[=Qm§�W¾A SPAY�UWYFg[ZSUET_�LMN�SUQ4[ZH	WYFokpWYX�WYkInoL`i�Q^[GS!doQ¤WYF�L`F
S!Ç�S�N�np[GW\HMF
N=�oL`WYFR¨��4LPFok+kpS�ÉoFoSUQ¡�IH�� [G�IS!]�W\Fg[GS!EZB·EGS!i�L�[GSPA?a-�IWYQ8_�E=L`efSU�mHMEZ��W�Q8[Z�ISfdIEGWYFoN�WYdoL`i�doEZS!B
EZS�ÆMnoWYQZW�[GS¡_�HPE�LPi\i4[Z�IS
EGSUQT[UAIÄ­[8kpS�ÉoFoSUQ-[G�IS:iYS!XPSUibL�[�r�oWYN=��LPQZdvSUN�[=Q	N!LPF�W\Fg[ZSUEZXMS!FIS
LPFok
[Z�ISUW\E(qPE=L`F�nIi�L`EGW�[^]MA4Ä­[(LPiYQZH�WYefdoLPN�[GQ�[Z�IS�dRHgQZQZW\Ooi\S�kISUQZW\qMF�N=�IHPW�N�S�Q
�HME#L`iYim�nIFoN�[GW\HMFoL`i
nIFIW\[GQUA

f n�2si g 132 g&p|} ;�F
2'Dbl_;Eo�C�FfLMQTdvSUN�[<WYQ�L¡QZ]pQ^[GS!e¥_�S�L�[GnIEZS�[G�oL�[�N!EZHgQZQTB­N!np[GQ¤[G�ISrW\efdIiYS�B
e(SUFg[GL�[GW\HMF:H`_p[G�ISmQZ]pQ^[GS!e L`FRk
WYQ¤eKL`FIW_�SUQT[�L`[¤e#nIi�[GW\doi\S�i\HpN!WMWYF
[Z�oSmN�HpkpS8ø ~`û·A�h�ÇILPe(doi\S�Q
H`_�LPQZdRS�N�[GQ-WYF©[Z�IS:N!HPFg[ZS!Ç�[-HP_¤efW�kIkpiYS!�-L`EGS¡LPEZSE�

� S�ÇIN�SUdp[ZWYHPF©eKL`FoLPqPSUe(SUFg[
§�EGLPWYQZWYFIqo�pdIEGHPdRL`qML`[ZWYHPF4�g�oLPFokpiYW\FIq�¨Ä­_¡LPF�S�ÇIN�SUdp[ZWYHPF��mSUEZS©[GH£ORS�kpS!ÉoFIS�k�LMQKL£QT]pQT[ZSUe�LPQZdRS�N�[�LPFok�L�efW�kIkpiYS!�-L`EGS
dIi�L�[T_�HMEZeýN!HPnIi�k�ORSfN�HMFpÉoqMnIEZS�k�_�HPE¡LKdoL`EZ[ZW�N�noiYLPE7L`dodIi\W�N!L`[ZWYHPF�§¾kpHPeKL`WYFR¨��o[G�IS#S!Ç�B
N�SUdp[ZWYHPF£LPQZdvSUN�[�N!HPnIi�k�ORS�N!HPFpÉRqPnIEGSUk�W\F�HPE:N!HPFpÉRqPnIEGSUk�HPnp[��bkpSUdRSUFokpWYFIq�HPF+[Z�oS
L`dIdoi\W�N!L`[ZWYHPF�QTSUefLPFg[ZW�N8LPFok©EZnoFM[GW\efS¡S!F�X�WYEZHMFIefS!Fg[UA �

� é£ÑgÛGç�Ú^ÑMÛj�(ÒµçgÒµï8ØMïýã�í�âh�*ê��´ÛGï8ÝpÛ�ÜMÜMÛ�Ü�Ó­ÞPÓ­Ú^Û=ï ÙPÖ^Õ_�'^µÛY�8Ó­ÚTè!ç�ÜMè!ÖTÜ�Ô*èUÓ:ë=ÕUçgë=Û=Ò�\�Û=Ü
èfÜMÒµÓDë=ØMÓDÓDÒµÕ�ç�Õ!ð*Ô<ÑgÛGÚ^ÑMÛGÖ	ÕUÖ	çMÕUÚrÚ^Õ#Ò�çMë�^µØ�ÜPÛ¡ÛM�Pë=Û=ÙPÚ^Ò�ÕUç©ÑgèUç�Üb^µÒ�çMî(ë�è!ï
Û¡ØgÙoäví�ÙgÙpÕ�çMÛ=ç�Ú^Ó

CSEG
34

� QT]�FoN=�oEZHMFIW\Ê�L�[GW\HMF�eKL`FoLPqPSUe(SUFg[-LPFok�N�HPFRN�nIEGEZSUFoN�];N!HPFg[ZEGHPis�]�FoN=�IEGHPFIWYÊUL`[ZWYHPF¡N�HMFoQ^[GEGLPW\Fg[=Qj�oL�XPS*HP_´[ZS!F
OvS!SUF
noQZSUk8[ZHrWYiYi\noQT[ZE=L�[GS<LPQZdRS�N�[bHMEZWYS!Fg[GSUk
dIEGHPqPE=L`efefWYFIq�[GSUN=�IFoWYÆgnIS�Q
ø ~`û·A

� W\Fg[GS!EZ_�LPN�S
kpS!ÉoFIW\[ZWYHPF�i�L`FIqMnoL`qMS7S!Çg[GS!FoQZWYHPFoQ¢�L`F�](S�Ç�[ZSUFoQZW\HMFoQ*_�HPEmW\Fg[GS!EZ_�LPN�S7kpS�ÉoFoW�[GW\HMF;iYLPFIqPnRL`qPS�Q*�oL�XPSrOvS!SUF;dIEGHPdvHMQZSUkjAMa-�IWYQ
W\FRN�iYnokpSUQU�?_�HPE
S!ÇIL`efdIiYSP�jÆgnoL`iYW�[^]�H`_�QZS!EGX�WYN!S#LPFIFIH`[=L�[GW\HMFoQ!�?EGSULPi�B·[ZWYefS(N!HPFoQT[ZE=L`WYFg[GQU�
LPQGQTSUET[GW\HMFoQU�`dIEGS7L`FRkKdRHgQ^[-N�HMFokpW\[ZWYHPFoQU�gLPFokfOvS!�oL�X�WYHPE=L`iRLPFIFIHP[GL�[GW\HMFoQUAMC	iYivH`_j[Z�oSUQZS
N�HMFoQ^[GW�[Gnp[ZS:LMQTdvSUN�[GQUA

� LPNUN�SUQGQrN�HMFg[ZEGHPijL`Fok©QZSUN�noEZW\[^]C�NUN�SUQGQ�N�HPFg[GEZHMi¤§�SMA qRA\�gHPO t SUN�[ZB·ORLPQZSUkj�Me(S![Z�IHpk�B­OoLMQTS�kj�MWYFg[ZSUET_�LMN�S�B­OoLMQTS�ko¨�L`FRk�QZSUN�nIB
EZW\[^]�§�SPA qoAY�?L`np[G�IS!Fg[ZW�N!L`[ZWYHPF�LPFok�S!FRN�EG]gdI[ZWYHPFmRfkISUN�EG]�dp[ZWYHPFv¨	N�HMFoQT[ZW\[Znp[GS�S�ÇILPe(doi\S�Q
H`_*efWYkIkIi\SU��LPEZS
LPQZdvSUN�[=Q-[Z�RL�[�eKL�];FISUSUk�[ZHKOvS:OIiYS!FRkpSUk©WYF�HPErHPnI[�kpS!dvS!FokIW\FIqKHMF
[Z�IS
S!ÇpSUN�nI[ZWYHPF�N�HPFg[GS�Ç�[UA

� N�HMe(donp[ZWYFIq;L`FRk�FIS![^�mHMEZ�KEGSUQZHPnoEGN!S7efHPFoW�[GHPEGW\FIq
� W\FRkpW\X�W�kpnoLPi4dIi�L�[T_�HMEZe&[^]gdvSUQC�efW�kIkpiYS!�-L`EGS�dIiYL`[T_�HMEZe/QTnodIdRHMET[=Q�L�N!S!EZ[GLPW\F�[^]�dRS�efH�kIS!i·��E=L`FIqMW\FIq�_�EGHPe�OoL`B
QTW�N#[^]�dRS�QK§�SPA qoAY�jWYFM[����oHML`[U�4N=�oLPE=¨	[ZH�XMS!EG]�QTHMdI�IW�Q^[GWYNUL�[ZS�k�kI]gFRL`efWYNUL`iYi\]�eKLPFoL`qMSUk
[^]�dRS�Q�§�SMA qRA\�o[^]�dRS�C�����W\F�[G�ISflr�8�	 -C efHpkpS!i´¨�A?a-�IS:doEZHpN�S�QZQZWYFIqfH`_<Lf[^]�dRS�W\FpB
[ZSUEZXMS!FIS�Q�L`[<kpW�¦?S!EGS!Fg[�iYS!XPSUiYQ�HP_o[Z�oSrdIiYL`[T_�HMEZe §�SPA qoAY��W\F(eKL`E=QT�RL`iYi\WYFIqo��WYF(dRLPN=��L`qMW\FIqR�
W\Ff[GEGLPFoQZdRHMET[<S![GN`Aæ¨*ÄDFf[G�oL�[mQZS!FRQTS	L¡doLPET[GWYN!nIi�L`E�[^]�dvS	N�HPFRQ^[GW�[Gnp[ZS�Q�L`FKLMQTdvSUN�[�H`_?[Z�oS
efWYkIkIi\SU��LPEZSMA
a-�ISrL`OvH�XPS�i\W�Q^[�N!HPefdIEGWYQZSUQ*N!HPFoN!EZS![ZSrLPQZdRS�N�[=Q!��[G�IS!EGSrL`i�QTH¡S�ÇpW�Q^[=Q�L8Fgnoe�OvS!E�H`_?efHPEGS

L`OoQT[ZE=LPN�[�LPQZdRS�N�[GQU�p[G�oL�[��rWYiYibEGSUÆgnIWYEZS:LfefHPEGS
EGS�ÉoFIS�k�kpSUN!HPefdvHMQZW�[GW\HMF4Aoa-�IS�QTS:WYFoN!i\nokIS
EZS�L`i\B¾[GW\efSP�IÆgnoLPi\W\[^];HP_�QZS!EGXgW�N�SM�IL`Fok�_�L`noi�[[GHPiYS!E=L`FoN!S8LMQTdvSUN�[GQUA
C�QZdRS�N�[GQ7N�HMnIiYk�W\Fg[ZSUEZXMS!FIS:L`[8QZS!XMS!E=L`ibQT[GLPqPSUQ	W\F�efW�kIkpiYS!�-L`EGS
dIi�L�[T_�HMEZeKQUA&ZoHPE�HMFISP�

[Z�ISU]�N�HMnIiYk�OvS8nRQTS�k;[GH(S!Ç�[ZS!FRk�[G�IS¡dIi�L�[T_�HMEZe �rW�[G�©N!S!EZ[GL`WYF�_�SUL�[GnIEGSUQ¡§�N�_^AIi\W�QT[rLPORH�XMS�¨��
OInp[U��efHMEZS�W\Fg[GS!EGSUQT[ZWYFIqPiY]P��LPQZdRS�N�[=Q�N!HPnIi�k#ORS-L`dIdoi\WYSUk�[ZH¡N�HMFpÉoqPnoEZS�L�dIi�L�[Z_�HPEGe W\FRQ^[=L`FoN!S
_�HPE	L(doL`EZ[ZW�N�noiYLPE	L`dIdIiYW�N!L�[GW\HMF©kIHPeKL`WYF©LPFok©QTdvSUN!W�ÉRN
LPdIdIiYWYNUL�[GW\HMF4A
a-�IS#qMEZS�L�[8ORSUFIS�ÉI[
HP_<[Z�IW�Q¡W�Q�[G�oL�[¡[G�ISfdIEZHMi\W_�S!E=L�[GW\HMF�H`_�Q^[=L�[ZW�N#dIiYL`[T_�HMEZeýdIEGH`ÉRi\S�Q

�mHMnIiYk�kpW�QGL`dIdvSULPE:L`Fokj�¤LPQ¡FISU��EGSUÆgnIWYEGS!efS!Fg[GQK§¾kpHPeKLPW\F£L`FRk�_�S�L�[GnIEZS�¨¡L`EGWYQZSP�4QZWYe(doi\]
e(HMEZS�LPQZdvSUN�[=Q�FoS!SUk�[ZH+OvS�LMkIkpS�kjA�lmi\S�L`EGi\]M�¤[G�IW�Q(LPdIdIEGHMLMN=��WYQ(SUFM[GW\EGS!iY]£OoLMQTS�k£HPF�L
e(HpkpnoiYLPE�HMdRSUFÌefW�kIkpiYS!�-L`EGS�dIi�L�[Z_�HPEGe _�E=L`efSU�mHMEZ��[Z�oL`[�dRSUEZefW\[GQ�[ZH�kpS�ÉRFIS+LMN!N!SUQGQ
dRHMW\Fg[GQ�L�[r�r�IW�N=��LMQTdvSUN�[GQrNUL`F©W\Fg[ZSUEZXMS!FISMA

f n�2mi g 1/2 g&p l_n02mq�Fh2�>)�YwtFH1/2'wS2'>�l_5�l<, g >�+�2El<5�FHn g 7'o:a-�IS:HPdvS!F�WYefdIiYS!efS!FpB
[GL�[GW\HMF�efS�[=L`dI�oHPE-EZSUXPS�L`i�Q!��L�[L�_�nIFoN�[GW\HMFz� Q-W\Fg[ZSUET_�LMN�SM��kIS�[GLPW\i�Q-L`OvHPnp[-W\[GQ-WYe(doi\SUe(SUFg[GL�B
[ZWYHPF�ø I<� û­AIC N�iYW\SUFM[rHP_b[Z�oS
W\Fg[ZSUET_�LMN�S8eKL�];W\F(�onIS!FRN�S¡[Z�oS8noFokpS!EGiY]gWYFIqfWYe(doi\SUe(SUFg[GL�[GW\HMF
LPN!N!HPE=kpWYFIq�[ZH�W�[=Q�nRQZLPqPS;doL`[T[GS!EGF�§´[G�IWYQ(eKL�]�ORS©kpSUN!WYkISUk�QT[GL`[ZW�N!LPi\iY]�HME(kI]gFRL`efWYNUL`iYi\]
kpS!dvS!FokIW\FIq#HPFK[G�IS¡QTHMdI�IW�Q^[GWYNUL�[ZWYHPFKHP_j[Z�IS7HPdvS!F;WYefdIiYS!efS!Fg[GL`[ZWYHPF;ORLPQZSUk;kpS�QTWYqPF�H`_j[Z�oS
_�nIFoN�[GW\HMFz� Q�W\efdIiYS!efSUFM[=L�[GW\HMF4A ¨*a-�oWYQ<N!HPFoN!S!dp[�NUL`F(ORS	LPdIdIiYW\S�k#[ZH
N�noQT[ZHMefW\ÊUS-_�nIFoN�[GW\HMFoL`i
è!Ö^îUØgÛ�Ü8Ú^Ñgè!Ú¤Ò�ç¡Ú^ÑMÛ�ë=Õ�ç�Ú^ÛM�`ÚbÕUðoÛ=ï7ÝpÛ�ÜgÜPÛ�Ü7Ó­ÞPÓ­Ú^Û=ï
Ó4ÛM�Pë=ÛGÙMÚ^ÒµÕ�çMÓbÔ�ÛGÖ^ÛmçMÕUÚbçgÛGÛ�ÜMÛ�Ü
è!ç�Ü7Ú^ÑMÛ
ÙMÖ^Òµï:è!ÖDÞ©ÜMÛGÓDÒ�îUç�î�Õ�è_^*Ô*ÕUØ�^�Ü�ÝpÛ�èKÓDï:è_^�^�ï
Û=ï
Õ!ÖDÞ;ð�Õ�ÕUÚ^ÙPÖ^Òµç`Ú�ä4àPÒµï
Ò�^\è�Ö]^æÞ�ñ?ÕUÚ^ÑMÛGÖ�ð�Û�è�Ú^ØMÖ^Û=Ó
ÕUð�Ú^ÑMÛ
Ù�^�è!ÚDðYÕUÖ^ïüÔ<ÑgÛGÖ^Û:è�Ú8ÓDëZÖ^ØMÚ^Òµç�Þ��´ÛUä îPäµñ�\Uè!Ö^ÒµÕ�ØMÓ�Ú¾ÞMÙpÛGÓrÕUð�Ú^ÑgÛ�ã�í�âh�*êÌÚ¾ÞPÙpÛ¡ï
Õ`ÜMÛ�^´ñ
ÜPÞPç�è!ï
Òµë�Òµç�\�Õ�ë�è!Ú^ÒµÕUçKÓDØgÙgÙpÕ!ÖDÚ<ÛGÚ^ë�ä �

CSEG
35

nIFIW\[GQ#H`_-[Z�IS�e(W�kIkpiYS!�-L`EGSKdIi�L�[Z_�HPEGe©A��7Ä
QTnIqMqPS�Q^[=Q:QTSUXPSUEGLPi<kpW�¦?S!EGS!Fg[�iYS!XMS!i�Q:HP_rkIHPWYFIq
[Z�oL`[U�IE=L`FIqMW\Foq�[GHfN!i\WYS!Fg[dIEGH�X�WYkISUk�W\efdIiYS!efS!Fg[=L�[ZWYHPF©H`_�[Z�oS
nIFIW\[�LPQ�ÉoFoLPi4WYFoQ^[=L`FoN!SPA

� �A�� !�¤{��b~���}<|(�

�rS!i�L�[GSUk���HPEG��HPF�[Z�IS+[ZHMdIW�N!Q�kpW�QZN!noQZQZSUk�W\FÌ[Z�oWYQ©dvHMQZW�[GW\HMFÌdoLPdRSUE�N!L`F�ORS�OIEGHMLMkpi\]
N�i�LPQGQTW\ÉoSUk�W\Fg[GH(LPdIdIEGHMLPN=�oSUQ�[G�oL�[rdIEGH�X�WYkIS(¿!» ° ¬D¹�¸ ±\Ã�¼ ¬ ± ¹�®([Z�oEZHMnIqP��QT[GL`[ZW�N8HPE-kp]�FoL`efW�N
dRHMi\W�N�]£QZS!iYSUN�[GW\HMF4� ½ ª/�rª=¿!¬ ± ¹`®�[ZH+LPkILPdp[�efW�kIkpiYS!�-L`EGS;W\Fg[GS!EGFoL`i�Q
[GH�N=�oLPFIqPWYFIq�EGnIFg[ZWYefS
N�HPFRkpW�[GW\HMFoQU�ML`FRk�¿G¹`®UÀ�Á`» ½Z¼ ¬ ± ¹`®:OoLMQTS�kfHPFKX�L`EGW\HMnoQ*_�HMEZeKQ�HP_jLMQTdvSUN�[�kpS!ÉoFIW\[ZWYHPFoQUAM¢�noN=�
H`_?[Z�IS7kpWYQGN�nRQZQZSUkfdIEGH t S�N�[=Q�noQZS	QTSUXPS!E=L`ioH`_?[Z�IS�QTS	[ZSUN=�oFIWYÆgnIS�Q!Ab��S7OIEZWYSY�R]#kpW�QZN!noQGQ�QZHPefS
H`_�[Z�ISUe OvS!iYH��
A
C�QT[ZiYS!]�ª!¬ ¼�³ � ø I ûjLPN=�IWYS!XMS�efWYkokpi\SU��LPEZS¡N�nRQ^[GHPefW\Ê�L�[GW\HMFK[Z�IEGHPnoqP�;[GSUN=�IFoWYÆgnIS�QmORLPQZSUk

HPF�QTSUdoL`E=L�[GW\HMF�H`_*N�HMe(e#nIFIW�N!L`[ZWYHPF�QT[^]�i\S�Q�_�EZHMe&dIEGH`[GH�N!HPi�QmLPFok©L�_�E=L`efSU�mHMEZ�(_�HPErdoEZHPB
[ZHpN�HMiIN�HPefdvHMQZW�[GW\HMF4A�ZInoET[G�IS!E�LMQTdvSUN�[GQ�[G�oL�[�N!EZHgQZQ*N�nI[�[Z�IS	QZ]pQ^[GS!e¥WYefdIi\SUefS!Fg[GL`[ZWYHPFKL`EGS
FIH`[S!Ç�doi\W�N�W\[ZiY]�LPkokpEZS�QZQZSUk4A
s�S!XMS!E=L`iodoEZH t SUN�[=Q�S!ÇpdIi\HMW�[-EGSY�oS�N�[ZWYXPS7dIEGHPqPE=L`efefWYFIq
[ZS�N=�IFIW�ÆgnISUQm[ZHfL`iYiYH���[Z�IS8efWYk�B

kpi\SU��LPEZS#dIi�L�[T_�HMEZe�[ZH�LPkILPdp[8W\[GQZS!i_�[ZH�N=�oL`FIqMW\Foq�EGnIFg[ZWYe(SKN!HPFokpW\[ZWYHPFRQ!Aja-�IW�Q¡W\FRN�iYnokpSUQ
dIEZH t SUN�[GQ<QZnoN=�;LPQ<HPdvS!Fv�8�	 ÿø T û­�`HPdvS!Fvlr�8�� �CÅø ICT û­�PL`FokKkI]gFRL`efWYNUa¤C�� ø IbI û·AP�	SUN�SUFg[
dIEZHMqPEGSUQGQ4WYF�[G�IW�Q�LPEZS�L	�oLMQ�ORSUS!FfQTnIefeKL`EGWYÊ!SUk�W\F(L�EGSY�RSUN�[GW\XMSmefW�kIkpiYS!�-L`EGS���HPEG�pQT�IHMd6¡`A

e4S!qp�8�	 £¢£ø I<V û�L`FRk�V�FIWYXPS!E=QGL`iYi\]£ÄDFg[ZSUEZHMdRSUEGLPOIiYS�lmHMEZS£§¾V	ÄZl-¨]¤�L`EGS©efW�kIkpiYS!�-L`EGS
dIiYL`[T_�HMEZeKQ8kpSUQZW\qMFISUk�_�HPE��RL`Fok�B­�ISUiYk�kIS!X�WYN!SUQU�R�r�oWYN=�+L`iYi\H��ÿ_�HPE8WYFM[GS!EGHPdvS!E=L`OIWYiYW�[^]��rW�[G�
Q^[=L`FokILPEGk�doiYL`[T_�HPEGeKQ!A- �H`[G��H`¦?S!E©Q^[=L�[ZW�N�LPFok�kp]�FoLPefWYN�N�HPFIÉoqPnIE=L�[GW\HMF�L`Fok�LPW\e�[GH
efLPW\Fg[=L`WYFfL
QZeKL`iYiIefS!efHPEG]
�H�H`[GdIEGW\Fg[<O�]�HMFIi\]#H`¦?S!EGW\Foq7[G�ISr�nIFRN�[ZWYHPFRL`iYW�[^](L`FKL`dIdoi\W�N!L`B
[ZWYHPFfLPN�[GnoL`iYiY]8FoS!SUkoQ!AMlmnoQT[ZHMefW\Ê�L`OIiYS�_�noFoN�[GW\HMFoQ�EGLPFIqPS�_�EZHMe [Z�ISm[ZE=L`FRQTdvHPEZ[�doEZHP[ZHpN�HMiP[GH
e(S![Z�IHpk©kpW�QTdoL`[GN=�IWYFIq(L`Fok�efLPEGQZ�oLPi\iYW\FoqoAM �HP[Z��doiYL`[T_�HPEGeKQmkIH#FIHP[-QZnIdIdvHPEZ[�[Z�IS8FIH`[GW\HMF
H`_<LPQZdRS�N�[=Q�LPQ�N�HpkpS�N!EZHgQZQ	N!np[T[GW\Foq�N�HMFoN�SUEZFRQ!AoC7QTdvSUN�[GQ�W\F�[G�IS�QZS!FoQZS:HP_|ebS!qp�8�	 �LPFok
V	ÄZl�L`EGS7_�noFoN�[GW\HMFoL`ijnIFoW�[=Q	QTnodIdRHMET[GW\FoqfLPdIdIiYWYNUL�[GW\HMFpB·iYS!XMS!i?EGSUÆgnIWYEZSUe(SUFg[GQUA
s�W\efWYiYLPEZiY]P��JMHPFoL`[Z�oLPF#¥�N!HPFoQT[ZW\[Znp[GSUQ�L`F�HPdvS!F;efW�kIkpiYS!�-L`EGS	_�E=L`efS!��HPEG��[G�oL�[-N!LPF�OvS

N�noQT[ZHMe(WYÊ!S�k��rW\[Z��EGSUQZdvSUN�[7[ZH©L;i�L`EGqPS:F�nIe#ORSUE7HP_�_�nIFoN�[GW\HMFoQUA?JMHPFRL�[Z�RL`F�L`WYeKQ	[GH�SUe#B
OIEGLMN�S
QZS!XPSUEGLPijQ^[=L`FokILPEGk�efWYkokpi\SU��LPEZS¡dIi�L�[Z_�HPEGeKQrL`Fok©H`¦?S!E7N�noQT[ZHMe(WYÊUL`[ZWYHPF�LPNUN�HPE=kpWYFIq
[ZH;L`dodIi\W�N!L`[ZWYHPF�FIS!S�kIQ!AoÄ­[�N!L`F©OvS:N�HPFIÉoqPnIEGSUk�[ZHfnoQZS
ÄTÄZ�8þ�HME-��¢�Ä�A
a-�ISfS�¦?SUN�[GW\XMS!FIS�QZQ¡HP_�[G�ISKHPdvS!F+W\efdIiYS!efSUFM[=L�[GW\HMF+efS![GL`do�IHPE¡_�HME7[G�IS;kpS�QTWYqPF+H`_-L

i\WYqP�g[TB­��S!WYqP�g[-[Z�IEGSULMk�dRLPN=��L`qMS8W�Q	kpSUefHPFoQT[ZE=L�[GSUk©O�]�@�LPW\FoSUQ:ø ``û­Aoa-�IS:EGS!FoS!��SUk©kpSUQZW\qMF
i\S�LPkIQ�[ZH�L�efHMEZS#SY*;N�WYS!Fg[
L`Fok�dvHPEZ[GLPOIiYS#doLMN=��L`qPSMA#���IWYiYS#[G�IW�Q8LPdIdIEGHMLMN=��WYQ8FIHP[8dIEGW\B
efLPEZWYiY];LPkIkpEGSUQGQZW\FIq#efWYkIkIi\SU��LPEZS8dIi�L�[T_�HMEZeüW�QGQTnIS�Q�dRSUE	QTSM�gW\[reKL�];L`i�QTH(dIEGH�XPS�S!¦vS�N�[GW\XMS
�HPE-[Z�oS:kpSUQZW\qMF�HP¤_�noFoN�[GW\HMFoL`i4noFIW�[=Qr�rW\[Z�IWYF�L#doiYL`[T_�HPEGe�A
 mEGHpkIQZ�g]�ª!¬ ¼�³¦� ø V û4kpSUe(HMFoQT[ZE=L�[ZS7XPSUEZ]KSUi\SUqML`Fg[Gi\]([Z�oS8nRQTS8H`_¤LMQTdvSUN�[rHPEGW\SUFM[GSUkKdoEZHPB

qPE=L`efefW\FIq�_�HPE
N�nRQ^[GHPefW\Ê�L�[GW\HMF�L`FRk�S�Ç�[GS!FoQZW\OoW\iYW�[^]�HP_mL©kpWYQT[ZEGWYOInp[ZS�k�ÉRi\SKQZ]�QT[ZSUeýefWYk�B
kpi\SU��LPEZS8�rW\[Z�©_�L`nIi\[[GHPiYS!E=L`FoN!S�_�S�L�[ZnoEZS�Q!A
JMLMN�HPORQTSUF�L`Fok�§¡E<¨LPe(SUE#ø ù�û<QZ�IH�� �IH�� [ZH©��SUL�XPS#W\Fg[GS!EZ_�LPN�S#i\SUXPSUi�QZdRS�N�W\ÉRN!L`[ZWYHPF�H`_

QT]�FoN=�IEGHPFoW\Ê�L�[ZWYHPFKN!HPFoQT[ZE=L`WYFg[GQ<WYFg[ZH(Q^[GnIOoQ�L`Fok;QZ�PSUi\S![ZHMFoQ<qMS!FISUEGL`[ZSUk;Og]fQT[GL`FRkIL`E=kKÄ^cJe
© Ñ�ÚDÚ^Ù&ª «<«�Ô�Ô�Ôrä ëGÕ�ï
ÙRä ^�èUçMë=Ó=ä èUë�ä ØM×�«�ë=Õ�ï
ÙMØMÚ^ÒµçgîC«�Ö^ï�õ!ö�ö�ö<«
¬ Ñ�ÚDÚ^Ù&ª «<«!ÜMÛ�\`ÒµØgÓ=ä ë=Ó=ä ØgÒµØMë�ä Û�ÜMØ'«�õ!×E«!òRÛ=î�í�â£�|«
­ Ñ�ÚDÚ^Ù&ª «<«�Ô�Ô�Ôrä ØMÝgÒæì�ë=ÕUÖ^ÛUä ëGÕ�ï6«
® Ñ�ÚDÚ^Ù&ª «<«�Ô�Ô�Ôrä ÕUÝb¯·Û=ëGÚ¾Ô*Û=Ýoä Õ!Ö^î�«°¯­Õ�çgè!Ú^ÑgèUç�«°¯­ÕUç�è!Ú^ÑgèUçE±�Õ�ï
Û=åjèUî�ÛUä Ñ�Ú^ï

CSEG
36

N�HPefdIWYiYS!E=Q!A?a-�IW�Q���HPEG��W�Q8S�Ç�[ZSUFok�WYF�JgLPN!HPOoQZS!F�LPFok²§¡EC¨L`efS!E(ø ³`û¤[GH�LPiYQZH�LMN!N�HMnIFg[�_�HME
H`[Z�oS!EfLPQZdRS�N�[GQ(kpS!ÉoFISUk�L�[([Z�IS©WYFM[GS!EZ_�LPN!S�iYS!XPSUi8§�SPA qoAY�|´7H�s£L`FoFIH`[=L�[ZWYHPFRQ!��ORSU�oL�X�W\HMEGLPi
L`FIFIHP[GL`[ZWYHPFoQU��LPFok�dIEZS�L`FRk�dvHMQT[fN!HPFokpW\[ZWYHPFRQG¨�A*C0dIEGHpN�S�QZQZW\Foq�_�E=L`efS!��HPEG��ORLPQZSUk�HMF
[Z�IS
S!Çg[GS!FokISUk©eKL`EG�gnod�i�L`FIqMnoL`qMS(§/µ7¢²e�¨m_�HPE-[G�IWYQ�L`dIdIEGHMLMN=��W�Q-dIEGSUQZS!Fg[ZS�k�WYF£ø ¶�û·A

�·��¸M�b|(�bz������

÷�ä���ä�êmÓ­Ú]^µÛGÞ�ñ_¹8ä`ãmä�à`Ú^ØPÖ^ï:èUçRñUè!ç�Ü�º7ä�ê	ä�ê�î�ÑgèPäoã�ØMÓ­Ú^Õ�ï
Ò�»�èUÝE^µÛ�ï
Ò�ÜMÜE^µÛGÔ�è�Ö^Û�ð�ÕUÖ¤ï
Õ`ÜMØE^�è!Ö
ÓDÕ!ðYÚ¾Ô�è!Ö^ÛUä½¼�¾?¿À¾�Á_Â�ÂJÃ�Ä�ÅGÆ]Ç_ÈÉÅÉÁ_Ä�Ê^ñ'Ë_Ë��/Ì_�Zñ��fè=ÞfõUö�ö`÷�ä

õ`ä�º7ä<àIä|��^\è!ÒæÖ�ñhº7ä�ã�Õ�ØE^�ÓDÕUçRñ�ê	ä<êmçgÜMÛGÖ^ÓDÛ=çoñ½��ä�ã0^�è�Ö^×�Û�ñ½Í�ä
��ä<ã�Õ�Ó­ÚTèPñ
±�ä�ê�ä0¹-ØMÖTè!çRñ
â	ä��(ÕUÖ^Û=ÒæÖTè`ñIß7äMåjè!Ö]^�èQ\�è!ç�Ú]»�èUÓ=ñIè!ç�Ü�ô¡ä'�mäpàMè!Ò�×�Õ�ÓD×`Ò´ä*Ð*ÑMÛ	ÜMÛ=ÓDÒµî�ç;è!ç�Ü�Ò�ï
ÙE^µÛ=ï
Û=ç�ÚTè!Ú^ÒµÕ�ç
Õ!ðbí�ÙpÛ=ç�í�â£�m\�ÛGÖ^ÓDÒµÕ�ç;õ�ä0ÎvÏ�Ï�ÏtÐ�Å¦Ê!ÈÉÑ!ÅGÒMÃ�È3Ó°ÔÖÕ�×�Ê]È3ÓØÂJÊuÙHÄ�Ú ÅÛÄ(Ó�Ü�Á_Ã�Ñ!Ä�Ç<Ú ñ�õb�GÝ<�ZñIõUöUöP÷Uä

Þ ä	ê
^µÛM�u�¤Ö^Õ`ÜPÓD×�Þ�ñC¹-Òµï:èß�¤Ö^Õ`ÜPÓD×�Þ�ñ�à­ÜMè	ã�Ñ�èUçoñ<á£\�Õ�çMçgÛmã�Õ�èUÜPÞ�ñ�âUÕ`ÜPÞ:å?ÕUï
×�Õ�ÓD×`Ò´ñ�è!ç�Ü�ºmÖ^ÛGì
îUÕUÖ7ôrÒµë�»�è_^µÛ=Ó=äfêmÓDÙpÛ=ëZÚDì¾Õ!Ö^ÒµÛ=ç�Ú^Û�Ü�ÒµçgëZÖ^Û=ï
Û=ç�ÚTè_^bë=ØgÓ­Ú^ÕUï
Ò�»�è!Ú^ÒµÕ�ç�Õ!ð<ï
Ò�ÜgÜE^µÛGÔ*è!Ö^Û
ÓDÛGÖ]\`Òµë=Û=Ó=ä
à`ØgÝMï
ÒµÚDÚ^Û=Üoä

ËMä��fè�ÚDÚ^ÑgÛGÔ�±-è!ÒµçgÛ=Ó=ä�êmç�ÕUÙpÛ=ç�Òµï
Ù�^µÛ=ï
Û=ç�ÚTè�Ú^Ò�ÕUç�è!ç�è_^æÞPÓDÒµÓfè!ç�Ü�ÜPÛ=ÓDÒµî�ç�ð�Õ!Öã^µÒµî�Ñ�Ú¾Ô*Û=Òµî�Ñ�Ú
Ú^ÑPÖ^Û�è�ÜPÓ=äzà·çäÙßÙ�åHÕ�æ�¼�ñMÙ�èUîUÛ=Ómõ�õ�ç�è#õ�Ë�õ`ñv÷�ç<ç<é`ä

Ì`ä�±�ä ì·ê	äzâ�è!ë=Õ�ÝMÓDÛ=çRä�åjÖ^Õ�î!ÖTèUï
ï
Òµçgîê^�èUçgîUØ�è!î�ÛfÒµç�Ú^ÛGÖ^Õ�ÙpÛZÖTèUÝgÒ�^µÒæÚ·Þ�Òµç�ÜMÒµÓ­ÚDÖ^ÒµÝgØPÚ^Û�Ü�ëGÕ�ï
ÙgØPÚDì
ÒµçMî�ÛGçb\`ÒæÖ^Õ�çMï
Û=ç�Ú^Ó=ä½à·ç;òoÛ�è�ôrØPÚ]\�Õ�çMÛ=çRñE±-è�Ö^ï8ØMç`Ú�ôrçMÒ�îPñIèUçgÜê�fè!ÖDÚDÚ^ÒjÐ*ÒµÛ=çgè!Ö^Ò´ñoÛ�ÜMÒæÚ^ÕUÖ^Ó=ñ
Õ�Ó°Æ!Á�Ä�Ô:ÎvëzÎvåíìãÁ_Ñ°î�ÅÛÄ�ïm¾�Á_Ä�ðQÓØÑ]ÓØÄ'Æ!Ó:Á_Ä�ÐßÅÛÊ]ÈÉÑØÅÉÒMÃbÈ3Ó°Ô:¼0ñCñ�Ú ÅGÆ]Ç_ÈÉÅGÁ�Ä�ÊsÇ�Ä�ÔêÎ!Ä�È3ÓØÑvÁØñEÓØÑ°Ç<Ò�ÚòÓ
ÕE×_Ê]È3ÓØÂ�Ê£Î°ÎJóÛÐ½¼
Î!ÕCô�ñ'±mÛ�^µÓDÒ�çM×`Ò�ñ�Í?Òµç�^�èUçgÜoñ�â�ØgçMÛ8÷Qç_ç<ç`äpô�^µØ`Ô�ÛGÖmêmë�èUÜMÛ=ï
Òµërå4ØgÝE^µÒ�ÓDÑMÛGÖ�ä

ÝPä�±�ä ì·ê	ä(â�è!ë=Õ�ÝMÓDÛ=ç�èUçgÜ:��äRô-ÖYõè!ï
ÛGÖ�äd¹-Û=ÓDÒµîUç©Ù�è�ÚDÚ^ÛGÖ^çgÓmð�ÕUÖ	Ó­ÞPçMëZÑPÖ^Õ�çgÒ�»�è�Ú^ÒµÕ�ç�èUÜgè!ÙMÚ^ÕUÖ^ÓrÕ!ð
ã�í�âh�*ê�Õ�Ý�¯­ÛGëGÚ^Ó=äÖÕ_ñEÓ°ÆMÅGÇ<Ú"ÅÛÊ]Ê]Ã'Ó�Ávð�ædö Ù�÷
Ü�Ï�øtÜ�Á_Ã�Ñ!Ä�Ç<Ú�Á_ÄSù_Ù|ÒÛúYÓ°ÆMÈ�ÙHÑ!Å/ÓØÄEÈ/Ç_ÈÉÅGÁ_Ä²Ç�Ä�Ô
ë&Á_ÑØÂBÇ<Ú'¿ûÓØÈ¦üEÁQÔ_Ê^ñoõ!ö�ö�ö`ä0±mÛGÖ^ï
Û=Ó<å4ØgÝE^�ÒµÓDÑMÛGÖ�ä

é`ä�±�ä ì·ê	ä�â�è!ë=Õ�ÝMÓDÛ=ç�èUçgÜu�mä�ô-ÖYõèUï
ÛZÖ�ä&�(Õ`ÜMÛ�^µÒµçgî�Òµç`Ú^ÛZÖDð´èUëGÛ�ÜPÛM��çMÒµÚ^ÒµÕUçu^\è!çgîUØ�èUîUÛ�ÛM�`Ú^Û=çMÓDÒµÕ�çgÓ=ä
à¾çsýbþYÈ¦üBÎ!ÄEÈ3ÓØÑØÄ'Ç_ÈÉÅGÁ_Ä'Ç<Ú"¾�Á_ÄQð�ÓØÑ]ÓØÄ�Æ!Ó�Á_Äûø(Ó°Æ!ü�Ä�Á<Ú�Á]ï_×BÁvð�Ù½ÒÛúQÓ]ÆMÈGÿ]ÙHÑ!Å/ÓØÄ�È3Ó°Ô�æ?Ç_Ä�ï_ÃEÇQï�ÓØÊßÇ�Ä�Ô
ÕE×_Ê]È3ÓØÂ�ÊuóØøHÙ£Ù�æzÕ�ÿ3ýbþ]ô�ñpà`ÞMÜMçMÛGÞ�ñPêmØMÓ­ÚDÖTè_^µÒ�èPñpõUö!ì·õ Þ ß�ÕY\�Û=ï7ÝpÛGÖ�õ!ö�ö�ö`ä

� ä�±�ä ì·ê	ä�â�è!ë=Õ�ÝMÓDÛ=çfè!ç�Ü6�mäbâMäPô-ÖYõèUï
ÛGÖ�ävê�ÜMÛ=ÓDÒµî�ç�Ù�è�ÚDÚ^ÛGÖ^ç:Ý�è!ÓDÛ�Ü(è!ÙgÙMÖ^Õ�èUëTÑ�Ú^Õ�î�ÛGçgÛGÖTè�Ú^Ò�çMî
Ó­ÞPçMëZÑPÖ^Õ�çgÒ�»�è�Ú^ÒµÕ�ç;è�ÜMèUÙPÚ^ÕUÖ^Ó<ðYÖ^Õ�ïÅè!çgçgÕ!ÚTè!Ú^Û�Ü�à3¹ròbä0à·çêÎvÏ�Ï�ÏS¼
ÃbÈ/Á�ÂuÇ_È3Ó°ÔÖÕ'ÁvðØÈ���Ç_Ñ]Ó£Ï|Ä�ÿ
ï_Å¦Ä(Ó]ÓØÑØÅ¦Ä�ï�¾�Á_ÄQðQÓØÑ°ÓØÄ�Æ!Ó6óÛ¼£Õ�Ïuö ����ô�ñPÙ�è!î�Û=Ó
Ý Þ èbéUõ`ä'à·á¤ábá�ã�ÕUï
ÙgØPÚ^ÛGÖ�àPÕ�ëGÒ�ÛZÚ·Þ�ñgàPÛ=ÙPÚ^Û=ï8ÝpÛZÖ
÷�ç<ç � ä

çPä�º7ä`ôrÒµë�»=è_^µÛ=Ó=ä4ê�ÓDÙpÛ=ëGÚDì�ÕUÖ^ÒµÛ=ç�Ú^Û�Ü
ÙMÖ^ÕUîUÖTè!ï
ï
Ò�çMîMä"¼�¾?¿ ¾�Á_Âhñ'Ã�È��&Õ�Ã�Ñ	��ñgõ � �ÉË��Zñb¹-ÛGë7÷Qç_ç<Ý`ä
÷=öPä�ºmÖ^ÛGî�ÕUÖ8ôrÒµë�»�è_^µÛ=Ó=ñ�âUÕ�Ñgç�òRèUï
ÙMÒ�çMîMñjã�ÑMÖ^ÒµÓ­Ú^Òµç�è�
�Ò�ÜMÛGÒµÖTè;òoÕ�ÙpÛ=Ó=ñbã�ÑPÖ^ÒµÓu�fèUÛ=ÜgèPñjêmç`ØMÖTè!î

�(ÛGç�ÜMÑMÛ=×Uè!Ö�ñIè!ç�Üêº-èUÒ�^��(ØMÖ^ÙMÑ�Þ�ärí�ÙpÛ=çKÒµï
ÙE^�ÛGï
Û=ç�ÚTè!Ú^ÒµÕ�ç;ÜPÛ=ÓDÒµî�ç�î�ØgÒ�ÜPÛ�^µÒ�çMÛ=Ó=ä�à¾ç²Å¦Ä�È3ÓØÑØÿ
Ä'Ç_ÈÉÅGÁ_Ä'Ç<Ú�Æ]Á_Ä�ðQÓØÑ]ÓØÄ'Æ!ÓJÁ_ÄjÕ�Ávð!È��0Ç�Ñ]ÓJÓØÄ�ï_ÅÛÄ(Ó]ÓØÑ!ÅÛÄ�ïUñ�Ù�èUîUÛ=Ó½Ë � ÷ßè�ËCçUöPñv÷�ç<ç<é`ä

÷U÷�ädÍgèUÝgÒµÕ7ôrÕ�çRñE�fè!ç`ØgÛ�^Iâ�Õ�ï
�èUçoñPåbÒµçMî¡òRÒµØoñ�âUÒ�çgèu�fèUÕPñ�ÐRÕ�ï
Õ�çMÕUÖ^Ò'á�èUï:è!çgÛ�ñPòoØgÒ�»	ã0^�èUØgÜMÒµÕ
�fè!î�è�^�Ñ��èUÛ=Ó=ñjèUç�Ü�âmÕ�Þê±7ä?ã*èUï
ÙMÝpÛ�^�^�äã�(ÕUçgÒæÚ^ÕUÖ^ÒµçgîPñbàPÛGë=ØMÖ^ÒæÚ·Þ�ñRè!ç�Ü:¹mÞMçgèUï
Òµë:ã�ÕUçE��îUØMì
ÖTè�Ú^ÒµÕ�ç©Ô<ÒæÚ^Ñ�Ú^ÑMÛ
ÜPÞPçgèUï
Òµë�Ð?ê�íÌâ�Û���ÛGëGÚ^Ò�\�Û
í�âh�mä�à·çûåHÑ°ÁQÆ!Ó]Ó]Ô�ÅÛÄ�ï_Ê6ÁvðBÈ¦ü�ÓJÎvëzÎvå���¼�¾?¿
Î!ÄEÈ3ÓØÑØÄ'Ç_ÈÉÅGÁ_Ä'Ç<ÚH¾�Á_Ä�ðQÓØÑ]ÓØÄ'ÆØÓuÁ_ÄsÐ�Å¦Ê!ÈÉÑ!ÅGÒMÃ�È3Ó°ÔãÕ�×�Ê]È3ÓØÂJÊ£å½Ú�Ç�È ð�Á_Ñ!ÂJÊ�Ç_Ä�ÔêÙ�ñEÓØÄjÐßÅÛÊ]ÈÉÑØÅÉÒMÃbÈ3Ó°Ô
åHÑ°ÁQÆ!ÓØÊ]Ê]ÅÛÄ�ïûóÛ¿jÅGÔ<ÔEÚòÓ	��Ç_Ñ]Ó�ö �������Øô�ñIç`Øgï7ÝpÛGÖr÷Yé�çCÌ
Òµç�òoßrã�àpñ�Ù�è!î�Û=Ó�÷�õ�÷Øè�÷MË Þ ñvßmÛGÔ�á¤ÕUÖ^×pñ
ê�ÙMÖ^Ò�^RõUöUö�öPäIàPÙMÖ^ÒµçMî�ÛGÖDì�
bÛGÖ]^�èUîMä

÷�õ`ä	Ð�ä�òRÛ=ÜMÕ�Øb�Iä�í�ÙpÛ=çpã�Õ!Ö^Ý�è�ª*ê¥Ö^Û���Û=ëZÚ^Òò\�ÛfÕ�ÙpÛ=ç�ÝMÖ^ÕU×�ÛGÖ�äræ�Ó°ÆMÈÉÃ�Ñ]Ó��dÁ_È3ÓØÊãÅÛÄA¾�Á_Âhñ'Ã�È3ÓØÑ
Õ'ÆMÅ/ÓØÄ�Æ!ÓZñR÷QÝP÷�Ýbªµ÷Qç<éQè�����ñ4÷Qç_ç<ç`ä

÷ Þ ä��fè!ç`ØgÛ�^¤âmÕUï:èUçRñ?��ä?¹-Û=çgçMÒµÓB�(ÒµëT×PØMç�è!Ó=ñ"Í�è!ÝgÒµÕKôrÕ�çoñ?è!ç�Ü©â�Õ�Þ�ã*è!ï
ÙgÝpÛ�^�^´äKòoÛ=î�í�âh�
è!ç�Ü�ØMÝgÒ���ØgÒæÚ^Õ�ØMÓ8ã�í�âh�*ê	ä�â�Û��gÛ=ëGÚ^Ò�\�Û6�(Ò�ÜgÜb^�ÛZÔ�è!Ö^Û�é�Õ!Ö^×PÓDÑMÕ�Ùoä�±�ÛM^\Ü�Òµç�ë=ÕUç_¯­ØMçgëGÚ^ÒµÕUç
Ô<ÒæÚ^ÑA�(Ò\ÜMÜE^µÛGÔ*è!Ö^Û�õUöUö�öPä�Ñ�ÚDÚ^Ù&ª «<«�Ô�Ô�Ôrä ëGÕ�ï
ÙRä ^�èUçMë=Ó=ä èUë�ä ØM×�«�ë=Õ�ï
ÙMØMÚ^ÒµçgîC«�Ö^ï�õ!ö�ö�ö<«`ñ�é�Ú^ÑMì
� Ú^Ñfê�ÙMÖ^Ò�^?õ!ö�öUöPä

CSEG
37

Aspects of Exceptions at the Meta-Level
(Position Paper)

Ian S. Welch1, Robert J. Stroud, and Alexander Romanovsky

Department of Computing, University of Newcastle upon Tyne,
United Kingdom NE1 7RU

{i.s.welch, r.j.stroud, alexander.romanovsky}@ncl.ac.uk
http://www.cs.ncl.ac.uk/research/dependability/reflection/

1 Introduction

This paper describes the design and usage of a metaobject protocol that explic-
itly includes support for handling exceptions. We do not propose implementing
exception mechanisms anew [3, 5] or proposing a unified meta-level software ar-
chitecture for exception handling [4]. To make our discussion concrete we de-
scribe an extension of the Kava [9] metaobject protocol that includes exceptions
as first class values, provide examples of Kava’s use, and compare Kava with
related Java extensions.

We believe that insufficient attention has been paid to exceptions by de-
signers of metaobject protocols for object-oriented languages. Most metaobject
protocols provide a way of intercepting method execution but these protocols are
usually discussed solely in terms of arguments and results. Signalled exceptions
are rarely discussed. However, in order to successfully implement non-functional
requirements using metaobject protocols it is important that exceptions are ex-
plicitly considered. For example, consider using a metaobject protocol approach
to implement distributed objects. It is not sufficient just to convert method calls
into remote method calls, exceptions must be converted into remote exceptions
as well. Therefore, a metaobject protocol should be designed to treat method
arguments, method return values and exceptions equally. This means that if
the behaviour of method execution is reflected upon, then any signalled excep-
tion should be reified and be manipulable at the meta-level. Note that such a
“exception-aware” metaobject protocol should not lead to base-level program-
mer’s expectations being confounded, as doing so would make both programming
and verification very difficult. For example, the exception model should not be
able to be changed dynamically, say from a termination model to a resumption
model (as opposed to [2]).

2 Meta-Level Requirements

What facilities should a “exception-aware” metaobject protocol have? We pro-
pose that such a metaobject protocol needs two facilities: meta-level interception

CSEG
38

of exceptions signalled from the base-level, and meta-level raising of exceptions
at the base-level.

Meta-level interception is required to handle new exceptions introduced as
a side-effect of the implementation of non-functional requirements. It may also
be required to reinterpret existing base-level exceptions in the context of new
non-functional requirements. An example of this was given in the introduction
where distribution requires that local exceptions are reinterpreted as remote
exceptions.

Meta-level raising of exceptions at the base-level is required to allow metaob-
jects to raise new types of exceptions and maintain the transparency of the meta-
layer. For example, a metaobject may enforce a security policy by raising a secu-
rity exception whenever the security policy is violated. Since we normally wish
to implement non-functional requirements transparently this exception should
appear to be raised at the base-level. If it appears to have been raised by the
metaobject then the meta-level becomes visible to any clients of the base-level
and then transparency is shattered.

These two features allow the metaobject protocol to support the following
mappings between exceptions and values: from one exception to another, from
one exception to a value, or from a value to an exception. In the remainder of
this section we provide examples of how these mappings can be used.

Exception to exception. Adding debugging information to exceptions re-
quires that one exception is mapped to another. Here, we want to add meta-
information to an exception such as the time it was signalled. An extended
version of the exception class could be defined that encapsulates the base-level
exception and the meta-information. At the meta-level the signalled exception
is replaced by an instance of the extended exception class.

Exception to value. Logging and then ignoring an exception requires that
an exception is mapped to a value. Here, the base-level exception is suppressed
and the method terminates normally returning a value specified at the meta-
level.

Value to exception. Assertion checking [7] requires that a value is mapped
to an exception. Here, a value of a member variable or argument of the method
causes an exception to be raised. This exception will appear to be raised at the
base-level to preserve transparency.

3 Kava

Kava is a reflective Java implementation [9]. It uses byte code transformations to
make constrained changes to the binary structure of a class in order to provide
a metaobject protocol that brings object execution under the control of a meta-
level. These changes are applied at the time that classes are loaded into the
runtime Java environment. The meta layer is made up of metaobjects that are
written using standard Java. The binding between classes and metaobject classes
are specified in an XML configuration file called a binding specification. Kava

CSEG
39

brings the sending of invocations, initialisation, finalization, state update, object
creation and exception signalling under the control of a metaobject protocol.

When a meta-level programmer creates a new metaobject class, the pro-
grammer extends the default metaobject class and overrides those methods that
control the behaviours the programmer wishes to redefine. In Kava we define
around style meta methods, so for each behaviour there is a before and after
method.

The following listing shows the methods relating to overriding method exe-
cution in the metaobject class interface,

public interface IMetaObject {
...
public void beforeMethodExecution(IMethodExecution context)
throws Exception;

public void afterMethodExecution(IMethodExecution context)
throws Exception;

}

A context object is passed as an argument to each of the meta-level methods.
The context reifies the context of the metainterception as a context object that
implements the IMethodExecution interface. In earlier versions of Kava excep-
tions that were raised during the execution of a method were not included in
the context. Now, any exceptions that have been raised is included in the con-
text in addition to reified method, its actual parameters, and the result of the
execution of the method. In addition to reifying exceptions the context API has
been extended to support the reflection of the exception back to the base-level
and the overriding of the exception signalling at the base-level.

We are currently examining how this extended metaobject protocol can be
used to implement Java language extensions such as multi-level handlers for
exceptions (statement, block, method, class and exception level), design by con-
tract, and n-version programming).

4 Examples

In this section we show how to use Kava to implement the examples described
in the meta-level requirements section.

First, we show how an exception can be intercepted and converted to another
type. Here, the exception is converted to an instance of an exception class used
for debugging which encapsulates the base-level exception, the key to this is using
the setException method to change the exception raised at the base-level,

public DebugMetaObject extends MetaObject {
public void afterMethodExecution(IMethodExecution context)
throws Exception {
if (context.isExceptionRaised()) {

context.setException(new DebugException
(context.getException())); }}}

CSEG
40

The next example shows how an exception can be mapped to a value and
the exception raising at the base-level suppressed. This metaobject is used to
log and suppress IOExceptions exceptions. It checks that the base-level method
exited because an exception was raised. The base-level exception is suppressed
through the use of the overrideException method,

public LogMetaObject extends MetaObject {
public void afterMethodExecution(IMethodExecution context)
throws Exception {
if (context.isExceptionRaised()) {

Exception e = context.getException();
if (e instanceof java.io.IOException) {

context.overrideException();
log(e); }}}}

The final example shows a mapping from a value to an exception. We want
to check that a method never returns a null value. First, we check using the
convenience method getReturnType returns an object reference, then we check
that the value of that reference is not null. If it is null then we throw an
AssertionFailed exception,

public AssertMetaObject extends MetaObject {
public void afterMethodExecution(IMethodExecution context)
throws Exception {
if (context.getReturnType() == Type.OBJECT) {

if (context.getReturnValue() == null) {
throw new AssertionFailed(); }}}}

5 Related Work

Although exceptions are an integral part of the Java language there has been
little explicit attention paid to them by the Java reflection community with the
exception of Garcia et. al. [4]. Garcia et al. have proposed a unified meta-level
software architecture for sequential and concurrent exception handling that is
described using a set of design patterns. The patterns cover: Exceptions, Handler,
Exception Handling Strategy, and Concurrent Exception Handling Action. They
are attempting to codify “best practice” with regard to the implementation of
reflective exception handling. They have made an implementation using a custom
Java VM (Guaraná [8]) which means it is non-portable. In contrast, our work is
more narrow in focus but has resulted in a portable implementation.

Explicit support for exceptions has been introduced into some Java imple-
mentations of portable compile-time Java extensions for programming using ad-
vanced separation of concerns. Below we describe the approach to exceptions
taken with AspectJ1 [6] and ComposeJ [10].

1 the version described here is 0.8

CSEG
41

AspectJ allows programmers to use aspect-oriented programming techniques
in Java. AspectJ like Kava can be used to map exceptions and values to each
other. An around advice applied to a receptions pointcut can be used to im-
plement the mapping of an exception to exception, exception to value, value to
exception. This is because around advice selectively pre-empts the normal com-
putation at the specified join point. AspectJ also has two new features related
to exception handling. First, the advice after throwing allows aspects to be
invoked when an exception is thrown (in Java throw is used to raise an excep-
tion). This allows extra code to be executed when an exception is signalled but
does not allow the signalling to be overriden. This is roughly equivalent to the
interception feature in Kava. Second, aspects can be woven into existing excep-
tion handler code through the use of the handles pointcut. This allows extra
code to be invoked when an exception is handled, and it allows handling code
to overriden. This is feature is not supported in our metaobject protocol as we
currently choose to intervene only at the level of a method rather than within
try ... catch ... finally clauses.

ComposeJ allows programmers to use composition filters in Java. Composi-
tion filters [1] allow messages sent and received by objects to be intercepted and
manipulated. Filters can be composed with other filters to implement complex
non-functional behaviour. There are different types of filters in the model, one
of which has explicit support for exceptions. The Error filter allows predicates
on base-level state to be evaluated and an exception to be raised that causes the
system to halt. This allows the implementation of assertions and contracts in
Java. In the current version it is not clear if signalled exceptions are considered
to be message or not. If they are then other filters such as Dispatch could be
used to implement mappings that are similar to Kava.

Kava could implement the same functionality as the Error filter. It cannot
add behaviour to exception handlers like AspectJ although we believe that many
useful extensions for dependability can be developed without that capability. In
terms of implementation Kava differs from AspectJ and ComposeJ in that it is a
load-time extension to Java and can be used to add non-functional behaviour to
compiled code. This makes it useful for dealing with mobile or third-party code
where the API may be understood but the source code might not be available.

6 Conclusions

Metaobject protocols must be “exception aware” so that they can be used to
implement a wide range of non-functional requirements. Such a metaobject pro-
tocol requires two features to support the successful implementation of non-
functional requirements. The first feature is the ability to intercept exceptions
signalled from the base-level, and the second feature is the meta-level raising of
exceptions at the base level. These two features allow the metaobject protocol to
implement mappings between exceptions and values that can be used to improve
the dependability of applications.

CSEG
42

There is one reflective Java implementation that is “exception aware” but it
is non-portable. There are portable extensions to Java that introduce “exception
awareness” for advanced separation of concerns but these require access to source
code. Our implementation in Kava is portable and applies reflection and load-
time. This allows Kava to be used for a wide range of applications such as mobile
code or third-party code.

Acknowledgements

We would like to acknowledge the financial support of the ESPRIT projects:
MAFTIA project (IST-1999-11583), and DSOS project (IST-1999-11585).

References

1. M. Askit, L. Bergmans, and S. Vural. An Object-Oriented Language-Database
Integration Model: The Composition-Filters Approach. In ECOOP, volume LNCS
615, pages 372–395. Springer-Verlag, 1992.

2. A. Burns, S. Mitchell, and A. J. Wellings. Mopping up Exceptions. In ECOOP’98
Workshop on Reflective Object-Oriented Programming and Systems, pages 365–
366, 1998.

3. Christophe Dony. Exception Handling and Object Oriented Programming : To-
wards a Synthesis. In Proceedings of ECOOP/OOPSLA’90, pages 322–330, Ot-
tawa, Canada, 1990.

4. Alessandro F. Garcia, Delano M. Beder, and Cecilia M. F. Rubira. Unified Meta-
Level Software Architecture for Sequential and Concurrent Exception Handling.
The Computer Journal (Special Issue on High Assurance Systems Engineering),
2001.

5. M. Hof, H. Mossenbock, and P. Pirkelbauer. Zero-Overhead Exception Handling
Using Meta-Programming. 1338:423–431, 1997.

6. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffery Palm, and
William G. Griswold. An Overview of AspectJ. In ECOOP 2001, volume LNCS
2072, pages 327–353, Budapest, Hungary, 2001. Springer-Verlag.

7. B. Meyer. Design by Contract. In D. Mandrioli and B. Meyer, editors, Advances
in Object-Oriented Software Engineering, pages 1–50. Prentice-Hall, 1991.

8. Alexandre Oliva and L. E. Buzato. The Design and Implementation of Guaraná.
In Usexnix COOTS, pages 203–216, San Deigo, California, USA, 1999. Usenix.

9. Ian Welch and Robert Stroud. Kava – Using Byte-Code Rewriting to Add Behav-
ioral Reflection to Java. In 6th USENIX Conference on Object-Oriented Technolo-
gies and Systems (COOTS 2001), pages 119–130, San Antonio, Texas, 2001.

10. J. C. Wichman. ComposeJ: The Development of a Preprocessor to Facilitate Com-
position Filters in the Java Language. Master’s thesis, University of Twente, 1999.

CSEG
43

Fault tolerance AOP approach1

José Luis Herrero1, Fernando Sánchez1, Miguel Toro2

1 Computer Science Department
University of Extremadura.Spain

{jherrero, fernando}@unex.es

2 Computer Science Department
University of Sevilla.Spain
mtoro@lsi.us.es

Abstract.
Object oriented systems are composed by a collection of interacting
objects. Distributed object oriented systems consider that all these
objects can be located at different computers connected through a
network. Reliability and availability are very important trends in the
development process of these kinds of systems. In order to improve
these features, object replication mechanisms have been introduced.
Programming replication policies for a given application is not an easy
task, and this is the reason why transparency for the programmer has
been one of the most important properties offered by all replication
models. However, this transparency for the programmer is not always
desirable. There are situations in which programmers need to
manipulate by hand the replication properties. In this paper we present a
replication model, JReplica, based on Aspect Oriented Programming
(AOP). JReplica allows the separated specification of the replication
code from the functional behaviour of objects, providing not only a
high degree of transparency, as done by previous models, but also the
possibility for programmers to introduce new behaviour to specify
different fault tolerance requirements. Derived from the use of AOP,
JReplica also obtains two important added benefits: the possibility of
obtaining an ORB independent replication and the possibility of reusing
entire replication policies. Moreover, the replication aspect has been
introduced at design time, and in this way, UML has been extended in
order to consider replication issues separately at the moment of
designing fault tolerance systems.

Introduction

This work tries to introduce replication in object orientation by means of a new
aspect. For this purpose, a new language called JReplica has been developed. This
language tries to capture the relevant aspects of replication, encapsulating them into a

1 This work has been developed with the support of CICYT TIC 99-1083-C02-02

CSEG
44

component or group of related components favouring the reusability and dynamic
adaptability of replication policies. This language also favours the use and reuse of
replication policies independently from the middleware used to communicate objects.

The work is not limited to the definition of this new language. AOP ideas have
been translated to the design level. In this way, the semantic of UML has been
extended in order to represent replication properties. From a given design, the same
for whatever middleware, a visual tool is able to generate code. The rest of the paper
is as follows: section 2 explains the different approaches to introduce replication in
object orientation. Our proposal is introduced in section 3. Section 4 shows related
works. Finally, future works are outlined in section 5.

Fault tolerance approaches

There has been proposed different approaches to introduce fault tolerance in object
oriented systems. These models are the followings:

1. Integration approach : In this approach, replication is integrated inside the
model. Replication is coded inside the ORB. In this way, each ORB must be
modified in order to provide fault tolerance. Electra [Maf95], Orbix+Isis [II94] are
two models that are based on this approach (figure 1).

2. Interception approach : In this model, every message is intercepted and
redirected to a replication toolkit. This new tool is in charge of providing fault
tolerance. The ORB must be modified introducing the interception mechanism.
Eternal [Mos98] is an example of this approach (figure 2).

3. Service approach : A new replication service is added to the ORB. This service
provides mechanisms for object replication. OGS [Fel98] and the new Corba Fault
Tolerance specification [OMG00] are based on this approach (figure 3)

Client S S’

Replication

ORB
Com

Replication

Interception

Client S S’

ORB
Com

Client S S’

Replication

ORB
Com

Fig. 1. Integration approach Fig. 2. Interception Approach Fig. 3. Service Approach

All these models introduce new elements to provide fault tolerance through
replication. Transparency is the most important property achieved. In this way,
programmers do not have to take care about replication, and they do not need to
define any protocol to develop fault tolerance applications because replication is
obtained automatically by the model. However, all these models can be considered
too restricted in the following sense:

CSEG
45

• Close: A totally transparent system doesn’t allow programmers to change
replication mechanisms. Replication properties can not be established, such as the
replication granularity, or the moment when replication protocols must be
executed. These properties are defined automatically by the model and they are the
same for every system. In this way, programmers can not take advantage from
system requirements.

• ORB dependent: Replication depends on the ORB implementation. Any
replication policy must be coded into an individual ORB, and it can not be reused
in a different ORB. There’s no way to port the same replication policy to other
ORBs.

Although transparency is a good property to be achieved, it is not always
necessary, moreover, sometimes it is not advisable. Sometimes the nature of the
problem may require establishing the replication properties and behaviour by the
programmer. Even more, if requirements guide the replication behaviour, the system
could take advantage of them, and system performance could be increased. If the
replication model is totally transparent, there is no way to define fault tolerance
applications according with system requirements.

Proposal

The model here proposed is based on the paradigm of Aspect Oriented Programming
(AOP). Our research group has gained experience with AOP during the last few years
working with the synchronization, coordination and distribution aspects [Mur99,
San00]. Here we go one step further introducing the replication2 aspect as a new non-
functional property of the object. With this separation transparency is granted because
replication policies can be reused among applications with no changes. In addition,
programmers can get control over the replication policy using the specific replication
language provided: JReplica.

In order to accomplish this separation, the model is based on reflective
architecture. The following two levels have been defined:

• Object level: Object functionality is defined at this level. Object code does not
refer to any replication mechanism, it just only defines object functional behavior
using whatever language.

• Replication level: Replication policies are defined at this level using JReplica.

The model is based on the same concept that the interception model, that is, all the
messages arriving at an object are intercepted and redirected to another entity (figure
4). The interception and replication level is located just before the ORB, that is,

2 Although there are different replication strategies, in this paper we only focus on the backup

replication model due to it being suitable for deterministic and non-deterministic objects.

CSEG
46

before sending and receiving messages to and from the ORB, they are intercepted. It
is in this moment when new actions for replication can be added. Figure 5 illustrates
this fact. The order of messages is the following:

1. A message arrives at the target object.
2. After the message is executed, the new state is sent to the replication component

of the target object.
3,4. This replication component propagates the new state to the rest of replication

components.
5,6. Every replication component updates the state of the replica objects.

ReplicationInterception

Client S S’

ORB
Comuni

Object Level

Replication Level

Fig. 4. Proposed model

Object Replica Replica

Replication Aspect Replication Aspect
Replication Aspect

Base level

Replication level

1

2

3

4

56

Fig. 5. Message order

1. Those benefits derived from the use of AOP, mainly modularity, reusability of
code and adaptability of applications.

2. ORB Independence: Replication algorithms are independent from de ORB. In a
previous work [San00] different distribution protocols were defined as a separated
aspect providing a dynamic, adaptable and transparent object distribution. Now, as
the replication module is defined outside the ORB, the combination of distribution
and replication aspects offer the possibility of reusing the same replication policy
in different ORBs. Figure 6 illustrates this fact.

3. Open: Thought replication algorithms are hidden and separated from object
behaviour, replication properties and behaviour can be defined. Reflective
mechanisms can communicate the object level with the replication level. This
communication provides the way to introduce new replication actions.

JReplica: Java Fault Tolerance Language

JReplica is a language with the only purpose of defining replication policies. Its
syntax is based on Java. It introduces new primitives, which are shown in figure 7.

CSEG
47

This Java extension introduces two main elements:
1. Replication Policy: A new entity called Disguise3 Replication defines the

replication aspect. This entity is divided into the following parts:
• Attributes: Represent the information that defines the replication policy.
• State: Represent the set of replication states.
• Operations: Represent methods that can manipulate the replication state.
• Guard: Represent a condition that must be true before replication. If this

condition is false, replication won’t be executed.
• Before Replication: Represent the set of actions that must be executed just

before replication.
• After Replication: Represent the set of actions that must be executed just

after the replication is executed.
• Error: Represent the set of actions that must be executed when a replication

error appears.
2. Composition: A class can be composed with different aspects, this means that

every object will extend its functionality with replication mechanisms.

Client S S’

CORBA

Replication
Interception

Client S S’

JavaRMI

Replication
Interception

Fig. 6. Replication policies reuse

Class <name>
{
}

........................
x=new C1
Compose x with R;
y=new Replica of x;
........................

Diguise Replication <name>
{
 Attributes:
 Operations:
 State:
 Guard:
 Before Replication:
 After Replication:
 Error:
}

Fig. 7. Jreplica replication primitives

Representing Replication at Design Level

Replication policies now can be defined with JReplica language. This language helps
programmers to define easily replication properties in object oriented systems. But we

3 The word disguise comes from the original model: Disguises Model.

CSEG
48

consider that replication must be introduced at earlier stages of object life cycle, more
concretely at design level. In this way, UML [UML99] is used as the modeling
language due to it being a standard. As UML does not provide mechanisms to
represent replication, its semantic has been extended in order to express replication
properties and behavior.

UML semantic can be extended with the introduction of new stereotypes. At this
point, we have considered that replication policies can be designed separately and
independently, in the same way as has been explained at the implementation level. As
such, the aspect concept is introduced in UML to express the AOP philosophy. The
replication aspect is represented with a new stereotype, called <Replication>. This
new stereotype is shown if figure 8.

The replication stereotype represents a particular replication policy. Information is
represented as follows:
• Stereotype Attributes: Represent the information that defines the replication

policy.
• Stereotype Methods: Define the set of methods that can manipulate the

replication state.

As it can be shown, there are other elements that can not be represented in this
stereotype. The dynamic behaviour of replication can not be represented in a normal
class diagram. Statechart diagrams represent dynamic behaviour. So the solution goes
by attaching a statechart diagram to this replication stereotype. In this way, replication
static properties and dynamic behaviour can be designed. The dynamic behaviour of
replication policies can be represented in a statechart diagram as it is shown in figure
9.

< Replication >
Name

Attributes

Methods

Class

Attributes

Methods

<Replicated>

Fig. 8. UML extension

State 1 Replication
[Replication Guard]

Entry : Actions before replication

Exit : Actions after replication

Fig. 9. Statechart Representation

The elements that are represented in this statechart diagram are:

CSEG
49

• State: Each replication state is represented by an state. There is a special state
called Replication that represents the moment when replication is to be
executed.

• Guard: Guards are represented in the transition of each state.
• Before Replication: The set of actions that is executed just before the

replication begins is represented in the entry actions of the Replication state.
• After Replication: The set of actions that are executed just after the replication

ends are represented in the exit actions of the Replication state.
• Error: Replication errors are represented as a new state.

A tool is being developed in order to generate JReplica code starting from this
extension of UML. In this way Replication aspect has been introduced from design to
implementation level. This tool is based on other one we have developed for the
synchronization aspect [Her00].

Related works

There are several models that provide replication mechanism to achieve fault
tolerance. In [Nar00], a new interception mechanism called Aroma is introduced in
the Java RMI architecture. Other models are based on the introduction of separated
entities that implement replication protocols. The Cadmium Model [Bag99] defines a
couple of new entities called Stub and Scion, which are attached to a client and a
server respectively and offer replication mechanisms. In [Bru95] a new replication
entity and a consistency manager are introduced, both separated from the object. In
AspectIX [Gei98] a single object is divided into fragments, all of which have a
different purpose. One of these fragments offers replication facilities. The GARF
[Gar95] model defines two different entities in order to introduce replication, they are
called encapsulator and mailer. A two level reflective architecture was defined for
Java in [Kle96]: object functionality is defined in the first level, while replication
protocols are established in the second one. All these models only take into account
the implementation level, they are focused on replication protocols and the definition
of a framework that provides fault tolerance, ignoring the design phase.

A new pattern [Gon97] has been defined in order to provide support for the
representation of replicated objects. Moreover, a new language that helps
programmers to build fault tolerance systems has been defined in [Fab97, Fab00].
This proposal is based on the concept of separation of concerns and extends AspecJ
language [Lop97] with replication primitives. It is possible to define the attributes that
need replication and what to do when a replication error happens. But there is no way
to express new replication actions or when replication must be executed. Although
these models help programmers to implement fault tolerance systems, it is necessary
to introduce mechanisms that help software engineers to design this kind of
requirements.

CSEG
50

Future works

Future works will consider extensions to JReplica in order to express more complex
replication mechanisms. The current version showed us the suitability of the model.

References

[Bag99] Aline Baggio. Adaptable and Mobile-Aware Distributed Objects. PhD Thesis,
Université Pierre et Marie Curie and INRIA, Paris, France, June 1999.

 [Bru95] Georges Brun-Cottan and Mesaac Makpangou. Adaptable Replicated Objects in
Distributed Environments. BROADCAST TR No. 100. Appeared in the proceedings of the
2nd BROADCAST Open Workshop, Grenoble, July 1995.

[Gar95] B. Garbinato, R. Guerraoui, and K. R. Mazouni. Implementation of the GARF
replicated object platform. Distributed Systems Engineering Journal, 2:14-27, 1995.

[Fab00] Johan Fabry. A Framework for replication of objects using Aspect-Oriented
Programming. Phd Thesis 1998. University of Brussel .

[Fab97] Johan Fabry. Replication as an Aspect - The Naming Problem. ECOOP Workshops
1998: 424-425.

[Fel98] Pascal Felber. The CORBA Object Group Sevice. A Service approach to object
groups in CORBA. Phd Thesis 1998. University of Lausanne.

[Gei98] Martin Geier, Martin Steckermeier, Ulrich Becker, Franz J. Hauck, Erich Meier, Uwe
Rastofer. Support for mobility and replication in the AspectIX architecture. Object-Oriented
Technology, ECOOP'98 Workshop Reader, LNCS 1543, Springer, 1998; pp. 325-326.

[Gon97] Teresa Gonçalves and António Rito Silva. Passive Replicator: A Design Pattern for
Object Replication.Second European Conference on Pattern Languages of Programs. July
1997.

[Her00] J.L.Herrero. Introducing separation of concerns at design time. PhDOOS Workshop,
European Conference on Object-Oriented Programming (ECOOP’2000).

[II94] IONA and Isis. An Introduction to Orbix+Isis. IONA Technologies Ltd. and Isis
Distributed Systems, Inc., 1994

[Kle96] Jürgen Kleinöder, Michael Golm. Transparent and Adaptable Object Replication
Using a Reflective Java. Tech. Report TR-I4-96-07, Universität Erlangen-Nürnberg: IMMD
IV, Sept. 1996

[Lop97] C.V. Lopes. D: A Language Framework for Distributed Programming. Phd Thesis
1997. University of Northeastern

[Maf95] S.Maffeis. Run-Time support for object-oriented distributed programming. Phd
Thesis, University of Zurich, 1995.

CSEG
51

[Mos98] L.E.Moser, P.M. Meliar-Smith and P. Narasimhan. Consistent object replication in
the Eternal system. Theory and Practice of Object Systems, 81-92, 1998.

[Mur99] J.M. Murillo, J. Hernández, F. Sánchez, L.A. Álvarez. Coordinated Roles: Promoting
Reusability of Coordinated Active Objects Using Events Notification Protocols. In
Coordination Languages and Models. Springer-Verlag, LNCS 1594, April, 1999

[Nar00] N. Narasimhan, L.E. Moser and P. M. Melliar-Smith. Transparent Consistent
Replication of Java RMI Objects.2nd Intl. Symposium, Distributed Objects & Applications
(DOA 2000).

[OMG00] OMG TC document ptc/2000-03-04. Fault Tolerant CORBA. Draf Adopted
Specification. 2000.

[San00] F. Sánchez, J.Hernández, J.M.Murillo, J.L.Herrero, R.Rodríguez. Adaptability of
Object Distribution Protocols Using the Disguises Model Approach. 2nd Intl. Symposium,
Distributed Objects & Applications (DOA 2000).

[UML99] Object Management Group. Unified Modeling Language, version 1.3.
http://www.rational.com/uml/resources/documentation

CSEG
52

Transferring Persistence Concepts in Java ODBMSs to AspectJ Based
on ODMG Standards

Arno Schmidmeier

Sirius Software GmbH,
Oberhaching

Abstract: Aspects are abstractions that capture and localise crosscutting type concerns.
Although the persistence of aspects has received an increasing interest among researchers in
software engineering, basic distinctions between persistent and transient aspects, and their
relationship to weaved objects, are lacking clarification. This paper introduces definitions
and illustrates how an existing object oriented database management system (ODBMS) can
be used as an aspect oriented database management system (ADBMS) based on such
definitions and previously established ODMG standards.

Introduction
Implementation approaches dealing with typical usage scenarios of an object oriented
database raise the importance of persistent aspects [1]. The capability to store aspects in an
ODBMS requires extending the ODBMS to an ADBMS. This can be achieved by enhancing
the persistent object model of an object oriented programming language to that of a general
aspect oriented programming language (GAPL) , which enhances the first programming
language and can be compiled back to it. At the design level, enhancing the persistent object
model consists of two major steps:

1. Porting the concept of persistent capable classes to persistent capable aspects
2. Extending the concept of persistence through reachability to encompass aspects.

Once these steps are accomplished, it is relatively easy to write persistent capable aspects.
The GAPL compiler enables translating the persistent capable aspects into persistent capable
classes, which can then be stored in the ODBMS. As a result, existing commercial ODBMSs
can be reused with little or no modifications. The approaches discussed in this article are
based on AspectJ, versions 0.8beta1 to beta3 [2], the standards outlined in ODMG 2.0 [3],
and compliant database Objectivity 6.0 [4]. A similar implementation of this approach is
discussed in [1].

Analysis of the Object and Aspect Models of AspectJ
AspectJ offers, in addition to the java type construct, the aspect type construct. According to
the aspect language reference: ”An aspect is a crosscutting type defined by the aspect
declaration. The aspect declaration is similar to the class declaration in that it defines a type
and an implementation for that type. It differs in that the type and implementation can cut
across other types (including those defined by other aspect declarations), and that it may not
be directly instantiated with a new expression. Aspects may have one constructor definition,
but it must be of a nullary constructor throwing no checked exceptions.” [6]

CSEG
53

Instances of an aspect class are called aspect instances1, which only the AspectJ runtime
environment is capable of generating. The aspect class is instantiated based on the aspect
signature. However, the standard aspect signature ‘of eachJVM()’ can be omitted. In this
case, one instance is generated inside each Java Virtual Machine where the aspect is used. ‘of
eachJVM()’ realises a kind of a singleton [10] pattern for an aspect.
If a user wants to have more instances of an aspect, the aspect class must be declared using
‘of eachobject(PCD2)’, of ‘eachcflow(PCD)’, or ‘of eachcflowbelow(PCD)’. In the first case,
a new aspect instance is created for every object associated with the pointcut P. If an aspect
class A is defined ‘of eachcflow(P)’, then one object of type A is created for each flow of
control at the join points of pointcut P. If an aspect class A is defined ‘of
eachcflowbelow(P)’, then one object of type A is created for each flow of control below the
join points of pointcut P. Except the difference in generating aspect instances, aspect
instances and aspects classes behave like objects and classes. Aspect classes not only can
extend both java classes and aspects classes, but also can implement interfaces. Aspect
instances can be used anywhere a java object is expected. The AspectJ compiler transforms
an aspect class into a java class.

Transferring the Persistence Model of Java Classes to
Aspects.
For such a transfer to take place, a definition can be made similar to that which is defined for
java by the ODMG. Mainly, persistent capable aspects classes are aspect classes, whose
instances can be stored in an aspect oriented database. All aspect classes are persistent
capable if the following conditions are met:

1. The class either implements a specific interface or extends a specific root class.
2. All attributes must be either:

a. An atomic data type
b. A persistent capable class
c. A persistent capable aspect
d. An atomic data structure
e. An array consisting only of elements, which fulfil a, b, c, d or e.
f. or, marked as transient, static or final.

All aspect classes, which are not persistent capable, are transient aspect classes. Instances of
transient aspect classes cannot be stored in the aspect oriented database. All aspect
instances, which are stored in the persistent storage, are called persistent aspect instances.
All other aspect instances are called transient aspect instances. Transient aspect instances
can become persistent aspect instances, like transient objects can become persistent objects,
by either storing the aspect directly in the database (e.g. clustering) or achieving persistence
through reachability.

Extending the Concept of Persistence through Reachability
It is necessary to extend the concept of persistence through reachability, which takes into
account aspect classes , in addition to the existing mapping of java classes drawn by the
ODMG [3], [5].

1 For clarity, we use the term “aspect class” for an aspect and the term aspect instance for an
instance of an aspect class in this paper.
2 PCD Pointcut discriminator

CSEG
54

To be made persistent at the end of a transaction, all transient aspect instances and objects,
must be:

1. An instance of a persistent capable class or an instance of a persistent
capable aspect instance.

2. Directly or indirectly referenced from a persistent aspect instance or from a
persistent object.

This concept is called: persistence through Reachability for aspects and classes (or in the
context of aspects, simply,: persistence through Reachability.) A persistent aspect instance
remains persistent, till it is removed explicitly from the database, or till it is removed from
the database by the database garbage collector. So it is obvious, that the lifecycle of a
persistent aspect instance, can easily extend the lifecycle of some Java virtual machines.
Additionally, one can use the same aspect instance in several Java virtual machines at the
same time.
Persistence through reachability, as just defined, allows an aspect instance to get stored
alone without the object instance for which it was bound; and, vice versa, an object gets
stored without the aspects , which it was bound to it.

Some usage patterns:
A new instance of an persistent capable aspect class A is generated at any time, when a
public method foo() is called in any class. The constructor of the aspect class A stores the
aspect instance in the database. One could use explicit techniques, (e.g. clustering or using
named roots) or apply persistence through reachability. The aspect instance will be made
persistent independent from that fact, if the object that the aspect binds is persistent capable.
When an instance of such an aspect is loaded from the database to a different JVM, it is quite
clear, that it is not bound to any object anymore, if no reweaving takes place.
A more common usage pattern is, that only instances of transient aspect classes are bound to
an object of a persis tent capable class. If this object is made persistent, the aspects instances
could not be saved.
In some other cases the weaving relationship shall be counted as a reference according the
newly established definitions for persistence through reachability. For example, when an
object is made persistent all aspect instances bound to this object should be made persistent
as well, and vice versa.

Persistence of Weavings
The usage patterns above illustrate the need to further define such patterns and specify which
of these patterns are to be supported by the runtime environments of the GAPL and the
ADBMS.

Definitions:
Let O is any transient object and A is a transient aspect instance weaved to O.

If the weaving between O and A fulfils the following conditions:

If O is made persistent, then A is automatically made persistent too and
If A is made persistent, then O is automatically made persistent too,

…the weaving is considered a persistent weaving.

When weaving between O and A meet these conditions:

If O is made persistent, then A is automatically made persis tent or

CSEG
55

If A is made persistent, then O is automatically made persistent.

…the weaving is called a partial persistent weaving .

All other weavings are considered transient weavings.

Based on further investigations, it is necessary to differentiate the transient weavings even
more. If a persistent object or aspect with a transient weaving is loaded into a JVM and the
weaves could be re-established, the transient weaving is considered a rebindable transient
weaving, or in short a rebindable weaving. If the reweaving is not initiated by the
programmer or by another “user”-aspect, (e.g. from the database runtime or from the runtime
of the GAPL), the weaving is called transient, automatic rebindable weaving or, in short ,
automatic, rebindable weaving. If a reweaving is not possible we speak from a lost through
persistence weaving.

it is possible that some weavings can be persistent, some other weavings of the same
persistent object might be rebindable transient, and some other are lost through persistence
weavings.

Any ODBMS, supporting at least lost through persistence weavings and (partial) persistent
weaving can be called an ADBMS from an aspect point of view.

Experiences
Sirius Software’s Research and Development is currently using Objectivity 6.0 [4] with
AspectJ (version 0.8beta1 through 0.8beta3) for the ADBMS, and its GAPL based on the
concepts demonstrated in this article. Neither were the AspectJ compiler, nor the AspectJ and
Objectivity runtimes changed. Partial persistent weavings, lost through persistence weavings
and automatic rebindable transient weavings are supported out of the box and heavily used.
In the last case, the class is persistent capable, while the aspect class is transient and from a
‘of eachJVM ’ type.
An automatic rebindable weaving for transient aspect classes of the type ‘of eachobject()’
can be realized by modifying the AspectJ compiler. Currently, the AspectJ compiler does not
allow the user to directly invoke the automatically generated methods responsible for
initiating the (re)weaving.
Therefore, if rebinding is necessary for transient aspects of type ‘of eachObject()’ the Java
Reflection API is used to bypass these restrictions.
The combination of Objectivity and AspectJ version 0.8beta3 does not currently support
rebindable weavings where the aspect class is persistent capable and the class is transient.

It was further discovered in a real world example, that no aspect class of the type ‘of
eachcflow()’ and ‘of eachcflowbelow()’ is currently stored in the database. Moreover, no
aspect instances of the type ‘of eachJVM()’ which is stored in the database. However, these
transient aspect instances are often used in rebindable weavings. Aspects instances of the
type ‘of eachobject()’ are quite often stored in persistent database, most of which are stored
through persistent weavings.

Sirius Software is due to release a proof of concept in the near future (as well as detailed
website postings [7]) that will further substantiate, based on experiences, the feasibility of
ADBMSs through existing commercial ODBMSs [8], [9].

CSEG
56

Conclusions
Concrete definitions of persistent and transient aspects are required to establish and realize
the concept of persistence of aspects in object-oriented programming. The definition in this
article proved to be a solid foundation for a common wording of Sirius developers and
architects in discussing and designing persistency in aspects.
The common wording is a prerequisite for pattern hatching in such an environment. It is still
important to examine which patterns of persistent aspects are needed, as well as, the types of
rebindable weavings that are really required to support these patterns, when applied in real
world projects. The weaving relationship between an aspect and an object does not
necessarily establish, or require, persistency. A dynamic weaving support from a GAPL can
further propogate the use of persistent aspects. In fact, the Java Mapping of the ODMG can
be easily extended to Java based GAPLs like AspectJ and closing the gap between existing
commercial ODBMSs and future ADBMSs.

Biography
Arno Schmidmeier (arno.schmidmeier@sirius-eos.com) is the Chief Scientist at Sirius
Software GmbH. Prior to his current position he architected the EOS  SLM Solution. He is
the technical representative of Sirius Software in the TMF. He is also an independent
member of the Java Specification Request 0090 ‘OSS Quality of Service API’.

References
[1] “On to Aspect Persistence”, Awais Rashid, Proceedings of Second International Symposium on
Generative and Component-based Software Engineering GCSE 2000 (part of Proceedings of
NetObjectDays2000), pp. 453-463 (Also to appear in post symposium proceedings published by
Springer-Verlag)
[2] AspectJ Home Page, http://aspectj.org/, Xerox PARC, USA
[3] Cattell, R. G. G., et al., “The Object Database Standard: ODMG 2.0”, Morgan Kaufmann,
c1997
[4] Objectivity Home Page, http://www.objectivity.com/, Objectivity inc. Mountain View, USA
[5] Cattel, R.G.G., et al, “The Object Database Standard: ODMG 3.0”, Morgan Kaufmann,
2000
[6] Gregor Kiczales, Erik Hilsdale, et al, “Language Semantics“,
http://aspectj.org/doc/primer/ref/semantics.html,
[6] “Jasmine 1.21 Documentation”, Computer Associates International, Inc., Fujitsu Limited,
c1996-98
[7] Sirius Research AOD Page, http://www.sirius-eos.com/
[8] Versant Home Page, http://www.versant.com/, Fremont CA, USA
[9] Fast Objects by Poet, http://www.fastobjects.com/
 [10] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995
[11] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, William G. Griswold.
An Overview of AspectJ. To appear in ECOOP 2001, 2001

CSEG
57

Alternatives to Aspect-Oriented Programming?

David Bruce Nick Exon

Distributed Technology Group
QinetiQ ltd

St Andrews Road, MALVERN WR14 3PS, UK

dib@QinetiQ.com njexon@QinetiQ.com

Abstract. In the interest of stimulating debate, we present a broad, all-
inclusive view of aspect-oriented programming (AOP) and related initiatives.
In particular, we contrast the compelling vision used to �sell� the idea of AOP
with the more finicky nature of its realizations to date. We outline a scenario
that we feel AOP ought at least aspire to address, and ask whether the direction
it is currently following is likely to take us as far as we really need to go.

Separation of concerns: there is no alternative!

In the general software world, there would appear to be an irresistible trend towards
the widespread use of components. There are countless articles, both in the technical
literature and the computing press, that expound various reasons for this, and we have
neither the space nor the inclination to re-iterate them all here. We will simply note
that much the same forces are at work in computer simulation, our core research focus
in recent years. Indeed, amidst the inevitable debates on the desirability or otherwise
of �federating� simulation components for large-scale simulations, Richard Weatherly
in particular has noted on several occasions that �there is no alternative!�.

The view of many researchers is broadly similar for aspect-oriented programming
(AOP) [1,2]. The limitations of traditional, time-honoured but fundamentally quite
basic techniques for software construction are increasingly making themselves felt,
most notably through our inability to construct and evolve programs at the pace
demanded by modern times. Proper separation of concerns [3,4] plays a vital rôle
here, but the abstraction and composition mechanisms we have today far from suffice.
What AOP and related initiatives can offer are exciting glimpses of how we might be
able to articulate and encapsulate hitherto-elusive concepts in qualitatively new ways.
Thereby springs a much-needed sense of hope; surely there can be no alternative?

An anecdotal non sequitur

Back in autumn 2000, the first author gave an internal talk to our group, entitled
�Aspect-oriented programming and AspectJ�. This talk first examined the nature of
computer software, and some of the fundamental problems caused by inadequate

CSEG
58

separation of concerns. It went on to present the vision motivating aspect-oriented
programming, that one could provide independent specifications for each distinct
concern and then �weave� them together to build the resulting system. The talk finally
touched on some of the prototype AOP systems / tools that were available at that time.
In particular, it outlined Xerox PARC�s AspectJ [5,6,7] and the sorts of things that
that language lets you do � specify program �pointcuts�, add or modify functionality
through before/after/around advice, extend classes using introduction, and associate
�aspect� classes with objects, pointcuts, etc.

Several of our colleagues pointed out � some there and then, others later � that
the early part of this talk was fine, as was the later part, but the two seemed a void
apart. The idea of AOP was great, they said, and AspectJ made perfect sense in its
own right � but the former was a grand conceptual vision while the latter focussed
on low-level details.

Since then, the authors and various other members of our group have experimented
with AspectJ from time to time. This continued exposure to AspectJ has done little to
bridge the gap, however; if anything, it�s reinforced it! (We should note that we�re
not picking on AspectJ in particular here; it�s just the most prominent example, and
the one that we�ve had most experience with. Other AOP and related systems seem
broadly comparable in this regard. More on this later.)

So, maybe our colleagues� gut-reactions were founded; maybe there is something
missing? But what? Could it just be that we�re being dumb? We�d like to think not!
The Xerox PARC team behind AspectJ acknowledge that its documentation often lags
behind their implementation efforts, but it would be churlish as well as disingenuous
to suggest that that�s the problem. Aspect-oriented programming is, of course, a
relatively new field, so it is only natural that the community at large will take some
time to learn and communicate good design principles; perhaps we just need to wait?
(It is worth noting here that excellent tutorials such as [7] are now starting to emerge.)
One final option remains: it could be that AspectJ et al. really are too low-level for
our ambitions � or, turning that around, that we�re guilty of expecting too much.

A multi-dimensional functionality thought experiment

We have spoken of aspirations, but given few details. What sort of thing do we have
in mind?

One way to articulate such matters is by means of a �thought experiment� � in this
case taking inspiration from the military simulation domain. Our intent is to show the
breadth of multi-dimensional functionality in what for that domain is a relatively
simple problem, and to stimulate thought about how software construction techniques
influence its subsequent evolution.

Consider a computer generated forces (CGF) assault on an enemy position. The
requirement is for a simulation (component) to plan and execute an operation:

� according to some specified scenario (location, time, military resources,
opposition, �)

� using a given form of reasoning process (broad agents, rule based, scripted, �)
� following particular doctrinal principles (tactics, rules of engagement, �)

CSEG
59

� inside certain computational resource limits (time, memory, �)
� implementing a particular style of simulation (training, analytic, predictive, �)
� visualized as required (immersive VR, plan view display, statistical summary, �)
� within acceptable validity tolerances
� �

Each of the above represents a design decision that could � in principle at least �
be changed independently. To get a sense for how hard it is to plan ahead for all
possible eventualities, think about how you might go about coding such an example.
What abstraction mechanisms would you use to structure it? How well could your
approach cope with this range of changes, and with other possible variations that you
can think of?

Clearly, some of the flexibility that we and our customers demand can be
accommodated using conventional methods (e.g., parametrization of scenario).
Aspects as we currently know them might well serve for others (e.g., at least for some
forms of visualization). However, entirely new techniques would also seem to be
required (e.g., for separating out elements of �intelligent� behaviour such as doctrine
� especially if this is to be in some way independent of the reasoning approach).

So what�s the point?

Having started by arguing the case for aspect-oriented programming, we conclude by
turning about-face to knock our strawman down � if only on a technicality.

Although there may be no alternative but to pursue such mechanisms, that does not
make the future entirely predestined and inevitable. We actually have a lot of choice.
It is not the choice of whether to adopt something like AOP, but the more exacting
choice of how best to adopt it. This might not be the choice we thought that we had,
but it�s actually a pretty good one; being so wide-ranging and open-ended, it gives
plenty of room for manoeuvre.

In other words, the principle seems sound, but the practice still needs a good deal
of refinement. The real question is whether the mechanisms that we know about now
(e.g., those in AspectJ, in other variations on the theme such as HyperJ [8], or even
those investigated in related initiatives such as Minsky�s law-governed regularities [9]
or Microsoft�s intentional programming [10,11]) suffice to satisfy the aspirations that
we already have, and those that we are going to formulate over the coming years.

Our honest answer is that we don�t know, but on balance we remain sceptical.
We therefore challenge the research community to join us in looking for new forms

of program abstraction, composition and transformation � which may or may not end
up resembling (or being called) aspect-oriented programming � that address both the
precisely formed targets of academic fascination and the less easily characterized
problems that software developers really face. Bridging the gulf between conceptual
levels, and exploring the full life-cycle viability of aspect-oriented programs, are but
two of the more interesting that immediately spring to mind.

Aspect-oriented programming as we know it now is doing a grand job of exploring
interesting territory; we simply urge that the research community widen its horizons,
to see what else remains uncharted.

CSEG
60

References

1. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopez,
John-Marc Loingtier and John Irwin, �Aspect-Oriented Programming�, pp. 220 ff. in
Proc. 11th European Conference on Object-Oriented Programming (Jyväskylä, Finland,
9�13 June 1997) � published by Springer-Verlag as Lecture Notes in Computer Science
no. 1241 (Mehmet Akşit and Satoshi Matsuoka, editors).

2. �Aspect-Oriented Programming�.
Xerox PARC website, URL: http://www.parc.xerox.com/csl/projects/aop/.

3. D. L. Parnas, �On the Criteria To Be Used in Decomposing Systems into Modules�,
pp. 1053�1058 in Communications of the ACM, Vol. 15, No. 12, December 1972.

4. Edsger W. Dijkstra, �A discipline of programming�, Prentice-Hall, 1976.
[See in particular �In Retrospect� (chapter 27; pp. 209�217), and also �note 1� (p. 203).]

5. �AspectJ: Crosscutting Objects for Better Modularity�.
Xerox PARC website, URL: http://aspectj.org/.

6. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm and William G.
Griswold, �An Overview of AspectJ�, pp. 327 ff. in Proc. 15th European Conference on
Object-Oriented Programming (Budapest, Hungary, 18�22 June 2001) � published by
Springer-Verlag as Lecture Notes in Computer Science no. 2072 (Jørgen Lindskov
Knudsen, editor).

7. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm and William G.
Griswold, �Getting Started with AspectJ�, tutorial article submitted for a special theme
section on Aspect-Oriented Programming to appear in Communications of the ACM,
Vol. 44, No. 10, October 2001.
(Available on-line at URL: http://aspectj.org/doc/gettingStarted/index.html.)

8. �HyperJ�: Multi-Dimensional Separation of Concerns for Java��.
IBM Research website,
URL: http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm.

9. Naftaly H. Minsky, �Law-Governed Regularities in Object Systems. Part I: An Abstract
Model�, pp. 283�301 in Theory and Practice of Object Systems, Vol. 2, No. 4, 1996.

10. Charles Simonyi, �The Future Is Intentional�, pp. 56�57 in IEEE Computer, Vol. 32,
No. 5, May 1999. [One of nine contributions to �Software [R]evolution: A Roundtable�,
Kirk L. Kroeker (editor), pp. 48�57 of that issue.]

11. �Intentional programming�.
Microsoft Research website, URL: http://www.research.microsoft.com/ip/.

Acknowledgements

One of the authors has twice had the privilege of seeing Gregor Kiczales� excellent
presentations on aspect-oriented programming. Our colleague David Allsopp offered
some particularly thoughtful observations. This work has been supported by the UK
Ministry of Defence under Corporate Research TG10 project 5.4.4, �Re-usable
Simulation Components for Synthetic Environments�.

© Copyright QinetiQ ltd 2001

CSEG
61

	Title
	Preface
	Table of Contents
	Adaptive Systems
	Group Objects using Aspect-Oriented Adapters (Stefan Hanenberg, Rainer Unland)
	From Software Parameterization to Software Profiling (Phillipe Bouaziz, Lionel Seinturier)
	Aspect-Based Workflow Evolution (Boris Bachmendo, Rainer Unland)

	Mapping and Automation
	Some Insights on the Use of AspectJ and Hyper/J (Christina Chavez, Alessandro Garcia, Carlos Lucena)
	Translation of Java to Real-Time Java using Aspects (Morgan Deters, Nicholas Leidenfrost, Ron K. Cytron)

	Middleware
	Middleware Architecture Design Based on Aspects, the Open Implementation Metaphor and Modularity (H.-Arno Jacobsen)
	Aspects of Exceptions at the Meta-Level (Ian S. Welch, Robert J. Stroud, Alexander Romanovsky)
	Fault Tolerance AOP Approach (Jose Luis Herrero, Fernando Sanchez, Miguel Toro)

	Miscellaneous
	Transferring Persistence Concepts in Java ODBMSs to AspectJ Based on ODMG Standards (Arno Schmidmeier)
	Alternatives to Aspect-Oriented Programming? (David Bruce, Nick Exon)

